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Abstract. The main aim of this article is to introduce an analytical method called the Natural

Homotopy Perturbation Method (NHPM) for solving linear and nonlinear Schrödinger equa-

tions. The proposed analytical method is a combination of the Natural transform method (NTM)

and homotopy perturbation method (HPM). The analytical method is applied directly without

using any linearization, transformation, discretization or taking some restrictive assumptions,

and it reduces the computational size and avoids round-off errors.

1 Introduction

Schrödinger equations play a signi�cant role in quantum mechanics. The Schrödinger equa-

tions are partial differential equations which arise in the study of the time evolution of the wave

function. The standard linear Schrödinger equation is given by:

vt = ivxx, i2 = −1, t > 0, (1.1)

subject to the initial condition

v(x, 0) = g(x), (1.2)

where g(x) is a continuous function and square integrable. While the nonlinear case is given by:

ivt + vxx + β|v|2v = 0, (1.3)

subject to the initial condition

v(x, 0) = g(x), (1.4)

where β is a constant term and v(x, t) is complex.

The linear and Schrödinger equation always describe the time evolution of a free particle of mass

m and the nonlinear Schrödinger equation is a solitary wave equation, where the speed of prop-

agation is independent of the amplitude of the wave function.

In the last few decades, several numerical techniques have been used to solved linear and non-

linear Schrödinger equations, such as natural decomposition method (NDM) [11, 19, 20, 23, 24,

25], Adomian decomposition method (ADM) [4, 9], Bilinear formalism (BF) [2, 3], variational

iteration method (VIM) [4, 5, 17], Laplace decomposition method (LDM) [6, 22], homotopy

perturbation method (HPM) [7, 33, 34, 35], inverse scattering method (ISM) [1], reduce differ-

ential transform method (RDTM) [30, 31, 32], and so on.

In this paper, we introduce an analytical method called the Natural Homotopy Perturbation

Method (NHPM) for solving linear and nonlinear Schrödinger equations. The N-transform prop-

erties and its application to unsteady �uid �ow over a plane wall were �rst introduced by Khan

ZH and Khan WA [16] in the year 2008 and recently renamed as Natural transform by Bel-

gacem FBM and Silambarasan R [14, 29] in the year 2012. The Natural transform is similar to

Laplace integral transform [21] and Sumudu integral transform [26, 27, 28]. It converges to both

Laplace and Sumudu integral transform by changing of variable [16]. Recently, in the year 2012,
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Belgacem FBM and Silambarasan R [14, 15] successfully applied the Natural transform and ob-

tained the solution of Bessel's differential equation with a polynomial coef�cient and Maxwell's

equation. In this paper, we enhance the application of the Natural transform method by using

homotopy perturbation method. The proposed analytical method had a broad applicability to all

sorts of linear and nonlinear Schrödinger equations. The analytical method reduces the computa-

tional size and lead to exact or approximate solution to the form of a rapidly convergence series

solution. The proposed analytical method is based on coupling the Natural transform method

(NTM) [14, 16, 29] and homotopy perturbation method (HPM) [33, 34, 35]. The analytical pro-

cedure is applied successfully and obtained an exact solution of linear and nonlinear Schrödinger

equations, and the results are compared with the results of the existing methods. Thus, the Natu-

ral Homotopy Perturbation Method is a powerful mathematical technique for solving linear and

nonlinear Schrödinger equations.

2 Natural Transform

In this section, we present some de�nitions and properties of the Natural transform.

De�nition: The Natural transform of the function v(t) for t ∈ (0,∞) is de�ned over the set of

functions:

A=

{
v(t) : ∃M, τ1, τ2 > 0, |v(t)| < Me

|t|
τj , if t ∈ (−1)j × [0,∞)

}
by the following integral

N+ [v(t)] = V (s, u) =
1

u

∫ ∞

0

e
−st
u v(t) dt; s > 0, u > 0. (2.1)

Where s and u are the Natural transform variables [14, 15].

Fundamental properties of the Natural transform are given below. See [14, 15, 16].

Property 1. If V (s, u) is the Natural transform and F (s) is the Laplace transform of the function

f(t) ∈ A, then N+ [f(t)] = V (s, u) = 1

u

∫∞
0

e−
st
u f(t) dt = 1

uF
(
s
u

)
.

Property 2. If V (s, u) is the Natural transform andG(u) is the Sumudu transform of the function

v(t) ∈ A, then N+ [v(t)] = V (s, u) = 1

s

∫∞
0

e−t v
(
ut
s

)
dt = 1

sG
(
u
s

)
.

Property 3. N+ [v(at)] = 1

aV (s, u).

Property 4. N+ [v′(t)] = s
uV (s, u)− 1

uv(0).

Property 5. N+ [v′′(t)] = s2

u2V (s, u)− s
u2 v(0)− 1

uv
′(0).

Property 6. The Natural transform is a linear operator. That is, if α and β are non�zero constants,

then

N+ [α f(t)± β g(t)] = αN+ [f(t)]± βN+ [g(t)] = αF+(s, u)± βG+(s, u).
Therefore, F+(s, u) and G+(s, u) are the Natural transforms of f(t) and g(t), respectively.

