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Abstract In this paper we study weakly prime and weakly semiprime subsemimodules of
a semimodule over a commutative semiring with nonzero identity. Also, we give a number of
results concerning weakly semiprime subsemimodules of a multiplication semimodule.

1 Introduction

The concept of semirings and semimodules has been studied by several authors, for example see
[1], [2], [3], [4], [5], [6], [9], [10], [11]. Weakly prime submodules of a module over a commu-
tative ring with a nonzero identity have been introduced and studied by S. Ebrahmi Atani and
F. Farzalipour [7]. Also, weakly semiprime subsemimodules of a semimodule over a commu-
tative semiring have been studied in [11]. In this paper we study the weakly prime and weakly
semiprime subsemimodules of a semimodule over commutative semiring with nonzero identity.
Before we state some results let us introduce some notation and terminology. By a commutative
semiring we mean an algebraic system R = (R,+, ·) such that R = (R,+) and R = (R, ·) are
commutative semigroup, connected by a(b + c) = ab + bc for all a, b, c ∈ R, and there exists
0 ∈ R such that r + 0 = 0 and r · 0 = 0 · r = 0 for all r ∈ R. Throughout this paper let R be a
commutative semiring. A semiring R is said to be semidomain whenever a, b ∈ R with ab = 0,
implies that a = 0 or b = 0. A subtractive ideal (=k-ideal) I is an ideal such that if x, x+ y ∈ I ,
then y ∈ I . A proper ideal I of semiring R is called maximal (k-maximal) if J is an ideal of R
(resp. k-ideal) in R such that I $ J , then J = R. A nonzero element a of R is said to be semiunit
in R if there exist r, s ∈ R such that 1+ra = sa. R is called a local semiring if and only if R has
a unique k-maximal ideal. A (left) semimodule M over a semiring R is a commutative additive
semigroup which has a zero element, together with a mapping from R ×M into M such that
(r+ s)m = rm+ sm, r(m+ n) = rm+ rn, r(sm) = (rs)m and 0m = r0M = 0Mr = 0M for
all m,n ∈ M and r, s ∈ R. Let M be a semimodule over a semiring R and let N be a subset of
M , we say that N is a subsemimodule of M when N is itself an R-semimodule with respect to
the operations for M (so 0M ∈ N ). It is easy to see that if r ∈ R, then rM = {rm : m ∈M} is a
subsemimodule of M . A subtractive subsemimodule (=k-subsemimodule) N is subsemimodule
such that if x, x + y ∈ N , then y ∈ N . A proper subsemimodule N of R-semimodule M is
called prime, if rm ∈ N where r ∈ R and m ∈ M , then m ∈ N or rM ⊆ N . A semimodule
M is called prime if the zero subsemimodule of M is prime subsemimodule. The semiring R is
a semimodule over itself. In this case, the subsemimodules of R are called ideals of R. If R is
a semiring (not necessarily a semidomain) and M an R-semimodule, then we define the subset
T (M) as T (M) = {m ∈M : rm = 0 for some 0 6= r ∈ R}.

It is clear that if R a semidomain, then T (M) is a subsemimodule of M (see [4]). Let R is a
semidomain and M an R-semimodule, then M is called torsion if T (M) = M and M is called
torsion free if T (M) = 0.

2 Weakly Prime Subsemimodules

Let R be a semiring and M an R-semimodule. A proper subsemimodule N of M is called
weakly prime, if 0 6= rm ∈ N where r ∈ R and m ∈M , then m ∈ N or r ∈ (N : M) (see [1]).
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It is clear that every prime subsemimodule is a weakly prime subsemimodule. However, since
0 is always weakly prime(by definition), a weakly prime subsemimodule need not be prime. Let
R be a semiring which is not semidomain and let M be faithful R-semimodule. If 0 is a prime
subsemimodule, then (0 : M) = 0 is a prime ideal of semiring R, which is not the case, but we
have the following results:

Proposition 2.1. Let M be an R-semimodule with T (M) = 0. Then every weakly prime sub-
semimodule of M is prime.

