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Abstract Let M be a von Neumann algebra without central abelian projections. In this
paper, it is proved that under some mild conditions, every nonlinear £-Lie *-derivation (£ # 0, 1)
L : M — M is an additive x-derivation.

1 Introduction and preliminaries

Let A be an algebra over the complex field C. Recall that an additive mapping 6 : A — A is
called an additive derivation if §(AB) = §(A)B + Ad(B) for all A, B € A, and an additive Lie
derivation if 6([A4, B]) = [6(A), B]+[A,d(B)] forall A, B € A, where [A, B] = AB— BA s the
usual Lie product of A and B. The problem of how to characterize the Lie derivations and reveal
the relationship between Lie derivations and derivations has received many mathematicians’
attention for many years (for example, see [4], [5], [7], [9]). Letd : A — A be a map (without the
additivity or linearity assumption) and £ be a non-zero scalar. We say that § is a nonlinear £-Lie
derivation if §([A, Bl¢) = [6(A), Bl¢ +[A, 6(B)]¢ forall A, B € A, where [A, Bl = AB—¢(BA
is the &-Lie product of A and B. It is clear that if £ = 1, a nonlinear ¢-Lie derivation is a
nonlinear Lie derivation. Recently, Yu and Zhang [10] described nonlinear Lie derivation on
triangular algebras. Bai and Du [1] investigated nonlinear Lie derivations on von Neumann
algebras. Bai, Du and Guo [2] proved that every nonlinear £-Lie derivation (€ # 1) on a von
Neumann algebra with no central abelian projections is an additive derivation.

Let A be a *-algebra over the complex field C and £ be a non-zero scalar. We say that
a mapping 6 : A — A is an additive x-derivation if ¢ is an additive derivation and satisfies
§(A*) = 6(A)* for all A € A. A mapping (without the additivity or linearity assumption)
L : A — Ais called a nonlinear ¢-Lie #-derivation if L([A*, B]¢) = [L(A)*, Bl¢ + [A*, L(B)]¢
forall A,B € A. If L(A*) = L(A)* for all A € A, then L is a nonlinear £-Lie derivation if
and only if L is a nonlinear £-Lie x-derivation. But, in general, a nonlinear £-Lie *-derivation
does not satisfy L(A*) = L(A)* for all A € A. It is clear that if £ = 1, a nonlinear £-Lie
x-derivation is a nonlinear x-Lie derivation. In [6], the authors studied the structure of nonlinear
x-Lie derivations and proved that a nonlinear *-Lie derivation on a von Neumann algebra with no
central abelian projections can be expressed as the sum of an additive x-derivation and a mapping
with image in the center vanishing at commutators.

In this paper, we will give a characterization of nonlinear £-Lie *-derivations on von Neumann
algebras without central abelian projections for all scalars £ # 1.

Before giving our main result, we need some notations and preliminaries. Throughout this
paper, let H be a complex Hilbert space, and B(#) be the algebra of all bounded linear operators
on H. A von Neumann algebra M is a weakly closed, self-adjoint algebra of operators on H
containing the identity operator I. The set Zyy = {S € M | ST =TS forall T' € M} is called
the center of M. A projection P is called a central abelian projection if P € Z,4 and PMP
is abelian. For A € M, the central carrier of A, denoted by A, is the intersection of all central
projections P such that PA = A. It is well known that the central carrier of A is the projection
onto the closed subspace spanned by { BA(z) | B € M, x € H}. For each self-adjoint operator
A € M, we define the core of A, denoted by A, to be sup{S € Zp( | S = S*, S < A}. If P
is a projection, it is clear that P is the largest central projection @ satisfying Q < P. We call a
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projection core-free if P = 0. It is easy to see that P = O if and only if I — P = I, here [ — P
denotes the central carrier of I — P.
First, we give the following lemma which will be used frequently.

Lemma 1.1. Let M be a von Neumann algebra.

