On the Gray images of some linear codes and quantum codes

Abdullah Dertli and Yasemin Cengellenmis

Communicated by Ayman Badawi

MSC 2010 Classifications: 94B05; 94B15.

Keywords and phrases: Quantum codes, cyclic codes, quasi-cyclic codes, constacyclic codes, skew codes, finite rings.

Abstract In this paper, we study the structures of cyclic, quasi-cyclic, constacyclic codes and their skew codes over the finite ring $S_p = F_p + uF_p + vF_p$, $u^2 = u, v^2 = v, uv = vu = 0$. The Gray images of cyclic, quasi-cyclic, skew cyclic, skew quasi-cyclic and skew constacyclic codes over S_p are obtained. A necessary and sufficient condition for cyclic (negacyclic) codes over S_p that contains its dual has been given. The parameters of quantum error correcting codes are obtained from both cyclic and negacyclic codes over S_p. The MacWilliams identities are obtained.

1 Introduction

Most of researchers concentrate on linear codes, since they have clear structure. Although a lot of researches on error correcting codes are about codes over finite fields, a lot of works on codes over finite rings were done after the discovery that certain good non-linear binary codes can be constructed from cyclic codes over Z_4 via the Gray map in [7].

The algebraic structures of certain type of codes over many finite rings were determined such as cyclic, negacyclic, quasi-cyclic and constacyclic codes that were defined in a commutative ring in [11,17,20,23,24,25,26,30].

D. Boucher, W. Gieselman and F. Ulmer in [8] took another direction, when they studied more generalized class of linear and cyclic using a non commutative ring. They studied what they called skew cyclic codes in [9,10]. Later, some researchers generalized the notion of quasi-cyclic and constacyclic codes over finite fields and finite ring as similarly in [2,12,16,19,22,27].

Quantum error correcting codes are used in quantum computing to protect quantum information. Although the theory of quantum error correcting codes has striking differences from the theory of classical error correcting codes, Calderbank et al. gave a way to construct quantum error correcting codes from classical error correcting codes in [6]. Many good quantum codes have been constructed by using classical cyclic codes over finite fields or finite rings with self orthogonal (or dual containing) properties in [1,3,4,5,13,14,15,18,21,28,29].

In this paper, it is given some definitions. By giving the duality of codes via inner product, it is shown that C is self orthogonal codes over S_p, so is $\phi (C)$, where ϕ is a Gray map in section 2. In section 3, a linear code over S_p is represented by means of three p-ary codes and it is generator matrix is given. It is shown that C is self dual if and only if all three p-ary codes are self dual codes. In section 4, the Gray images of cyclic and quasi-cyclic codes over S_p are obtained. It is shown that C is cyclic (negacyclic) code over S_p if and only if all three p-ary codes are cyclic (negacyclic) codes. In section 5, after a cyclic (negacyclic) codes over S_p is represented via cyclic (negacyclic) codes over F_p, it is determined the dual of cyclic (negacyclic) codes.

A necessary and sufficient condition for cyclic (negacyclic) code over S_p that contains its dual is given. The parameters of quantum error correcting codes are obtained from both cyclic and negacyclic codes over S_p. In section 6, it is given details about constacyclic codes over S_p. It is expressed a linear code over S_p by means of two linear codes of length n over $F_p + uF_p$ in section 7. It is found the nontrivial automorphism θ_p on the ring S_p. By using this automorphism, the skew cyclic, skew quasi-cyclic and skew constacyclic codes over S_p are introduced. The number of distinct skew cyclic codes over S_p is given. The Gray images of the skew codes are obtained in section 8. In section 9, the MacWilliams identities are obtained.
2 Linear codes over S_p

Let $S_p = F_p + uF_p + vF_p$, where $u^2 = u, v^2 = v, uv = vu = 0$ and p is a prime. S_p is a finite commutative ring with identity and characteristic is p. It contains p^3 elements. Any element a of S_p can be expressed uniquely as $a = r + us + vt$ with $r, s, t \in F_p$. The ring has the following properties:

* There are 8 different ideals of S_p and they are $(1), (u), (v), (1-u-v), (1-u), (1-v), (u+v)$ and (0). (1) is an ideal whose the number of the elements is p^2, $(u), (v)$ and $(1-u-v)$ are ideals whose the number of the elements are p, $(1-u), (1-v), (u+v)$ are ideals whose the number of the elements are p^2, (0) is an ideal whose the number of the element is 1.

* S_p is principal ideal ring and it has three maximal ideals $(1-u), (1-v), (u+v)$. The quotient rings $S_p/(1-u), S_p/(1-v)$ and $S_p/(u+v)$ are isomorphic to F_p.

* For any element $a = r + su + tv$ of S_p, a is a unit if and only if $r \neq 0$, $r + s \neq 0$ (mod p) and $r + t \neq 0$ (mod p).

Moreover, $|S_p^n| = (p-1)^3$ where S_p^n is the group of units. For every element of a of S_p, we define the Gray map as

$$\phi : S_p \rightarrow F_p^3$$

$$\phi(r + us + vt) = (r, r + s, r + t)$$

It is easy to see that ϕ is a ring isomorphism. The mapping ϕ can be extended to

$$\phi : S_p^n \rightarrow F_p^{3n}$$

$$\phi(r + us + vt) = (r, r + s, r + t)$$

componentwise in a natural way as $\phi(a) = (r, r + s, r + t)$ where $a = (a_1, \ldots, a_n) \in S_p^n$ and $r = (r_1, \ldots, r_n), s = (s_1, \ldots, s_n)$ and $t = (t_1, \ldots, t_n) \in F_p^n$ with $a_i = r_i + us_i + vt_i$, for $i = 1, \ldots, n$. The Gray weight of a is defined as follows

$$w_G(a) = w_H(r, r + s, r + t)$$

where $w_H(b)$ denotes the Hamming weight of b over F_p. Define the Gray weight of a vector $a = (a_1, \ldots, a_n) \in S_p^n$ as

$$w_G(a) = \sum_{i=1}^{n} w_G(a_i)$$

For any elements $b_1, b_2 \in S_p^n$, the Gray distance is given by $d_G(b_1, b_2) = w_G(b_1 - b_2)$.

A code C of length n over S_p is a subset of S_p^n. C is linear iff C is an S_p-submodule of S_p^n.

The minimum Gray distance of C is the smallest nonzero Gray distance between all pairs of distinct codewords. The minimum Gray weight of C is the smallest nonzero Gray weight among all codewords. If C is linear, then the minimum Gray distance is the same as the minimum Gray weight.

Lemma 2.1. The Gray map ϕ is a distance preserving map from $(S_p^n, Gray distance)$ to $(F_p^{3n}, Hamming distance)$. Moreover it is also F_p-linear.