Proof. Let N be a weakly prime subsemimodule of M . Suppose that rm ∈ N where r ∈ R,
m ∈ M . If 0 6= rm ∈ N , N weakly prime gives m ∈ N or rM ⊆ N . If rm = 0, then r = 0 or
m = 0 since T (M) = 0. So N is prime.

Proposition 2.2. Let M be a semimodule over a local semiring R with k-maximal ideal P such
that PM = 0. Then every proper k-subsemimodule of M is weakly prime.

Proof. Let N be a proper k-subsemimodule of M , and 0 6= rm ∈ N where r ∈ R and m ∈ M .
If r is semiunit, then 1 + ar = sr for some a, s ∈ R. So m+ (rm)a = s(rm) ∈ N , thus m ∈ N
since N is a k-subsemimodule. Let r is not semiunit, so rm ∈ PM = 0 by [5, Theorem 2], a
contradiction. Hence N is weakly prime.

We know that if N is a prime subsemimodule of an R-semimodule M , then (N : M) is a
prime ideal of R (see [4, Lemma 4]. This is not always true for case of weakly prime subsemi-
modules. For example, let M be Z+

0 -semimodule Z8. Let N = {0}. Certainly, N is a weakly
prime subsemimodule of M , but (N : M) = (0 : M) = 8Z+

0 is not a weakly prime ideal of Z+
0 ,

because 0 6= 4 · 4 ∈ 8Z+
0 and 4 6∈ 8Z+

0 .

Now we consider the case in which from a weakly prime subsemimodule we reach to a
weakly prime ideal.

Proposition 2.3. Let M be a P -prime R-semimodule. If N is a weakly prime k-subsemimodule
of M , then (N : M) is a weakly prime ideal of R.

Proof. Since M is a prime semimodule its zero subsemimodule is prime. So P = (0 : M) is a
prime ideal of R. Let 0 6= ab ∈ (N : M) and a 6∈ (N : M) where a, b ∈ R. Hence there exists
m ∈ M such that am 6∈ N . Now (ab)M ⊆ N . If (ab)M = 0, then ab ∈ (0 : M) = P , and
so a ∈ P or b ∈ P . But a 6∈ (N : M) and P = (0 : M) ⊆ (N : M), hence b ∈ (N : M).
If (ab)M 6= 0, then there exist 0 6= n ∈ M such that (ab)n 6= 0. If an 6∈ N , then b(an) ∈ N
implies that b ∈ (N : M). If an ∈ N , then a(m + n) 6∈ N , because if a(m + n) ∈ N , then
am ∈ N since N is k-subsemimodule, a contradiction. Hence ab(m+ n) = b(a(m+ n)) ∈ N
and a(m+ n) 6∈ N so b ∈ (N : M). In any case 0 6= ab ∈ (N : M) and a 6∈ (N : M) implies
that b ∈ (N : M).

3 Weakly semiprime subsemimodules

Definition 3.1. Let R be a semiring and M an R-semimodule. A proper subsemimodule N of
M is called weakly semiprime, if 0 6= rkm ∈ N for some r ∈ R, m ∈ M and k ∈ Z+, then
rm ∈ N .

Since the semiring R is an R-semimodule by itself, according to our definition, a proper ideal
I of R is a weakly semiprime ideal, if whenever 0 6= akb ∈ I for some a, b ∈ R and k ∈ Z+, then
ab ∈ I . It is clear that every semiprime is weakly semiprime, but the converse is not true in gen-
eral. In fact the zero subsemimodule of an R-semimodule M is always weakly semiprime, but is
not necessarily semiprime. For example in the semiring Z4, the ideal {0} is weakly semiprime,
but not semiprime, because 22 · 3 ∈ I but 2 · 3 6∈ I . Also, it is clear that if N is a weakly prime,
then N is weakly semiprime.

If N is a weakly semiprime subsemimodule of R-semimodule M , then it is possible that
(N : M) is not a weakly semiprime ideal of R. For example, let M be Z+

0 -semimodule Z4. Let
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N = {0}. Certainly, N is a weakly semiprime subsemimodule of M , but (N : M) = (0 : M) =
4Z+

0 is not a weakly semiprime ideal of Z+
0 , because 0 6= 22 ∈ 4Z+

0 but 2 6∈ 4Z+
0 .