(i) [8, Lemma 4] If M has no central abelian projections, then each nonzero central projection
in M is the central carrier of a core-free projection in M.

(ii) [3, Lemma 2.6] If M has no central abelian projections, then M equals the ideal of M
generated by all commutators in M.

(iii) [6, Lemma 2.1] Let P € M be a projection with P = I and A € B(H). If AMP = 0 for
all M € M, then A = 0. Consequently, if Z € Zpy, then ZP = 0 implies Z = 0.

By Lemma 1.1(i), there exists a projection P such that P = 0 and P = I. Throughout this
paper, Py = P is fixed. Write P, = I — Py. By the definition of central core and central carrier,
P, is also core-free and P, = I. According to the two-side Pierce decomposition of M relative

2
Py, denote M;; = PLMP;, 1,5 = 1,2, then M = " M,,;. For every A € M, we may write
i,j=1
A= A1+ A+ Az + Ay Inall that follows, when we write A;;, it indicates that it is contained
in MZJ

2 The Results
In order to prove our main theorem, we need the following result.
Lemma 2.1. Let M be a von Neumann algebra with no central abelian projections, & # 0,1 be
a scalar and A“ S Mii, Bjj S ij, 1 S ) 7&] S 2. IfA”C” - fCiijijV all Cij € Mij,
then A;; + Bjj S (sz + Pj)ZM.
Proof. For any D“ € Mii7 we have A”D“C” = £D”C”Bjj = D“A”CM Hence we get
(AiiDii — D“A“)PZCP] = 0 for all C € M. It follows from Lemma 11(111) that AiiDii =
D;; Ay, that is Ay, = Z; P; for some Z; € Zpq. For any D;; € M;;, we get
§Ci;Dj;Bjj = AiiCijDjj = £Cij By Dijj.

Then we have £C;;(D;;B;; — B;;D,;) = 0. Since { # 0, we obtain that

(Dj;Bjj — Bj;Dj3)" P;CP =0
for all C € M. By Lemma 1.1(iii), we get D;;B;; = B;;D;;, thatis B;; = Z;P; for some
Zj € Zn. Hence we have that Z; P;Cy; = £C;;Z; P}, i.e. Z;C;; = £C;; Z; for all Cy; € My . Tt
means that (Z; — £Z;)C;; = 0 for all C;; € M,;. By Lemma 1.1(iii), we get Z; = {Z;, and then
A + Bjj € Z;P; + Zij = (§Pz + Pj)Zj € (f]Dz + Pj)ZM. O

Our main result reads as follows:

Theorem 2.2. Let M be a von Neumann algebra with no central abelian projections. If € # 0, 1
is a scalar and L ©: M — M is a nonlinear ¢-Lie x-derivation satisfying L(I) € Z, where
I is the identity operator of M, then L is an additive x-derivation and L(EA) = £L(A) for all
AeM.

Proof. We will divide the proof of the theorem into several claims.
Claim 1. L(0) = 0.

Indeed, L(0) = L([0*,0]¢) = [L(0)*,0]¢ + [0%, L(0)]c = 0.

First, we will show that L is additive.
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Claim 2. For every A;; € M;;, B;; € M;j and Bj; € Mj;, 1 <i# j <2, we have

L(A“ =+ Bzy) = L(A”) + L(Bi]‘),
L(Aiy + Bji) = L(Au)+ L(Bj;).
LetT := L(A;; + B;j) — L(A;;) — L(B;;) € M. Then we have
L(=€Bij) = L([P], A + Bijle)

= [L(P})", Aii + Bijle + [P}, L(Aii + Bij)le.
On the other hand, by Claim 1, we have
L(=¢Bi;) = L([P}, Aule) + L([P], Bijle)
= [L(P))", Aiile + [P}, L(Ai)]e + [L(P)", Bijle + [P, L(Bij)le
= [L(P))", Aii + Bijle + [P}, L(Ais) + L(Bij)le.
Hence [P;,T|¢ = 0, thatis P;T — {TP; = 0. Since § # 1, we get

=Ty + €E
Then we obtain that Tt €T
[Pj’Tz‘i + T + Ty + 77_6 ”L =0.