Proof. For $s_1, s_2 \in F_p$ and $a_1, a_2 \in S_p^n$, we have $\phi(s_1 a_1 + s_2 a_2) = s_1 \phi(a_1) + s_2 \phi(a_2)$ by using the definition of Gray map. So ϕ is F_p-linear. Let $a_1 = (a_{1,1}, \ldots, a_{1,n})$ and $a_2 = (a_{2,1}, \ldots, a_{2,n})$ be elements of S_p^n where $a_{1,i} = r_{1,i} + us_{1,i} + vt_{1,i}$ and $a_{2,i} = r_{2,i} + us_{2,i} + vt_{2,i}$ for $i = 1, \ldots, n$. Then $a_1 - a_2 = (a_{1,1} - a_{2,1}, \ldots, a_{1,n} - a_{2,n})$ and $\phi(a_1 - a_2) = \phi(a_1) - \phi(a_2)$. So $d_G(a_1, a_2) = w_G(a_1 - a_2) = w_H(\phi(a_1 - a_2)) = w_H(\phi(a_1) - \phi(a_2)) = d_H(\phi(a_1), \phi(a_2))$. By using the definition of the Gray weight of the element in S_p, the second equality above holds. \qed
Lemma 2.2. Let \(C \) be a \((n, M, d)\) linear code over \(S_p \), where \(n \) denotes the length, \(d \) denotes the minimum Gray distance and \(M \) denotes the size of \(C \). Then \(\phi(C) \) is a \([3n, \log_p M, d]\) linear code over \(F_p \).

Proof. From Lemma 2.1, we have \(\phi(C) \) is a \(F_p \) linear code. By using the Gray map, \(\phi(C) \) is length \(3n \). As \(\phi \) is a bijective map from \(S_p^n \) to \(F_p^{3n} \), we have \(\phi(C) \) has dimension \(\log_p M \). As \(\phi \) is preserving distance, \(\phi(C) \) has minimum Hamming distance \(d \).

For any \(x = (x_0, x_1, ..., x_{n-1}) \), \(y = (y_0, y_1, ..., y_{n-1}) \) the inner product is defined as

\[
x.y = \sum_{i=0}^{n-1} x_i y_i
\]

If \(x.y = 0 \) then \(x \) and \(y \) are said to be orthogonal. Let \(C \) be linear code of length \(n \) over \(R \), the dual code of \(C \)

\[
C^\perp = \{ x : \forall y \in C, x.y = 0 \}
\]

which is also a linear code over \(R \) of length \(n \). A code \(C \) is self orthogonal if \(C \subseteq C^\perp \) and self dual if \(C = C^\perp \).

Theorem 2.3. Let \(C \) be a linear code over \(S_p \). Then \(\phi(C)^\perp = \phi(C^{\perp}) \). Moreover, if \(C \) is a self dual, so is \(\phi(C) \).

Proof. For all \(a_1 = (a_{1,1}, ..., a_{1,n}) \in C, a_2 = (a_{2,1}, ..., a_{2,n}) \in C \) where \(a_{j,i} = r_{j,i} + u s_{j,i} + v t_{j,i} \), with \(j = 1, 2 \) and \(i = 1, 2, ..., n \). If \(a_1 a_2 = 0 \) then we have \(a_1 a_2 = \sum_{i=1}^{n} a_{1,i} a_{2,i} = \sum_{i=1}^{n} (r_{1,i} s_{2,i} + s_{1,i} t_{2,i} + s_{2,i} t_{1,i}) = 0 \) implying \(\sum_{i=1}^{n} r_{1,i} t_{2,i} = 0 \), \(\sum_{i=1}^{n} (r_{1,i} s_{2,i} + s_{1,i} t_{2,i}) = 0 \), \(\sum_{i=1}^{n} (r_{1,i} s_{2,i} + s_{1,i} t_{2,i}) = 0 \), \(\sum_{i=1}^{n} (r_{1,i} t_{2,i} + s_{1,i} s_{2,i}) = 0 \), \(\sum_{i=1}^{n} (r_{1,i} t_{2,i} + t_{1,i} t_{2,i}) = 0 \). Hence \(\phi(C) \subseteq \phi(C^{\perp}) \). By using Lemma 2.2, from \(|\phi(C)^\perp| = |\phi(C^{\perp})| \), we have \(\phi(C)^\perp = \phi(C^{\perp}) \).

Clearly, \(\phi(C) \) is self orthogonal if \(C \) is self dual by Lemma 2.1. By using Lemma 2.2, we have \(|\phi(C)| = |C| \), so \(\phi(C) \) is self dual.

3 A representation of linear codes over \(S_p \)

We denote that

\[
A_1 \oplus A_2 \oplus A_3 = \{(a_1, a_2, a_3) : a_1 \in A_1, a_2 \in A_2, a_3 \in A_3 \}
\]

and

\[
A_1 \oplus A_2 \oplus A_3 = \{a_1 + a_2 + a_3 : a_1 \in A_1, a_2 \in A_2, a_3 \in A_3 \}
\]

Let \(C \) be a linear code of length \(n \) over \(S_p \). Define

\[
C_1 = \{ r \in F_p^n : \exists s, t \in F_p^n, r + u s + v t \in C \}
\]

\[
C_2 = \{ r + s \in F_p^n : \exists t \in F_p^n, r + u s + v t \in C \}
\]

\[
C_3 = \{ r + t \in F_p^n : \exists s \in F_p^n, r + u s + v t \in C \}
\]

Then \(C_1, C_2 \) and \(C_3 \) are \(p \)-ary linear codes of length \(n \). Moreover, the linear code \(C \) of length \(n \) over \(S_p \) can be expressed as

\[
C = (1 - u - v)C_1 + u C_2 + v C_3
\]

Theorem 3.1. Let \(C \) be a linear code of length \(n \) over \(S_p \). Then \(\phi(C) = C_1 \otimes C_2 \otimes C_3 \) and \(|C| = |C_1||C_2||C_3| \).
Corollary 3.2. If \(\phi(C) = C_1 \otimes C_2 \otimes C_3 \), then \(C = (1 - u - v)C_1 \oplus uC_2 \oplus vC_3 \). It is easy to see that

\[
|C| = |C_1| |C_2| |C_3| = p^{n - \deg(f_1)} p^{n - \deg(f_2)} p^{n - \deg(f_3)} = p^{3n - (\deg(f_1) + \deg(f_2) + \deg(f_3))}
\]

where \(f_1, f_2 \) and \(f_3 \) are the generator polynomials of \(C_1, C_2 \) and \(C_3 \), respectively.