Now we consider several cases in which from a weakly semiprime subsemimodule, we reach
a weakly semiprime ideal.

Proposition 3.2. Let M be a faithful cyclic R-semimodule and N be a weakly semiprime sub-
semimodule of M . Then (N : M) is a weakly semiprime ideal of R.

Proof. Assume that M = Rx for some x ∈ M . Let 0 6= akb ∈ (N : M) where a, b ∈ R and
k ∈ Z+. So akbM ⊆ N and since M is faithful, 0 6= akbM . Hence 0 6= akbx ∈ N , so a(bx) ∈ N
since N is weakly semiprime. Therefore (ab)M ⊆ N , so (N : M) is a weakly semiprime ideal
of R.

Remark 3.3. Let M be an R-semimodule. Then M is a P -prime semimodule if and only if
(0 : M) = (0 : m) for every nonzero element m ∈M .

Proposition 3.4. Let M be a P -prime R-semimodule and N a weakly semiprime subsemimodule
of M . Then (N : M) is a weakly semiprime ideal of R.

Proof. Let 0 6= akb ∈ (N : M) where a, b ∈ R and k ∈ Z+. Let x be an arbitrary element
of M , so akbx ∈ N . If akbx = 0, then akb ∈ (0 : m) = (0 : M) = P . This implies that
ab ∈ P ⊆ (N : M). If akbx 6= 0, then from akbx ∈ N we conclude that abx ∈ N since N is
weakly semiprime. In any case abx ∈ N for every x ∈M and so ab ∈ (N : M), as required.

The next Theorem gives an alternative definition for weakly semiprime subsemimodules
when a semimodule is prime.

Theorem 3.5. Let M be an R-semimodule and N a proper subsemimodule of M . If for every
ideal of semiring R, subsemimodule K of M and t ∈ Z+, 0 6= ItK ⊆ N implies that IK ⊆ N ,
then N is a weakly semiprime subsemimodule of M . The converse is true if M is a P -prime
semimodule.

Proof. Let 0 6= rkm ∈ N where r ∈ R, m ∈ M and k ∈ Z+. We take I = Rr and K =
Rm. Now 0 6= IkK ⊆ N and so by the hypothesis IK ⊆ N which implies that rm ∈ N .
Therefore N is a weakly semiprime subsemimodule of M . Conversely, let I be an ideal of
R, K a subsemimodule of M and t ∈ Z+. Assume that 0 6= ItK ⊆ N . Consider the set
S = {ra|r ∈ I, a ∈ K}. Now rta ∈ ItK. If rta 6= 0 then clearly ra ∈ N . Let rta = 0 where
a 6= 0, then rt ∈ (0 : a) = (0 : M) = P by Remark 3.3. So r ∈ P = (0 : a) and so ra = 0.
In any case ra ∈ N and S ⊆ N . But S generates IK and therefore IK ⊆ N . The proof is
complete.

Remark 3.6. Since the semiring R is an R-semimodule, so if I is a weakly semiprime ideal
of a semidomain R, then by Theorem 3.5, for every ideals J,K of R and positive integer t,
0 6= J tK ⊆ I .

Proposition 3.7. Let R be a semidomain and M be a torsion free R-semimodule. Then every
weakly semiprime subsemimodule of M is semiprime.

Proof. Let N be a weakly semiprime subsemimodule of M . Suppose that rkm ∈ N where
r ∈ R, m ∈ M and k ∈ Z+. If rkm 6= 0 then rm ∈ N . Let rkm = 0 with m 6= 0. Then rk = 0
as T (M) = 0. Since R is semidomain we have r = 0. In any case we get rm ∈ N , hence N is a
weakly semiprime subsemimodule of M .

Proposition 3.8. Let M be a semimodule over local semiring R with k-maximal ideal P such
that PM = 0. Then every proper k-subsemimodule of M is weakly semiprime.

Proof. Let N be a weakly semiprime subsemimodule of M and rkm ∈ N where r ∈ R, m ∈M
and k ∈ Z+. If r is semiunit, then 1 + ra = sr for some a, s ∈ R, so m+ (ra)m = (sr)m ∈ N .
Hence m ∈ N since N is k-subsemimodule. Let r is not semiunit, then r ∈ P , so rm ∈ PM =
0 ⊆ N .
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We study weakly semiprime subsemimodules in quotient semimodules.