With easy calculations we have I 56 (T +Tj:) = 0. Since £ # 0,1, we get T;; +T;; = 0. Then

we have T};; — £T;; = 0. Since £ # 1, we get Tj; = 0. Thus T};; = T3; + Tj; = 0. Similarly,
L((§—€)Ayu) = L([(EP; + P))*, A + Bijle)
= [L(EP; + Pj)*, Ais + Bijle + [(EP + P;)*, L(Aii + Bij)le.
On the other hand, we have
L((¢—&)Au) = L([(EP + P)*, Aule) + L([(EP: + P;)", Bijle)
[L(EP: + Py)*, Aiile + [(EP; + P;)*, L(Aii)]e + [L(EP; + P;)*, Bijle
+[(EP; + Pj)*, L(Bij)le
[L(EP + Py)*, Aii + Bijle + [(€P: + P;)*, L(Aii) 4+ L(Bj)e-
Hence [P+ P, T|¢ = 0, thatis ((P;+ P;)T — T (EP;+ P;) = 0. Then we get £(1 —¢&)T;; = 0.

Since § # 0,1, we have T;; = 0. Hence T' = 0 and thus L(A;; + B;;) = L(Au) + L(Bij).
Similarly, one can prove L(A;; + B;;) = L(A;;) + L(Bj;).

Claim 3. For every A;;, B;; € M;j;, 1 <i# j <2, we have
L(A;; + B;j) = L(A;j) + L(Byj).
Since A;; + B;j = [(A;fj + P,)*, B;j + Pjl¢, by using Claim 2, we have that
L(Aij + Bij) = [L(A5; + B)", Bij + Pjle + [(A}; + Pi)", L(Bij + P))]e
[L(AG)" + L(P)", Bij + Pile + [(A7; + P)", L(Bij) + L(F;)]e
[L(A5)", Bijle + [L(A7)", Pjle + [L(P)", Bijle + [L(P)", Pjle
Aij, L(Bij)]e + [Aij, L(P))]¢ + [Py, L(Bij)]e + [Pi, L(P))]e
[(A%)", Bizle) + L([(A5)", Pile) + L[, Bijle) + L([P, Pyle)
[A”,P]]f) + L([Pu Bz]] )
— &P A”) + L(P; B;; — fBZ-jPi)
) L(Bij).
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Claim 4. For any A;; € M;;, Bj; € Mj;,1 <i# j <2, we have
L(Aii + Bj;) = L(Ay) + L(Bjj).

Let T := L(A;; + Bj;) — L(A;;) — L(B,;) € M. We have
L((l *E)Au) = L([P* Au"‘BJJ] )
= [L(P)", Aii + Bjjle + [P, L(Aii + Bjj)le.
On the other hand, by Claim 1,
L((1-8Au) = L([P], Aile) + L([P], Bjjle)
= [L(P)", Aiile + [P}, L(Au)le + [L(P:)", Bjjle + [P, L(Bjj)le
= [L(P)", Aii + Bjjle + [P, L(Ai) + L(Bjj)le.

Hence [P}, T]¢ = 0, thatis P,T — {TP; = 0. Since { # 1, we get T;; = T;; + Tj; = 0.
Similarly,

L((1 =€)Bj;) = L([P;, A + Bjjle)
= [L(P))", Aii + Bjjle + [P}, L(Aii + Bjj)le.
On the other hand,

L((1 -¢)Bj;) = L([P* A“} )+ L([P}, Bjjle)
[L(P;)", Aiile + [P}, L(Aii)|e + [L(P;)", Bjjle + [P}, L(Bjj)]e
= [L( ) Ay + BJJ]& + [P* (Aii) + L(Bjj)]i'

Thus we have [P}, ]

= 0, thatis P;T — ¢TP; = 0. Since £ # 1, we get T;; = 0. Then we
obtain that T = 0 ce L(A

u"‘BJy) L(Ay) + L(Bj;).
Claim 5. For any A;;, B;; € M,;, i = 1,2, we have
L(A;; + Byi) = L(Ai;) + L(By).