Corollary 3.3. If \(G_1, G_2 \) and \(G_3 \) are generator matrices of \(p \)-ary linear codes \(C_1, C_2 \) and \(C_3 \) respectively, then the generator matrix of \(C \) is

\[
G = \begin{bmatrix}
(1 - u - v)G_1 \\
uG_2 \\
vG_3
\end{bmatrix}.
\]

We have

\[
\phi(G) = \begin{bmatrix}
\phi((1 - u - v)G_1) \\
\phi(uG_2) \\
\phi(vG_3)
\end{bmatrix}
\]

Let \(d_G \) minimum Gray weight of linear code \(C \) over \(S_p \). Then,

\[
d_G = d_H(\phi(C)) = \min\{d_H(C_1), d_H(C_2), d_H(C_3)\}
\]

where \(d_H(C_1) \) denotes the minimum Hamming weights of \(p \)-ary codes \(C_1, C_2 \) and \(C_3 \), respectively.

4 Cyclic and Quasi-Cyclic Codes over \(S_p \)

Definition 4.1. A linear code \(C \) over \(S_p \) with the property that if \(a = (a_0, ..., a_{n-1}) \in C \) then \(\sigma(a) = (a_{n-1}, a_0, ..., a_{n-2}) \in C \) is called cyclic code.

A subset \(C \) of \(S_p^n \) is a linear cyclic code of length \(n \) iff it is a polynomial representation \(P(C) = \left\{ \sum_{i=0}^{n-1} a_i x^i : (a_0, ..., a_{n-1}) \in C \right\} \) is an ideal of \(S_p[x]/x^n - 1 \).

Definition 4.2. Let \(a \in F_{p}^{3n} \) with \(a = (a_0, a_1, ..., a_{3n-1}) = (a^{(0)} a^{(1)} a^{(2)}) \), \(a^{(i)} \in F_{p}^n \) for \(i = 0, 1, 2 \). Let \(\phi \) be a map from \(F_{p}^{3n} \) to \(F_{p}^{3n} \) given by \(\phi(a) = (\sigma(a^{(0)}), \sigma(a^{(1)}), \sigma(a^{(2)})) \) where \(\sigma \) is a cyclic shift from \(F_{p}^{n} \) to \(F_{p}^{n} \) given by \(\sigma(a^{(i)}) = (a^{(i+1)}, a^{(i+2)}, ..., a^{(i+n-2)}) \) for every \(a^{(i)} = (a^{(i,0)}, ..., a^{(i,n-1)}) \) where \(a^{(i,j)} \in F_{p}, j = 0, 1, ..., n - 1 \). A code of length \(3n \) over \(F_{p} \) is said to be quasi cyclic code of index 3 if \(\phi(C) = C \).

Proposition 4.3. Let \(\phi \) be Gray map from \(S_p^n \) to \(F_{p}^{3n} \). Let \(\sigma \) be cyclic shift and \(\varphi \) be as above. Then \(\phi \sigma = \varphi \phi \).

Proof. Let \(c_i = r_i + u s_i + v t_i \) be the elements of \(S_p \) for \(i = 0, 1, ..., n - 1 \). We have \(\sigma(c_0, c_1, ..., c_{n-1}) = (c_{n-1}, c_0, ..., c_{n-2}) \). If we apply \(\phi \), we have

\[
\phi(\sigma(c_0, ..., c_{n-1})) = \phi(c_{n-1}, c_0, ..., c_{n-2}) = (r_{n-1}, ..., r_{n-2}, r_{n-1} + s_{n-1}, ..., r_{n-2} + s_{n-2}, r_{n-1} + t_{n-1}, ..., r_{n-2} + t_{n-2})
\]

On the other hand \(\phi(c_0, ..., c_{n-1}) = (r_0, ..., r_{n-1}, r_0 + s_0, ..., r_{n-1} + s_{n-1}, r_0 + t_0, ..., r_{n-1} + t_{n-1}) \). If we apply \(\varphi \), we have \(\varphi(\phi(c_0, c_1, ..., c_{n-1})) = (r_{n-1}, ..., r_{n-2}, r_{n-1} + s_{n-1}, ..., r_{n-2} + s_{n-2}, r_{n-1} + t_{n-1}, ..., r_{n-2} + t_{n-2}) \). Thus, \(\phi \sigma = \varphi \phi \).

Theorem 4.4. Let \(\sigma \) and \(\varphi \) be as above. A code \(C \) of length \(n \) over \(S_p \) is cyclic code if and only if \(\phi(C) \) is quasi-cyclic code of index 3 over \(F_p \) with length \(3n \).
Proof. If C is cyclic code, then $\sigma(C) = C$. By using Proposition 4.3, we have $\phi(\sigma(C)) = \varphi(\phi(C)) = \phi(C)$. So $\phi(C)$ is a quasi-cyclic code of index 3 of length $3n$ over F_p. Conversely if $\phi(C)$ is quasi-cyclic code of index 3, so $\varphi(\phi(C)) = \phi(C)$. So by using Proposition 4.3, we have $\phi(\sigma(C)) = \varphi(\phi(C)) = \phi(C)$. Since ϕ is injective, it follows that $\sigma(C) = C$.

Definition 4.5. A linear code C over S_p with the property that if $a = (a_0, ..., a_{n-1}) \in C$ then $\beta(a) = (-a_{n-1}, a_0, ..., a_{n-2}) \in C$ is called negacyclic code.

A subset of S^n_p is a linear negacyclic code of length n if it is polynomial representation

$P(C) = \left\{ \sum_{i=0}^{n-1} a_ix^i : (a_0, ..., a_{n-1}) \in C \right\}$ is an ideal of $S_p[x]/<x^n + 1>$.

Proposition 4.6. Let $C = (1-u-v)C_1 \oplus uC_2 \oplus vC_3$ be a linear code over S_p. Then C is a cyclic code (negacyclic) over S_p if C_1, C_2 and C_3 are all cyclic (negacyclic) codes over F_p.

Proof. Let $(r_1, r_2, ..., r_n) \in C_1, (s_1, s_2, ..., s_n) \in C_2$ and $(t_1, t_2, ..., t_n) \in C_3$. Assume that $a_i = (1-u-v)r_i + us_i + vt_i$ for $i = 1, ..., n$. Then $(a_0, a_1, ..., a_{n-1}) \in C$. Since C is a cyclic code, it follows that $(a_n, a_1, ..., a_{n-1}) \in C$. Note that $(a_n, a_1, ..., a_{n-1}) = (1-u-v)(r_n, r_1, ..., r_{n-1}) + u(s_n, s_1, ..., s_{n-1}) + v(t_n, t_1, ..., t_{n-1})$. Hence $(r_n, t_1, ..., t_{n-1}) \in C_1, (s_n, s_1, ..., s_{n-1}) \in C_2$ and $(t_n, t_1, ..., t_{n-1}) \in C_3$. Therefore, C_1, C_2 and C_3 are cyclic codes over F_p.