A subsemimodule N of an R-semimodule M is called partitioning subsemimodule (=Q-
subsemimodule) if there exists a subset Q of M such that

(1) M =
⋃
{q +N : q ∈ Q}.

(2) If q1, q2 ∈ Q, then (q1 +N) ∩ (q2 +N) 6= ∅ ⇔ q1 = q2 [2].

Let N be a partitioning subsemimodule of an R-semimodule M . Then M/N(Q) = {q +N :
q ∈ Q} forms an R-semimodule under the following addition

⊕
and scaler multiplication

⊙
,

(q1+N)
⊕

(q2+N) = q3+N where q3 is a unique element of Q such that q1+q2+N ⊆ q3+N
and r � (q1 + N) = q4 + N where q4 ∈ Q is unique such that rq1 + N ⊆ q4 + N . This R-
semimodule M/N(Q) is called a quotient semimodule of M by N and denoted (M/N(Q),

⊕
,
⊙

)
[2].

Theorem 3.9. Let N be a Q-subsemimodule of an R-semimodule M and P a k-subsemimodule
of M with N ⊆ P . Then

(i) If P is a weakly semiprime subsemimodule of M , then P/N(Q∩P ) is a weakly semiprime
subsemimodule of M/N(Q).

(ii) If N , P/N(Q∩P ) are weakly semiprime subsemimodules of M and M/N(Q) respectively,
then P is a weakly semiprime subsemimodule of M .

Proof. (i) Let P be a weakly semiprime subsemimodule of M . Let q0 be the unique element of
Q such that q0 + N is the zero element of M/N(Q). Let q0 + N 6=rk � (q1 + N) ∈ P/N(Q∩P )

where r ∈ R, q1 ∈ Q and k ∈ Z+. By [2, Lemma 3.4] there exists a unique q2 ∈ Q∩P such that
rk� (q1 +N) = q2 +N such that rkq1 +N ⊆ q2 +N . Since N ⊆ P and P is k-subsemimodule,
so rkq1 ∈ P . If rkq1 = 0, then rkq1 ∈ (q0 +N) ∩ (q2 +N) (because 0 ∈ q0 +N by [2, Lemma
2.3]), thus q0 = q2 and hence q0 + N = q2 + N , a contradiction. Thus 0 6= rkq1 ∈ P , as P is
weakly semiprime, so rq1 ∈ P . Hence r� (q1 +N) = q2 +N where q2 is a unique element of Q
such that rq1 +N ⊆ q2 +N . Since N ⊆ P and P is a k-subsemimodule of M , so q2 ∈ P . Hence
q2 ∈ Q ∩ P and so r � (q1 +N) = q2 +N ∈ P/N(Q∩P ). Thus P/N(Q∩P ) is weakly semiprime.

(ii) Suppose that N , P/N(Q∩P ) are weakly semiprime subsemimodules of M and M/N(Q)

respectively. Let 0 6= rkm ∈ P where r ∈ R, m ∈ M and k ∈ Z+. If 0 6= rkm ∈ N , then
rm ∈ N ⊆ P , as needed. Let rkm ∈ P − N . By using [1, Lemma 3.6], there exists a unique
q1 ∈ Q such that m ∈ q1 +N and rkm ∈ rk � (q1 +N) = q2 +N where q2 is a unique element
of Q such that rkq1 + N ⊆ q2 + N . Since rkm ∈ P and rkm ∈ q2 + N , so q2 ∈ P as P is
k-subsemimodule and N ⊆ P . Hence q0 + N 6= rk � (q1 + N) = q2 + N ∈ P/N(Q∩P ). As
P/N(Q∩P ) is weakly semiprime, so r�(q1+N) ∈ P/N(Q∩P ). Therefore, r�(q1+N) = q3+N
where q3 ∈ Q ∩ P such that rq1 + N ⊆ q3 + N . So rq1 ∈ P since P is k-subsemimodule and
N ⊆ P . As m ∈ q1 +N , so rm ∈ rq1 +N . Therefore rm ∈ P since N ⊆ P , as required.