Let T := L(A;; + Bii) — L(Ay) — L(By;) € M. We only need to prove T’ = 0. For i # j, we
have

0 = L([P},Asu + Bile)
= [L(P))", Aii + Biile + [P}, L(Aii + Bii)le.
On the other hand,
0 = L([F}, Aule) + L([P}, Bile)
[L(P))", Auile + [P}, L(Aii)le + [L(Py)", Biile + [P, L(Bii)le
[L(P;)"; Asi + Biile + [P}, L(Ai) + L(Big)]e.
Hence [P}, T]¢ = 0, thatis P;T — {TP; = 0. Since § # 1, we get Tj; = T;; + Tj; = 0.
For any C;; € M;; (i # ]) by Claim 3, we have
[L(Cij)", Aii + Biile + [CF, L(Asi + Bii)e
= L([C};, Aii + Biile)
L(C};Aii + Cf;Byi) = L(C}; Ayy) + L(C;; Bii)
L([C;, Aile) + L(C;, Biile)
[L(Cij)", Auile + [CF5, L(Aii)le + [L(Cij)", Bile + [Cj, L(Bii) e
[L( ) Aii + Bu]é + [Cz*j’ (Au) + L( u)]f
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Thus we have [C};, T]¢ = 0. Thatis, C};Ti; = 0 for all C;; € M;;. Hence T;;P,CP; = 0
for all C € M. By Lemma 1.1(iii), we get T;; = 0. Consequently, we have 7" = 0. Hence
L(Aii + Bii) = L(Ai;) + L(Bi).

Claim 6. For any A;; € M;;, Bj; € Mj;, we have

L(Ayj + Bji) = L(Aij) + L(Bjq).-

LetT := L(Aij + Bji) — L(Aij) — L(Bji) € M. For every Cij € Mij,
[L(Cij)", Aij + Bjile + [CF, L(Aij + Byi)le

L([C5;, Aij + Bjile)

L([CF, Aijle) + L(C35, Bjile)

= [L(Cyj)", Aijle + [CF5, L(Aij)le + [L(Cij)", Biile + [CF;, L(Bji)]e

= [L(Cij)", Aij + Bjile + [C7;, L(Aij) + L(Bji)]e.

Hence [C’* T]e = 0. That is, CHT — £1C;; = 0. Thus we have C5TP; = 0,1e. CT;P; =0

for all Cj; € M,;. Hence T} P; CP =0 for all C € M. By Lemma 1.1(i1), we have le =0.

Slmllarly, b = 0

On the other hand,

[L(EP; + P;)", Asj + Bjile + [(€Pi + P;)*, L(Aij + Bji)le

L([(€P; + P;)*, Aij + Bjile)

L([(€P; + P;)", Aijle) + L([(€P: + P;)". Bjile)
= [L(EP + Py)", Aijle + [(EP + Py)", L(Ay)]e + [L(EP: + P))", Bjile

+(EP; + Py)", L(Bji)le
= [L(EP+ P))", Aij + Bjile + [(€P; + Py)”, L(Aj) + L(Bji)le.-
Hence [£P;+ P;,T]e = 0, thatis ({P;+ P;)T —£(T(§P; + P;j) = 0. Thus we have £73;,+1}; = 0.
Similarly, we get T}; + £(T);; = 0. Comparing these equations, we obtain that T;; = Tj;. Hence
[EP; + P;,2T;]¢ = 0, that is T;; = 0. So we have T;; = T;; = 0. Then we get T' = 0, proving
the claim.
Claim 7. For any A;; € My, B;j € My, Cj; € My, 1 <i# 5 <2, we have
L(Ai; + Bij + Cji) = L(Ai) + L(Bij) + L(Cyi).