Conversely, suppose that C_1, C_2 and C_3 are all cyclic codes over F_p. Let $(a_1, a_2, ..., a_n) \in C$ where $a_i = (1-u-v)r_i + us_i + vt_i$ for $i = 1, ..., n$. Then $(r_1, r_2, ..., r_n) \in C_1, (s_1, s_2, ..., s_n) \in C_2$ and $(t_1, t_2, ..., t_n) \in C_3$. Note that $(a_n, a_1, ..., a_{n-1}) = (1-u-v)(r_n, r_1, ..., r_{n-1}) + u(s_n, s_1, ..., s_{n-1}) + v(t_n, t_1, ..., t_{n-1}) \in C = (1-u-v)C_1 \oplus uC_2 \oplus vC_3$. So, C is a cyclic code over S_p.

For negacyclic codes, the proof is shown as similarly.

Definition 4.7. A subset C of S^n_p is called a quasi-cyclic code of length $n = sl$ and index l if C satisfies the following conditions,

i) C is a submodule of S^n_p,

ii) If $e = (e_0, 0, ..., e_{0-l+1}, e_1, 0, ..., e_1-l+1, e_2, 0, ..., e_2-l+1, ..., e_{s-1,0}, ..., e_{s-1-l+1}, e_0, 0, ..., e_0-l+1, ..., e_{s-2,0}, ..., e_{s-2-l+1}) \in C$, then $\tau_{s,l}(e) = (e_{s-1,0}, ..., e_{s-1-l+1}, e_0, 0, ..., e_0-l+1, ..., e_{s-2,0}, ..., e_{s-2-l+1}) \in C$.

Let $a \in F_p^n$ with $a = (a_0, a_1, ..., a_{n-1}) = (a^{(0)}(a^{(1)}a^{(2)}))$, $a^{(i)} \in F_p^n$, for $i = 0, 1, 2$. Let Γ be a map from F_p^{3n} to F_p^n given by

$\Gamma(a) = \left(\mu \left(a^{(0)} \right) \right| \mu \left(a^{(1)} \right) \left| \mu \left(a^{(2)} \right) \right)$

where μ is the map from F_p^n to F_p^n given by

$\mu \left(a^{(i)} \right) = \left(a^{(i+s-1)}, a^{(i+s-2)}, ..., a^{(i)} \right)$

for every $a^{(i)} = (a^{(i+s-1)}, ..., a^{(i+s-2)})$ where $a^{(i+j)} \in F_p^n$, $j = 0, 1, ..., s-1$ and $n = sl$. A code of length $3n$ over F_p is said to be l-quasi cyclic code of index 3 if $\Gamma(C) = C$.

Proposition 4.8. Let $\tau_{s,l}$ be quasi-cyclic shift on S_p. Let Γ be as above. Then $\phi \tau_{s,l} = \Gamma \phi$.

Proof. It is shown as proof of Proposition 4.3.

Theorem 4.9. The Gray image of quasi-cyclic codes over S_p of length n with index l is a l-quasicyclic code of index 3 over F_p with length $3n$.

Proof. It is shown as proof of Theorem 4.4.

5 Quantum Codes From Cyclic (Negacyclic) Codes Over S_p

Theorem 5.1. Let $C_1 = [n, k_1, d_1]_p$ and $C_2 = [n, k_2, d_2]_p$ be linear codes over $GF(q)$ with $C_2^\perp \subseteq C_1$. Furthermore, let $d = \min\{wt(v) : v \in (C_1 \setminus C_2^\perp) \cup (C_2^\perp \setminus C_1)\} \geq \min\{d_1, d_2\}$. Then there exists a quantum error-correcting code $C = [n, k_1 + k_2 - n, d]_p$. In particular, if $C_1^\perp \subseteq C_1$, then there exists a quantum error-correcting code $C = [n, n - 2k_1, d_1]$, where $d_1 = \min\{wt(v) : v \in (C_1^\perp \setminus C_1)\}$.
Proposition 5.2. Suppose $C = (1-u-v)C_1 \oplus uC_2 \oplus vC_3$ is a cyclic (negacyclic) code of length n over S_p. Then
\[C = \langle (1-u-v)f_1(x), u f_2(x), v f_3(x) \rangle \]
and $|C| = p^{3n-(\deg f_1(x)+\deg f_2(x)+\deg f_3(x))}$ where $f_1(x), f_2(x)$ and $f_3(x)$ generator polynomials of C_1, C_2 and C_3 respectively.

Proposition 5.3. Suppose C is a cyclic (negacyclic) code of length n over S_p, then there is a unique polynomial $f(x)$ such that $C = \langle f(x) \rangle$ and $f(x) | x^n - 1$ if $(f(x) | x^n + 1)$ where $f(x) = (1-u-v)f_1(x) + u f_2(x) + v f_3(x)$.

Proposition 5.4. Let C be a linear code of length n over S_p, then $C^\perp = (1-u-v)C_1^\perp \oplus uC_2^\perp \oplus vC_3^\perp$. Furthermore, C is self-dual code iff C_1, C_2 and C_3 are self-dual codes over F_p.

Proposition 5.5. If $C = (1-u-v)C_1 \oplus uC_2 \oplus vC_3$ is a cyclic (negacyclic) code of length n over S_p. Then
\[C^\perp = \langle (1-u-v)h_1(x)^* + uh_2(x)^* + vh_3(x)^* \rangle \]
and $|C^\perp| = p^{\deg f_1(x)+\deg f_2(x)+\deg f_3(x)}$ where for $i = 1, 2, 3$, $h_i(x)^*$ are the reciprocal polynomials of $h_i(x)$ i.e., $h_i(x) = (x^n - 1) / f_i(x), h_i(x) = (x^n + 1) / f_i(x), h_i^*(x) = x^{\deg h_i(x)}h_i(x^{-1})$ for $i = 1, 2, 3$.

Lemma 5.6. A p-ary linear cyclic (negacyclic) code C with generator polynomial f contains its dual code iff $x^n - 1 \equiv 0 \pmod{f f^*}$ ($x^n + 1 \equiv 0 \pmod{f f^*}$), where f^* is the reciprocal polynomial of f.

Theorem 5.7. Let $C = \langle (1-u-v)f_1, u f_2, v f_3 \rangle$ be a cyclic (negacyclic) code of length n over S_p. Then $C^\perp \subseteq C$ iff $x^n - 1 \equiv 0 \pmod{f_1 f_2^*} \pmod{f_1 f_3^*}$ for $i = 1, 2, 3$.