Table 1. List of Natural transforms of some functions.

Functional Form Natural transform Form

1 1

s

t u
s2

eαt 1

s−αu
tn−1

(n−1)! , n = 1, 2, ... un−1

sn

cosα(t) s
s2+α2u2

3 Analysis of the Natural Homotopy Perturbation Method

In this section, we demonstrate the basic idea of (NHPM) to the standard nonlinear Schrödinger

of form:

ivt + vxx + β|v|2v = 0, (3.1)
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subject to the initial condition

v(x, 0) = g(x), (3.2)

where β is a constant term and v(x, t) is complex.

Applying the Natural transform to eq.(3.1) subject to the given initial condition, we get:

V (x, s, u) =
1

s
g(x)− ui

s
N+
[
vxx + β|v|2v

]
. (3.3)

Taking the inverse Natural transform of eq.(3.3), we get:

v(x, t) = G(x, t) + iN−1

[u
s
N+
[
vxx + β|v|2v

]]
, (3.4)

where G(x, t) is a term arising from the source term and the prescribed initial condition.

Now we apply the homotopy perturbation method. According to homotopy perturbation method,

we use the embedding parameter p as small parameter and assume that the solution of eq.(3.1)

can be represented as a power series in p of the form:

v(x, t) =
∞∑
n=0

pnvn(x, t), (3.5)

and the nonlinear term F (v(x, t)) = |v|2v = v2v̄ can be decomposed as:

v2v̄ =
∞∑
n=0

pnHn(v), (3.6)

where H(v)n is a He's polynomials which can be evaluated using the following formula:

Hn(v1, v2, · · · , vn) =
1

n!

∂n

∂pn

F
 n∑

j=0

pjvj


p=0

, n = 0, 1, 2, · · · (3.7)

Some few components of He's polynomial (Hn(v)) are computed below:

H0(v) = v20 v̄0,

H1(v) = 2v0v1v̄0 + v20 v̄1,

H2(v) = 2v0v2v̄0 + v21 v̄0 + 2v0v1v̄1 + v20 v̄2,

H3(v) = 2v0v3v̄0 + 2v1v2v̄0 + 2v0v2v̄1 + v21 v̄1 + 2v0v1v̄2 + v20 v̄3,

...,

and so on.

Now, by substituting eq.(3.5) and eq.(3.6) into eq.(3.4), we get:

∞∑
n=0

pnvn(x, t) = G(x, t) + ip

(
N−1

[
u

s
N+

[ ∞∑
n=0

pnvnxx +
∞∑
n=0

pnHn(v)

]])
. (3.8)

Comparing the coef�cient of like powers of p in eq.(3.8), the following approximations are

obtained:

p0 : v0(x, t) = G(x, t),

p1 : v1(x, t) = iN−1

[u
s
N+ [v0xx +H0(v)]

]
,

p2 : v2(x, t) = iN−1

[u
s
N+ [v1xx +H1(v)]

]
,

p3 : v3(x, t) = iN−1

[u
s
N+ [v2xx +H2(v)]

]
,

...,
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and so on.

Thus, the series solution of eq.(3.1) is given by:

v(x, t) = lim
N→∞

N∑
n=0

vn(x, t). (3.9)

The series solution always converges rapidly. (ADM) [12] gave the detailed classical conver-

gence of the series solution.

4 Applications

In this section, we demonstrate the applicability and �exibility of the Natural Homotopy Pertur-

bation Method (NHPM) to some linear and nonlinear Schrödinger equations.

Example 1. Consider the following linear Schrödinger equation of the form:

vt = ivxx, (4.1)

subject to the initial condition

v(x, 0) = sin(βx), (4.2)

where β is a constant term.

Applying the Natural transform to eq.(4.1) subject to the given initial condition, we get:

V (x, s, u) =
sin(βx)

s
+ i

u

s

[
N+ [vxx]

]
. (4.3)

Taking the inverse Natural transform of eq.(4.3), we get:

v(x, t) = sin(βx) + iN−1

[u
s
N+ [vxx]

]
. (4.4)

Now we apply the homotopy perturbation method.

v(x, t) =
∞∑
n=0

pnvn(x, t). (4.5)

Then eq.(4.4) will become:

∞∑
n=0

pnvn(x, t) = sin(βx) + ip

(
N−1

[
u

s
N+

[ ∞∑
n=0

pnvnxx

]])
. (4.6)

Comparing the coef�cient of like powers of p in eq.(4.6), the following approximations are

obtained:

p0 : v0(x, t) = sin(βx),

p1 : v1(x, t) = iN−1

[u
s
N+ [v0xx]

]
= iN−1

[u
s
N+
[
−β2 sin(βx)

]]
= −iβ2 sin(βx)N−1

[u
s
N+ [1]

]
= −iβ2 sin(βx)N−1

[ u
s2

]
= −itβ2 sin(βx),
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p2 : v2(x, t) = iN−1

[u
s
N+ [v1xx]

]
= iN−1

[u
s
N+
[
itβ4 sin(βx)

]]
= −β4 sin(βx)N−1

[u
s
N+ [t]

]
= −β4 sin(βx)N−1

[
u2

s3

]
=

(it)2

2!
β4 sin(βx),

p3 : v3(x, t) = iN−1

[u
s
N+ [v2xx]

]
= iN−1

[
u

s
N+

[
t2

2!
β6 sin(βx)

]]
=

iβ6

2!
sin(βx)N−1

[u
s
N+
[
t2
]]

=
iβ6

2!
sin(βx)N−1

[
2!u3

s4

]
= −(it)3

3!
β6 sin(βx),

...,

and so on.