LetT := L(A;; + B;j + Cji) — L(A;;) — L(Bi;) — L(Cj;) € M. It follows from Claim 6 that

[L(P;)*, Aii + Bij + Cjile + [P}, L(Asi + Bij + Cji)le
= L([P] Ay + B;; + Cﬂ] )

L([P}, Aile) + L([P}, Bij + Cjile)

[L(Py)", Aiile + [P}, L(Ai)]e + [L(P5)", Bij + Cjile + [P}, L(Bij + Cji)le
= [L(P)", Aii + Bij + Cjile + [P}, L(Ai;) + L(Bij) + L(Cji) e

Hence [P}, T]¢ = 0, thatis P;T — {T'P; = 0. Since § # 1, we have Tj; = T;; + Tj; = 0.
By using Claim 2, we have that

[L(EP; + P;)*, Aii + Bij + Cjile + [(€Pi + Py)*, L(Aii + Bij + Cji)le

= L([(€P; + P;)*, Aii + Bij + Cjile)
L([(EP; + P;)*, Aii + Cjile) + L([(§P: + P;)*, Bijle)
= [L(EP + Py)*, Asi + Cjile + [(€P: + P;)*, L(Asi + Cji)le + [L(EP; + P;)*, Bijle

+[(EP; + Py)*, L(Byj)]e
= [L(fpi + P; ) Aii + Bij + C]t]f + [(fP + P; ) (Au) + L(Bij) + L(Oji)]ﬁ'
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Thus we get [P, + P;, T|e = 0, thatis ({P;, + P;)T — (T (EP; + P;) = 0. Hence T;; = 0. So
we have T' = 0, this proves the claim.

Claim 8. For any A1 € My, B € My, Cy1 € Msy, Dy € Moy, we have
L(Ay + Bia + Co1 + Dy) = L(An1) + L(Bi2) + L(Ca1) + L(D22).

LetT = L(All + B, + Co + Dzz) — L(A]l) — L(Blz) — L(Cg]) — L(Dzz) € M. It follows
from Claim 7 that

[L(P)*, Aj1 + Bi2 + Co1 + Do)e + [P, L(A11 + Bia + Co1 + D)]e
= L([P;, A1 + Bz + Ca1 + De)
L([Py, Ai1 + Bia + Cale) + L([P], Daoe)
= [L(P)*, A1 + Biz + Cale + [Pf, L(A1 + Bia + Ca1)]e + [L(P1)*, Daoe
+[P, L(D2)]e
= [L(P)*, A1 + Bia + Ca1 + Dae + [Pf, L(An) + L(B1a) + L(Ca1) + L(D2)]e.

Hence [P, T]¢ = 0. Thatis, ;T — {TP; = 0. Then we have Ty, = T + 15 = 0. Similarly,
we can obtain that 75 = 0. Hence T = 0.

Claim 9. L is additive.
By Claims 3, 5 and 8, we can prove that L is additive.

Since L is additive and L(I) € 2,4, we get
L(A) = L(§A) = L((1 = §)A) = L([I", Ale) = [I", L(A)]¢ = L(A) — £L(4)
forany A € M. Hence L(§A) = ¢L(A) forall A € M.
Now we need to prove that L is an additive derivation and L(A*) = L(A)* for all A € M.
Claim 10. P,L(P;)P, + P,L(P;)P, =0, i = 1,2.

For any A}, € My,
L(A1n) = L([Pr, Ane)
[L(P1)", Anle + [Pr, L(A)le
= L(P)"Ap —EARL(P)* 4+ PIL(A) — EL(ApR)P.