Proof. Let $x^n - 1 \equiv 0 \pmod{f_1 f_2^*} \pmod{f_1 f_3^*}$ for $i = 1, 2, 3$. Then $C_1^{\perp} \subseteq C_1, C_2^{\perp} \subseteq C_2, C_3^{\perp} \subseteq C_3$. By using $\langle 1-u-v \rangle C_1^{\perp} \subseteq \langle 1-u-v \rangle C_1 \subseteq uC_2^{\perp} \subseteq uC_2, vC_3^{\perp} \subseteq vC_3$. We have $\langle 1-u-v \rangle C_1^{\perp} \oplus uC_2^{\perp} \oplus vC_3^{\perp} \subseteq \langle 1-u-v \rangle C_1 \oplus uC_2 \oplus vC_3$. So, $\langle 1-u-v \rangle h_1^* + uh_2^* + vh_3^* \subseteq \langle 1-u-v \rangle f_1, u f_2, v f_3 >$. That is $C^{\perp} \subseteq C$.

Conversely, if $C^{\perp} \subseteq C$, then $\langle 1-u-v \rangle C_1^{\perp} \oplus uC_2^{\perp} \oplus vC_3^{\perp} \subseteq \langle 1-u-v \rangle C_1 \oplus uC_2 \oplus vC_3$. By thinking mod$(1-u-v)$, mod$(u)$ and mod(v) respectively, we have $C_i^{\perp} \subseteq C_i$ for $i = 1, 2, 3$. Therefore, $x^n - 1 \equiv 0 \pmod{f_1 f_2^*} \pmod{f_1 f_3^*}$ for $i = 1, 2, 3$. \qed

Corollary 5.8. Let $C = \langle 1-u-v \rangle C_1 \oplus uC_2 \oplus vC_3$ be a cyclic (negacyclic) code of length n over S_p. Then $C^{\perp} \subseteq C$ iff $C_i^{\perp} \subseteq C_i$ for $i = 1, 2, 3$.

Theorem 5.9. Let C be a linear code of length n over S_p with $|C| = p^{3k_1+2k_2+k_3}$ and minimum distance d. Then $\phi(C)$ is a p-ary code $[3n, 3k_1 + 2k_2 + k_3, d]$ code.

Theorem 5.10. Let $(1-u-v)C_1 \oplus uC_2 \oplus vC_3$ be a cyclic (negacyclic) code of arbitrary length n over S_p with type $p^{3k_1}p^{2k_2}p^{k_3}$. If $C_i^{\perp} \subseteq C_i$, then $C^{\perp} \subseteq C$ and there exists a quantum error-correcting code with parameters $[[3n, 2(3k_1 + 2k_2 + k_3) - 3n, d_G]]$ where d_G is the minimum Gray weights of C.

Example 5.11. Let $p = 2, n = 21$.
\[x^{21} - 1 = (x+1)(x^2 + x + 1)(x^3 + x^2 + 1)(x^6 + x^4 + x^2 + 1) \]
\[(x^6 + x^5 + x^4 + x^2 + 1) \]
in $F_2[x]$. Let $f_1(x) = f_2(x) = f_3(x) = x^6 + x^5 + x^4 + x^2 + 1$. C is a linear code of length 21 and minimum Gray weight $d_G = 3$. Clearly, $C^\perp \subseteq C$. Hence we obtain a quantum code with parameters $[[63, 27, 3]]$.

Example 5.12. Let $p = 3, n = 10$. We have $x^{10} + 1 = (x^2 + 1)(x^4 + x^3 + 2x + 1)(x^4 + 2x^3 + x + 1)$. Let $f_1(x) = f_2(x) = x^4 + x^3 + 2x + 1, f_3(x) = x^4 + 2x^3 + x + 1$. Clearly, $C_i^\perp \subseteq C_i$. $\phi(C)$ is a linear code with parameters $[[30, 18, 4]]$. Hence, we obtain a quantum code with parameters $[[30, 6, 4]]$.
Example 5.13. Let \(p = 3, n = 12 \). We have \(x^{12} - 1 = (x - 1)^{3}(x^3 + x^2 + x + 1)^3 \) in \(F_3[x] \).

Example 5.14. Let \(p = 7, n = 3 \). We have \(x^3 + 1 = (x + 4)(x + 2)(x + 1) \phi(C) \) is a linear code with parameters \([9, 6, 2]\). Hence, we obtain a quantum code with parameters \([9, 3, 2]\).

6 Constacyclic codes over \(S_p \)

Definition 6.1. A linear code \(C \) over \(S_p \) with the property that if \(a = (a_0, ..., a_{n-1}) \in C \) then \(\nu(a) = (\lambda a_{n-1}, a_0, ..., a_{n-2}) \in C \) is called \(\lambda \)-constacyclic code over \(S_p \) where \(\lambda \) a unit element of \(S_p \).

A subset \(C \) of \(S_p^n \) is a linear \(\lambda \)-constacyclic code of length \(n \) iff it is polynomial representation \(P(C) = \{ \sum_{i=0}^{n-1} a_ix^i | (a_0, ..., a_{n-1}) \in C \} \) is an ideal of \(S_p[x] \) \(< x^n - \lambda >. \)

If \(\lambda \) is equal to 1 (-1), then \(C \) is called cyclic code (negacyclic) respectively.

We characterized the units of \(S_p \). For any element \(\lambda = r + us + vt \) of \(S_p \), \(\lambda \) is a unit if and only if \(r \neq 0, r + s \neq 0(\text{mod } p) \) and \(r + t \neq 0(\text{mod } p) \).

It is easily seen that 1 is only unit for \(p = 2 \).

Note that \(\lambda^n = 1 \), if \(n \) even; \(\lambda^n = \lambda \), if \(n \) odd, so for \(p \) is odd prime. We only study \(\lambda \)-constacyclic codes of odd length.

Theorem 6.2. Let \(\lambda \) be a unit in \(S_p \). Let \(C = (1 - u - v)C_1 \oplus uC_2 \oplus vC_3 \) be a linear code of length \(n \) over \(S_p \). Then \(C \) is a \(\lambda \)-constacyclic code of length \(n \) over \(S_p \) if \(C_i \) is either a cyclic code or a negacyclic code of length \(n \) over \(F_p \) for \(i = 1, 2, 3 \).

Proof. Let \(\nu \) be \(\lambda \)-constacyclic shift on \(S_p^n \). Let \(C \) be a \(\lambda \)-constacyclic code of length \(n \) over \(S_p \). Let \((a_0, a_1, ..., a_{n-1}) \in C_1, (b_0, b_1, ..., b_{n-1}) \in C_2 \) and \((c_0, c_1, ..., c_{n-1}) \in C_3 \). Then the corresponding element of \(C \) is \((m_0, m_1, ..., m_{n-1}) = (1 - u - v)(a_0, a_1, ..., a_{n-1}) + u(b_0, b_1, ..., b_{n-1}) + v(c_0, c_1, ..., c_{n-1}) \).