Thus, the series solution of eq.(4.1) is given by:

v(x, t) = lim
N→∞

N∑
n=0

vn(x, t)

= v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

= sin(βx)− (it)β2 sin(βx) +
(it2)2

2!
β4 sin(βx)− (it)3

3!
β6 sin(βx) + · · ·

= sin(βx)

(
1− (it)β2 +

(it)2

2!
β4 − (it)3

3!
β6 + · · ·

)
.

When β = 1, then the exact solution of the Schrodinger equation (4.1) is given by:

v(x, t) = sin(x)e−it. (4.7)

The exact solution is in close agreement with the result obtained by (ADM) [4], (NDM) [11],

and (VIM) [4, 5].

Example 2. Consider the following nonlinear Schrödinger equation of the form:

ivt + vxx + 6|v|2v = 0, (4.8)

subject to the initial condition

v(x, 0) = e3ix. (4.9)

Applying the Natural transform to eq.(4.8) subject to the given initial condition, we get:

V (x, s, u) =
e3ix

s
+ i

u

s
N+
[
vxx + 6|v|2v

]
= 0 (4.10)

Taking the inverse Natural transform of eq.(4.10), we get:

v(x, t) = e3ix + iN−1

[u
s
N+
[
vxx + 6|v|2v

]]
. (4.11)
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Now by applying the homotopy perturbation method we get:

v(x, t) =
∞∑
n=0

pnvn(x, t). (4.12)

Then eq.(4.11) will become:

∞∑
n=0

pnvn(x, t) = e3ix + ip

(
N−1

[
u

s
N+

[ ∞∑
n=0

pnvnxx + 6

∞∑
n=0

pnHn(v)

]])
, (4.13)

where Hn(v) is a He's polynomials which represent the nonlinear term |v|2v
Comparing the coef�cient of like powers of p in eq.(4.13), the following approximations are

obtained:

p0 : v0(x, t) = e3ix,

p1 : v1(x, t) = iN−1

[u
s
N+ [v0xx +H0(v)]

]
= iN−1

[u
s
N+
[
v0xx + 6v20 v̄

]]
= iN−1

[u
s
N+
[
−3e3ix

]]
= −3ie3ixN−1

[u
s
N+ [1]

]
= −3ie3ixN−1

[ u
s2

]
= −(3i)te3ix,

p2 : v2(x, t) = iN−1

[u
s
N+ [v1xx + 6H1(v)]

]
= iN−1

[u
s
N+
[
v1xx + 6

(
2v0v1v̄0 + v20v1

)]]
= iN−1

[u
s
N+
[
9ite3ix

]]
= −9e3ixN−1

[u
s
N+ [t]

]
= −9e3ixN−1

[
u2

s3

]
=

(3it)2

2!
e3ix,

p3 : v3(x, t) = iN−1

[u
s
N+ [v2xx + 6H2(v)]

]
= iN−1

[u
s
N+
[
v2xx + 6(2v0v2v̄0 + v21 v̄0 + 2v0v1v̄1 + v20 v̄2)

]]
= iN−1

[
u

s
N+

[
27t2

2!
e3ix

]]
=

27i

2!
e3ixN−1

[u
s
N+
[
t2
]]

=
27i

2!
e3ixN−1

[
2u3

s4

]
= −(3it)3

3!
e3ix,

...,
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and so on.

Thus, the series solution of eq.(4.8) is given by:

v(x, t) = lim
N→∞

N∑
n=0

vn(x, t)

= v0(x, t) + v1(x, t) + v2(x, t) + v3(x, t) + · · ·

= e3ix − 3ite3ix +
(3it)2

2!
e3ix + · · ·

= e3ix
(
1− (3it) +

(3it)2

2!
− (3it)3

3!
· · ·
)
.

= e3i(x−t).

Hence, the exact solution of the Schrodinger equation (4.8) is given by:

v(x, t) = e3i(x−t). (4.14)

The exact solution is in close agreement with the result obtained by (ADM) [4], (NDM) [11],

and (VIM) [4, 5].

5 Conclusion

In this paper, an analytical method called the Natural Homotopy Perturbation Method (NHPM)
is successfully applied to linear and nonlinear Schrödinger equations. The analytical method
doesn't require the use of Adomian polynomials which is an advantage over the Adomian de-
composition method. The �exibility and high accuracy of the analytical method is success-
fully illustrated. Thus, the analytical method can be use to solve many linear and nonlinear
Schrödinger equations and related applications in science and engineering.
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