Multiplying both sides of the above equation by P} and P from the left and right, respectively,
we have
PIL(P\)"PiAp = AP L(P)" P

By using Lemma 2.1, we get
P]L(P])*P] -+ PQL(P])*Pz € (€P1 + PQ)ZM. 2.1
Similarly, for any Ay} € Mo,
L(Axn) = L([P5, Aale)
= [L(P)", Aale + [P5, L(A2)]e
= L(P)" Ay — EAy L(Py)" + PL(Ayy) — £EL(An ) Pa.

Multiplying both sides of the above equation by P, and P; from the left and right, respectively,
we get
PzL(Pz)*PQAZ] = fAz] P] L(Pz)*P1 .
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It follows from Lemma 2.1 that
PzL(Pz)*Pz + PlL(PZ)*Pl € (Pl + §P2)ZM 2.2)

Assume that PlL(Pl)*Pl + PQL(Pl)*Pz = (fPl + PQ)ZI and PzL(Pz)*PQ + P]L(Pz)*Pl =
(P1 + £Py) Z, for some Zy, Z, € Z,q. We also have that
0 = L([P, Pile)
[L(P)", Prle + [P5, L(P1)]e
L(Pz)*Pl — EP]L(PQ)* + PzL(P]) - fL(P])Pz.

If we multiply both sides of the above equation by P, from the left and right, respectively, then
we get (1 — &)P,L(P)P, = 0. Since £ # 1, we obtain that P,L(P;)P, = 0. Similarly, since
& # 1, wecan get PIL(P,)*P, = 0. Since P,L(P;)P, = 0, we also have P, L(P,)*P, = 0, and
it follows from that

[(EP1+ P)Zy, Py]e = [PIL(P1)*Py + P,L(P,)" P, P> = 0.

Hence (1 — )P, Z; = 0. Since £ # 1, we get Z; P, = 0. By Lemma 1.1(iii), we have that
Z) = 0. Thus
P]L(Pl)*Pl + PzL(P])*PQ =0. 2.3)

Similarly, we can obtain that
PZL(PZ)*Pz + PIL(PZ)*Pl =0. 2.4)

From the equations (2.3) and (2.4), we easily reach the desired result.

Define a mapping A : M — M by A(A) = L(A) — [A,Tp) for all A € M, where T :=
PIL(P)P, — P,L(P,)P,.

Claim 11. 7§ = —1Tj.
Since L is additive and L(£A) = £L(A) for all A € M, we have

L(P) = ¢L(P) = L([Pr, Pie)
= [L(R)" P+ [PT, L(P)]e
= L(P\)*P,— &P L(P)"+ PLL(P) — EL(P) Py (2.5)
Multiplying both sides of the above equation by P; and P, from the left and right, respectively,

we get
—EPL(P)P, = —£P L(P)* Ps.

Since £ # 0, we have
P L(P)P, = PLL(P)"P,. (2.6)

On the other hand, if we multiply both sides of the equation (2.5) by P, and P, from the left
and right, respectively, we get

P,L(P)P, = B,L(P)*P,. 2.7)

Then by using the equations (2.6) and (2.7), we have that Tjy = —T.

Since Ty = —Ty, we have A([A*, Bl¢) = [A(A)*, Bl¢ + [A*,A(B)]¢ forall A, B € M.

Claim 12. A(P,) = 0,i = 1,2.
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We have that
0 = L([P, Pe)

[
[L(P1)", Pae + [P, L(P»)]e
L(P)*Py — ¢RL(P)* + P.L(Py) — €L(Py)P,. 2.8)

Multiplying both sides of the equation (2.8) by P, and P, from the left and right, respectively,
we obtain that
PIL(PI)*Pz + PlL(Pz)Pz =0. 2.9)

Similarly since £ # 0, we can get

PL(P)* P+ P,L(P,)P, =0. (2.10)
By using the equations (2.6) and (2.7) in the proof of Claim 11, we have that