Since \(C \) is a \(\lambda \)-constacyclic code so, \(\nu(m) = (\lambda m_{n-1}, m_0, ..., m_{n-2}) \in C \) where \(m_i = a_i + b_iu + vc_i \) for \(i = 0, 1, ..., n - 1 \). Let \(\lambda = \alpha + u\beta + v\gamma \), where \(\alpha, \beta, \gamma \in F_p \). \(\nu(m) = (1 - u - v)(\lambda a_{n-1}, a_0, ..., a_{n-2}) + u(\lambda b_{n-1}, b_0, ..., b_{n-2}) + v(\lambda c_{n-1}, c_0, ..., c_{n-2}) \).

Then the units of \(F_p \) are 1 and -1, so \(\alpha = \pm 1 \). Therefore we have obtained the desired result. The other side it is seen easily.

Example 6.3. Let \(p = 3 \). Let \(C = (1 - u - v)C_1 \oplus uC_2 \oplus vC_3 \) be a linear code of length \(n \) over \(S_3 \).

The set of units of the ring \(S_3 \) is \(S_3^* = \{1, 2, 1 + u, 1 + v, 2 + 2u, 2 + 2v, 1 + u + v, 2 + 2u + 2v\} \).

So if \(C \) is a \(\lambda \)-constacyclic codes over \(S_3 \) where \(\lambda \) is a unit, then

<table>
<thead>
<tr>
<th>(C)</th>
<th>(C_1)</th>
<th>(C_2)</th>
<th>(C_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-constacyclic</td>
<td>negacyclic</td>
<td>negacyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>1 + u constacyclic</td>
<td>cyclic</td>
<td>negacyclic</td>
<td>cyclic</td>
</tr>
<tr>
<td>1 + v constacyclic</td>
<td>cyclic</td>
<td>cyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>2 + 2u constacyclic</td>
<td>negacyclic</td>
<td>cyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>2 + 2v constacyclic</td>
<td>negacyclic</td>
<td>cyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>1 + u + v constacyclic</td>
<td>cyclic</td>
<td>cyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>2 + 2u + 2v constacyclic</td>
<td>cyclic</td>
<td>cyclic</td>
<td>negacyclic</td>
</tr>
</tbody>
</table>

where \(C_1, C_2 \) and \(C_3 \) are codes over \(F_3 \).
7 A representation linear codes over S_p in terms of two linear codes over $F_p + uF_p$

Expressing an element of S_p as $r + us + vt = a + vq$ where $a = r + su$ and $q = t$ are both in $F_p + uF_p$, we can see that $w_G(r + us + vt) = w_G(a + vq) = w_L(a) + w_L(a + q)$ where $w_L(x)$ denotes the Lee weight of x in $F_p + uF_p$. This leads to the following Gray map

$$\phi_1 : (S_p, \text{Gray distance}) \longrightarrow ((F_p + uF_p)^2, \text{Lee distance})$$

$$\phi_1(r + us + vt) = a + vq = (a, a + q)$$

It is easy to verify ϕ_1 is a linear map and it can be extended to S_p^n naturally,

$$\phi_1(c_1, ..., c_n) = (a_1, ..., a_n, a_1 + a_2 + ... + a_n + q)$$

where $r_i = a_i + vq_i$. Moreover ϕ_1 is a linear isometry from $(S_p^n, \text{Gray distance})$ to $((F_p + uF_p)^2n, \text{Lee distance}).$

Theorem 7.1. If C is a linear code of length n over S_p, then $\phi_1(C)$ is a linear code of length $2n$ over $F_p + uF_p$.

Define

$$C_1 = \{a \in (F_p + uF_p)^n | a + vq \in C \text{ for some } q \in (F_p + uF_p)^n\}$$

and

$$C_2 = \{a + q \in (F_p + uF_p)^n | a + vq \in C\}$$

Theorem 7.2. Let C be a linear code of length n over S_p. Then $C = (1 - v)C_1 \oplus vC_2$, $\phi_1(C) = C_1 \oplus C_2$ and $|C| = |C_1||C_2|$.

Theorem 7.3. Let C be a linear code of length n over S_p. Then $\phi_1(C^\perp) = (\phi_1(C))^\perp$.

Theorem 7.4. Let C be a linear code of length n over S_p such that $C = (1 - v)C_1 \oplus vC_2$. Then $C^\perp = (1 - v)C_1^\perp \oplus vC_2^\perp$.

Theorem 7.5. Let λ be a unit in S_p. Let $C = (1 - v)C_1 \oplus vC_2$ be a linear code of length n over S_p. Then C is a λ-constacyclic code of length n over S_p if and only if C_i is either a cyclic code or a negacyclic code or ξ-constacyclic codes of length n over F_p for $i = 1, 2, 3$ where ξ is a unit on $F_p + uF_p$.

Proof. It is shown as in the proof of the Theorem 6.2. □

Example 7.6. Let $p = 3$. Let $C = (1 - v)C_1 \oplus vC_2$ be a linear code of length n over S_3. The set of units of the ring S_3 is $S_3^* = \{1, 2, 1 + u, 1 + v, 2 + 2u, 2 + 2v, 1 + u + v, 2 + 2u + 2v\}$. The set of units of the ring $F_3 + uF_3$ is $(F_3 + uF_3)^* = \{1, 2, 1 + u, 2 + 2u\}$.

If C is a λ-constacyclic codes over S_3, where λ is a unit, then

<table>
<thead>
<tr>
<th>C</th>
<th>C_1</th>
<th>C_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1 + u$</td>
<td>$1 + u$-constacyclic</td>
<td>cyclic</td>
</tr>
<tr>
<td>$1 + v$</td>
<td>cyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>$2 + 2u$</td>
<td>$(2 + 2u)$constacyclic</td>
<td>$(2 + 2u)$constacyclic</td>
</tr>
<tr>
<td>$2 + 2v$</td>
<td>negacyclic</td>
<td>cyclic</td>
</tr>
<tr>
<td>$1 + u + v$</td>
<td>$(1 + u)$constacyclic</td>
<td>negacyclic</td>
</tr>
<tr>
<td>$2 + 2u + 2v$</td>
<td>$(2 + 2u)$constacyclic</td>
<td>negacyclic</td>
</tr>
</tbody>
</table>

where C_1 and C_2 are codes over $F_3 + uF_3$, $u^2 = u$.
8 Skew Codes Over S_p

We are interested in studying skew codes using the ring S_p. We define non-trivial ring automorphism θ_p on the ring S_p by $\theta_p(r+us+vt) = r + ut + vs$ for all $r + us + vt \in S_p$.