An R-semimodule M is called a multiplication semimodule, if for every subsemimodule N
of M , N = IM for some ideal I of semiring R (see [11]).

Let M be a multiplication R-semimodule and N , K are subsemimodules of M . Then there
exist ideals I, J of R such that N = IM and K = JM . We define the product of N , K, NK,
as (IJ)M , i.e. NK = (IM)(JM) = (IJ)M . By [11, Theorem 2], the product of two subsemi-
module is independent of its presentations.

Now we study weakly semiprime subsemimodules of multiplication semimodules.

Theorem 3.10. Let R be a semidomain, M a multiplication R-semimodule and (N : M) a
weakly semiprime ideal of R. Then N is a weakly semiprime subsemimodule of M .

Proof. Let 0 6= ItK ⊆ N where I is an ideal of R, K a subsemimodule of M and t a positive
integer. Since M is a multiplication R-semimodule we can write K = JM for some ideal
J of semiring R and so 0 6= ItJM ⊆ N , that is 0 6= ItJ ⊆ (N : M). Hence by Remark
3.6, IJ ⊆ (N : M), so I(JM) ⊆ N . From this we have IK ⊆ N , therefore N is a weakly
semiprime subsemimodule of M .
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Theorem 3.11. Let M be a P -prime multiplication semimodule and N be a weakly semiprime
subsemimodule of M . Then for every subsemimodule K of M and positive integer t, 0 6= Kt ⊆
N implies that K ⊆ N .

Proof. Let N be a weakly semiprime subsemimodule of M and 0 6= Kt ⊆ N where K is a
subsemimodule of M and t ∈ Z+. Hence K = IM for some ideal I of R. So 0 6= Kt = ItM ⊆
N . Since M is P -prime and N weakly semiprime, then K = IM ⊆ N by Theorem 3.5.

Corollary 3.12. Let M be a P -prime multiplication R-semimodule and N be a weakly semiprime
subsemimodule of M . Then for every m ∈M and t ∈ Z+, 0 6= mt ⊆ N implies that m ∈ N .

Proof. Let 0 6= mt ⊆ N where m ∈M and t ∈ Z+. Since M is multiplication, so there exists an
ideal I of R such that Rm = IM and so 0 6= Rmt = ItM ⊆ N . Since N is weakly semiprime
and M is P -prime so by Theorem 3.5, we have IM ⊆ N . Hence m ∈ Rm = IM ⊆ N , as
needed.

Theorem 3.13. Let M be a multiplication R-semimodule which has no nonzero nilpotent sub-
semimodue and N be a proper subsemimodule of M . If for every subsemimodule U of M and
positive integer t, 0 6= U t ⊆ N implies that U ⊆ N , then N is a weakly semiprime subsemimod-
ule of M .

Proof. Let 0 6= ItK ⊆ N where I is an ideal of R, K a subsemimodule of M and t ∈ Z+. So
K = JM for some ideal J of R. Therefore 0 6= ItK = ItJM ⊆ N . Since M has no nonzero
nilpotent subsemimodule, so 0 6= (IK)t and hence 0 6= (IK)t = (IJ)tM ⊆ N . Hence IK ⊆ N
by hypothesis, so the proof is complete.

Corollary 3.14. Let M be a multiplication R-semimodule which has no nonzero nilpotent sub-
semimodue and N be a proper subsemimodule of M . If for every m ∈ M and t ∈ Z+,
0 6= mt ⊆ N implies that m ∈ N , then N is a weakly semiprime subsemimodule.

Proof. Let 0 6= Kt ⊆ N for some subsemimodule K of M and t ∈ Z+ but K * N . Let
x ∈ K −N . So Rx = JM for some ideal J of R. Clearly, x 6= 0 and so 0 6= Rx = JM . Since
M has no nonzero nilpotent subsemimodule, so 0 6= R(x)t and hence 0 6= R(x)t = (Rx)t =
(JM)t = J tM ⊆ N . Hence Rx ⊆ N by Theorem 3.13, so x ∈ N which is a contradiction.
Hence K ⊆ N , thus N is a weakly semiprime subsemimodule of M .
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