P\L(P\)P,+ PIL(P,)P, =0 (2.11)

and
P,L(P)P, + P,L(P) P, = 0. 2.12)
If we add the equations (2.11) and (2.12), then we get L(P;) + L(P,) = 0. Thus A(P) =
L(P]) — [P],To] =(0and A(Pz) = L(PQ) + L(P]) =0.
Claim 13. A(MU) - Mij, 1 < 7 #] < 2.
For any B;; € M;;, 1 <14 # j <2, we have
A(Bij) = A([P}, Bijle)
= [P, A(B )]e = PA(B;;) — EA(B;;) Pi.
Then,
PA(B;)P; = P;A(By;)P; = 0. (2.13)
Moreover, if £ # —1, then we have P;A(B;;)P; = 0.
Assume that £ = —1. For every A;; € My;, Bi; € M,
A(A;Bij) = A([Af, Bijl-1)
[A(Ai)", Bijl-1 + [Af;, A(Bij)] -1
= A(Ai)"Bij + BijA(Aiu)" + AGA(Bi;) + A(Bi;) Aj;.-

It follows from (2.13) that,

P;A(A};Bi;)P; = P;A(B;j)Aj; P, = A(B;j)Aj;. (2.14)
Then for every N;;,
On the other hand,

P;A(NALB;;) P = A(A%B;; )N

kX3 X3
By (2.14), we also have A(A};B;;)N;; = A(B;;)Aj; N;; since
A(A};Bij) Pi = (I — P;)A(A};Bij) Pi = PjA(A};Bij) Py = A(Byj) Ay;.
It means that

P;A(N};A;Bij)P; = A(A};B;;)N;; = A(B;j) ANy (2.16)

(a3 Z’L

From (2.15) and (2.16), we have

A(By;)[N5, A%] = 0.

(A%
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Now replacing N;; by N;; R;; where R;; € M;;, we obtain
A(B;j)R}; [N, A5l = 0.

)

By Lemma 1.1(ii), A(B;;)P; = 0. Hence P,A(B;;)P; = 0 for all £ € C. Thus we get
A(Bij) € My for all Byj € M.

Claim 14. A(M;;) C My, i =1,2.
We have that

0 = A(P) ZA([I*’ iR]J

_ [A(I)*, ﬁp,;h n [I*,A(ﬁﬂ)h
- ]i A(I*, Pe) + {I*,A(l igp,)}

On the other hand, we get
A((1=&)P) = A([P, Ple) = 0.

1
Hence A<7P) = 0. For any A;; € M,

T—¢
s = a(((; ) )

1

- |:17£P17A(A )i|5
1 1
1

- L §<PA< )~ €A(4)P)

Thus we have A(A;;) € My, i =1,2.

Now, we will show that A(AB) = A(A)B + AA(B) for every A,B € M, that is A is an
additive derivation.

Claim 15. For any Ay € My, Ajj S ./\/ljj, Bij € ./\/lij, 1<i4 75.] < 2, we have

A(A;Bij) = A(Aii)Bij + AulA(Bij),
A(BijAj;) = A(Bij)Aj; + BiA(Ajj),
A(Bj;) = A(Bj;)"
We have that
—EA(AuB;) = A(—=§AuBj,) = A([Bj;, Aiile)

[A(Bﬂ) Au}f"’[ gwA(Aii)]&
= —EAuA(Bji)" — §A(Ai) Bj;.