The ring $S_p[x, \theta_p] = \{a_0 + a_1x + ... + a_{n-1}x^{n-1} : a_i \in S_p, n \in N\}$ is called a skew polynomial ring. This ring is a non-commutative ring. The addition in the ring $S_p[x, \theta_p]$ is the usual polynomial addition and multiplication is defined using the rule, $(ax^i)(bx^j) = ab\theta_p^{i+j}(x)x^{i+j}$.

Note that $\theta_p^2(a) = a$ for all $a \in R$. This implies that θ_p is a ring automorphism of order 2.

Definition 8.1. A subset C of S_p^n is called a skew cyclic code of length n if C satisfies the following conditions,

i) C is a submodule of S_p^n,

ii) If $c = (c_0, c_1, ..., c_{n-1}) \in C$, then $\sigma_{\theta_p}(c) = (\theta_p(c_{n-1}), \theta_p(c_0), ..., \theta_p(c_{n-2})) \in C$.

Let $f(x) + (x^n - 1)$ be an element in the set $S_{p,n} = S_p[x, \theta_p] / (x^n - 1)$ and let $r(x) \in S_p[x, \theta_p]$. Define multiplication from left as follows,

$$r(x)(f(x) + (x^n - 1)) = r(x)f(x) + (x^n - 1)$$

for any $r(x) \in S_p[x, \theta_p]$.

Theorem 8.2. $S_{p,n}$ is a left $S_p[x, \theta_p]$-module where multiplication defined as in above.

Theorem 8.3. A code C in S_p is a skew cyclic code if and only if C is a left $S_p[x, \theta_p]$-submodule of the left $S_p[x, \theta_p]$-module $S_{p,n}$.

Theorem 8.4. Let C be a skew cyclic code in S_p and let $f(x)$ be a polynomial in C of minimal degree. If $f(x)$ is monic polynomial, then $C = (f(x))$ where $f(x)$ is a right divisor of $x^n - 1$.

Theorem 8.5. A module skew cyclic code of length n over S_p is free iff it is generated by a monic right divisor $f(x)$ of $x^n - 1$. Moreover, the set $\{f(x), xf(x), x^2f(x), ..., x^{n-deg(f(x))}f(x)\}$ forms a basis of C and the rank of C is $n - \deg(f(x))$.

Theorem 8.6. Let n be odd and C be a skew cyclic code of length n over S_p. Then C is equivalent to cyclic code of length n over S_p.

Proof. Since n is odd, $gcd(2, n) = 1$. Hence there exist integers b, c such that $2b + nc = 1$. So $2b = 1 - nc = 1 + zn$ where $z > 0$. Let $a(x) = a_0 + a_1x + ... + a_{n-1}x^{n-1}$ be a codeword in C.

Note that $x^{2b}a(x) = \theta_p^{2b}(a_0)x^{1+zn} + \theta_p^{2b}(a_1)x^{2+zn} + ... + \theta_p^{2b}(a_{n-1})x^{n+z2n} = a_{n-1} + a_0x + ... + a_{n-2}x^{n-2} \in C$. Thus C is a cyclic code of length n.

Corollary 8.7. Let n be odd. Then the number of distinct skew cyclic codes of length n over S_p is equal to the number of ideals in $S_p[x] / (x^n - 1)$ because of Theorem 8.6. If $x^n - 1 = \sum_{i=0}^{r} p_i(x)$ where $p_i(x)$ are irreducible polynomials over F_p. Then the number of distinct skew cyclic codes of length n over S_p is $\sum_{i=0}^{r}(s_i + 1)^3$.

Definition 8.8. A subset C of S_p^n is called a skew quasi-cyclic code of length n if C satisfies the following conditions,

i) C is a submodule of S_p^n,

ii) If $c = (c_{0,0}, ..., c_{0,1}, 1, 0, ..., c_{1,1}, 1, 0, ..., c_{s-1,1}, 1, 0, ..., c_{s-1,1}) \in C$, then $\tau_{p,s}[c] = (\theta_p(c_{s-1,0}), ..., \theta_p(c_{1,1}), \theta_p(c_{0,1}), ..., \theta_p(c_{0,0}), ..., \theta_p(c_{s-2,0}), ..., \theta_p(c_{s-1,1})) \in C$.

We note that $x^s - 1$ is a two sided ideal in $S_p[x, \theta_p]$ if $m|s$ where m is the order of θ_p and equal to two. So $S_p[x, \theta_p] / (x^s - 1)$ is well defined.

The ring $S_{p,s} = (S_p[x, \theta_p] / (x^s - 1))$ is a left $S_{p,s} = S_p[x, \theta_p] / (x^s - 1)$ module by the following multiplication on the left

$$f(x)(g_1(x), ..., g_t(x)) = (f(x)g_1(x), ..., f(x)g_t(x))$$
If the map γ is defined by

$$\gamma : S_p^n \rightarrow S_{p,s}^l$$

$$(c_0,0, ..., c_{l-1}, c_1,0, ..., c_{l-1}, ..., c_s-1,0, ..., c_{s-1},l-1) \mapsto (c_0(x), ..., c_{l-1}(x))$$

such that $c_j(x) = \sum_{i=0}^{n-1} c_{i,j} x^i \in S_{p,s}^l$, where $j = 0, 1, ..., l-1$ then the map γ gives a one to one correspondence S_p^n and the ring $S_{p,s}^l$.

Theorem 8.9. A subset C of S_p^n is a skew quasi-cyclic code of length $n = sl$ and index l if and only if $\gamma(C)$ is a left $S_{p,s}$-submodule of $S_{p,s}^l$.

A code C is said to be skew constacyclic if C is closed under the skew constacyclic shift $\sigma_{p,\lambda}$ from S_p^n to S_p^n defined by $\sigma_{p,\lambda}((c_0, c_1, ..., c_{n-1})) = (\theta_p(\lambda c_{n-1}), \theta_p(c_0), ..., \theta_p(c_{n-2}))$.

Privately, such codes are called skew cyclic and skew negacyclic codes when λ is equal to 1 and -1, respectively.

Theorem 8.10. A code C of length n over S_p is skew constacyclic iff the skew polynomial representation of C is a left ideal in $S_p\{x, \theta_p\}/(x^n - \lambda)$.

9 The Gray Images of Skew Codes Over S_p

Proposition 9.1. Let $\sigma_{p,\lambda}$ be the skew cyclic shift on S_p^n, let ϕ be the Gray map from S_p^n to F_p^{3n} and let φ be as in the Section 4. Then $\phi \sigma_{p,\lambda} = \rho \varphi \phi$ where $\rho(x, y, z) = (x, z, y)$ for every $x, y, z \in F_p^n$.

Proof. Let $r_i = a_i + ub_i + \gamma c_i$ be the elements of S_p, for $i = 0, 1, ..., n-1$. We have $\sigma_{p,\lambda}((r_0, r_1, ..., r_{n-1})) = (\theta_p(r_{n-1}), \theta_p(r_0), ..., \theta_p(r_{n-2}))$. If we apply ϕ, we have

$$\phi(\sigma_{p,\lambda}(r_0, ..., r_{n-1})) = \phi(\theta_p(r_{n-1}), \theta_p(r_0), ..., \theta_p(r_{n-2})) = (a_{n-1}, a_{n-2}, a_{n-1} + c_{n-1}, ..., a_{n-2} + c_{n-2}, a_{n-1} + b_{n-1}, ..., a_{n-2} + b_{n-2})$$

On the other hand, $\phi(r_0, ..., r_{n-1}) = (a_0, ..., a_{n-1}, a_0 + b_0, ..., a_{n-1} + b_{n-1}, a_0 + c_0, ..., a_{n-1} + c_{n-1})$. If we apply φ, we have $\varphi(\phi(r_0, r_1, ..., r_{n-1})) = (a_{n-1}, a_{n-2}, a_{n-1} + b_{n-1}, ..., a_{n-2} + b_{n-2}, a_{n-1} + c_{n-1}, ..., a_{n-2} + c_{n-2})$. If we apply ρ, we have $\rho(\phi(\phi(r_0, ..., r_{n-1}))) = (a_{n-1}, a_{n-2}, a_{n-1} + b_{n-1}, a_{n-2} + b_{n-2}, a_{n-1} + c_{n-1}, ..., a_{n-2} + c_{n-2})$. So, we have $\phi \sigma_{p,\lambda} = \rho \varphi \phi$.

Theorem 9.2. The Gray image a skew cyclic code over S_p of length n is permutation equivalent to quasi-cyclic code of index 3 over F_p with length $3n$.

Proof. Let C be a skew cyclic codes over S_p of length n. That is $\sigma_{p,\lambda}(C) = C$. If we apply ϕ, we have $\phi(\sigma_{p,\lambda}(C)) = \phi(C)$. From the Proposition 9.1, $\phi(\sigma_{p,\lambda}(C)) = \phi(C) = \rho(\varphi(\phi(C)))$. So, $\phi(C)$ is permutation equivalent to quasi-cyclic code of index 3 over F_p with length $3n$.

Proposition 9.3. Let $\tau_{p,\lambda}$ be skew quasi-cyclic shift on S_p^n, let ϕ be the Gray map from S_p^n to F_p^{3n}, let Γ be as in the preliminaries, let ρ be as above. Then $\phi \tau_{p,\lambda} = \rho \Gamma \phi$.

Theorem 9.4. The Gray image a skew quasi-cyclic code over S_p of length n is permutation equivalent to quasi-cyclic code of index 3 over F_p with length $3n$.

Proposition 9.5. Let $\sigma_{p,\lambda}$ be skew constacyclic shift on S_p^n, let ϕ be the Gray map from S_p^n to F_p^{3n}, let ρ be as above. Then $\phi \sigma_{p,\lambda} = \rho \phi \sigma_{p,\lambda}$.

Theorem 9.6. The Gray image a skew constacyclic code over S_p of length n is permutation equivalent to the Gray image of constacyclic code over F_p with length $3n$.

The proof of Proposition 9.3, 9.5 and Theorem 9.4, 9.6 are similar to the proof Proposition 9.1 and Theorem 9.2.
10 The MacWilliams Identities

The MacWilliams identity which describes how the weight enumerator of a linear code and the weight enumerator of the dual code relate to each other is very important subject in coding theory. It can be used to determine error detecting and error correcting capabilities of a code.

In this section, it is verified MacWilliams identity.

Definition 10.1. Let A_i be the number of the elements of the Gray weight i in C. Then the set $\{A_0, \ldots, A_{3n}\}$ is called the Gray weight distribution of C. Define the Gray weight enumerator of C as

$$Gray_C(x, y) = \sum_{i=0}^{3n} A_i x^{3n-i} y^i$$

Clearly,

$$Gray_C(x, y) = \sum_{c \in C} x^{3n-w_C(c)} y^{w_C(c)}$$

Besides, define the complete weight enumerator of C as

$$cwe_C(x_1, \ldots, x_{p-1+u(p-1)+v(p-1)}) = \sum_{c \in C} x_1^{w_1(c)} x_2^{w_2(c)} \cdots x_{p-1+u(p-1)+v(p-1)}^{w_{p-1+u(p-1)+v(p-1)}(c)}$$

For any codewords c of C, let u_0, u_1, u_2, u_3 be the number of components of C with Gray weights 0, 1, 2, 3 respectively. Then the Gray weight of c

$$w_C(c) = u_1 + 2u_2 + 3u_3$$

Define the symmetrized weight enumerator of C as

$$swe_C(x_0, \ldots, x_3) = cwe_C(x_0, x_1, \ldots, x_{p-1+u(p-1)+v(p-1)}) = \sum_{c \in C} x_0^{u_0} \cdots x_3^{u_3}$$

The Hamming weight enumerator of C is defined as

$$Ham_C(x, y) = \sum_{c \in C} x^{n-w_H(c)} y^{w_H(c)}$$

then we have the following results.

Theorem 10.2. Let C be a linear code of length n over S_p. Then

i) $Gray_C(x, y) = swe_C(x^3, x^2 y, xy^2, y^3)$

ii) $Ham_C(x, y) = swe_C(x, y, y, y)$

iii) $Gray_C(x, y) = Ham_{\phi(C)}(x, y)$

iv) $Gray_{C^\perp}(x, y) = \frac{1}{|C|} Gray_C(x + (p - 1)y, x - y)$

v) $Ham_{C^\perp}(x, y) = \frac{1}{|C|} Ham_C(x + (p^3 - 1)y, x - y)$

Example 10.3. Let $C = \{(0, 0), (1, 1)\}$ be a linear code of length 2 over S_p. The Gray weight enumerators for this code is $Gray_C(x, y) = x^6 + y^6$. The Gray weight enumerator of C^\perp is $Gray_{C^\perp}(x, y) = \frac{1}{2}((x + (p - 1)y)^6 + (x - y)^6)$.

References

Author information
Abdullah Dertli, Department of Mathematics, Ondokuz Mayis University, Faculty of Arts and Sciences, Samsun, TURKEY.
E-mail: abdullah.dertli@gmail.com

Yasemin Cengellenmis, Department of Mathematics, Trakya University, Faculty of Arts and Sciences, Edirne, TURKEY.
E-mail: ycengellenmis@gmail.com

Received: June 12, 2017.
Accepted: March 15, 2018.