Since £ # 0, we have A(A;;Bj;) = AiA(Bji)* + A(Ai;)B};. On the other hand, by using the
equation A(P;) = 0, we get

A(B};) = A(P;Bj;) = PIA(Bji)" = A(Bj;)".
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It follows from that
A(AiiBij) = A(Au(B;)")
Similarly, we have A(B;;A;;) = A(B;;)Aj; + BijA(4j;).
Claim 16. For any A;;, B;; € My;, i = 1,2, we have
A(AiiBi;) = A(A;i)Bi; + AiA(Bgi),
A(A;) = A(Au)"

For any C;; € M;;, i # j, it follows from Claim 15 that
A(A;;B};)Ci; + Ay B A(Cy5)

= A(A;B}Cyj)
A(Ai)B5Ci; + AuA(B5C))
A(Ai) Bi;Cij + Aul([Bj;, Cijle)
A(Aii) Bj;Cij + Aii([A(Bii)", Cijle) + Au([Bg;, A(Cij)]e)
= A(Aii)B;;Cij + Ay A(B;i)*Cij + Ay B;;A(Cyj).
Thus (A(A:Bj;) — A(Ai) B, — AiiA(B;;)*)Ci; = 0, for all C;; € M,;. Then we have
(A(AyBj;) — A(Aii)Bj; — Aiu/A(By;)*)P,CP; =0

for all C' € M. It follows from Lemma 1.1(iii) that
A(Ay;B}) = A(Ay) B} + AuA(By)*.
By using the above equation, we also have
A(A7) = A(PAT) = PiA(Au)" = A(Ai)”
since A(P;) = 0. Hence
A(AyBy) = A(Au(BE))
= A(Ay)Bii + AuA(B)"
= A(Aii)Bii + AiA(By;).

Claim 17. For any A;; € M;j, Bj; € Mj;, 1 <1 # j <2, we have
A(AijBji) = A(Aij) Bji + AijA(Bj;).

For any C;; € M;j, ¢ # j, it follows from Claim 2 and Claim 15 that

A(A B* )Cu + Au A(Cij)
= A(Az )
A(AZJ) 7'.7 +A7]A(B CU)
A(AU)B* Ci; + AijA([B > Cij Je) + EAGA(Cy; B*)
A(Aij)B};Cij + Aij([A(Bi)", Cijle) + Aij ([Bf;, A(Cij)le)
= A(Aij)Bj;Cij + AijA(Bi;)"Cij + Aij B A(Cyj).
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Then (A(A; B};) — A(Aij) B — AijA(Bi;)*)Cij = 0 for all C;; € M;;. Hence we get
(A(Ai;Bj;) — A(Aij) By — AijA(Bi;)" ) P,CP; =0
for all C' € M. It follows from Lemma 1.1(iii) that
A(Ay;Bf;) = A(Aij) Bj; + AijA(Byj)"
Since A(B};) = A(B;;)*, we have
A(Ai;Bji) = A(Ay(Bj;)")

Claim 18. A is an additive derivation.

2 2
Forany A= )" A;;, B= ). B;; € M, we have

A(AB) = A(AnBn)+A(A1Bi) + A(A1Bo) + A(A12Bxn) + A(A Biy)

+A(A21B12) + A(AnBy) + A(AnBx)

= A(An)Bin + AnA(Bn) + A(A11)Bia + AnA(Br2) + A(A12) Ba
+A1A(Ba) + A(A12) By + A1nA(Baz) + A(Az1) By + A2 A(Byy)
+A(Az1)Bia + A21A(By2) + A(A2)Bay + AnA(Bar) + A(Axn) B
+AnA(Bx)

= A(An)(Bi + Bi2) + A(A)(Bar + Bx) + A(A21) (B + Bia)
+A(A») (B2 + Bn) + A1 (A(B11) + A(B12)) + A12(A(Ba1) + A(Bn))
+A21(A(B11) + A(B12)) + Axn(A(Ba1) + A(B2))

= (A(An) +A(An))(Bi1 + Bi2) + (A(A12) + A(Ax)) (B2 + Bxn)
+(A1n + 421)(A(B11) + A(B12)) + (A2 + A22)(A(Ba1) + A(B2))

= A(A)B + AA(B).

Hence A is an additive derivation.

By the definition of the mapping A, we obtain that L is an additive derivation. Finally, we
need to prove that L(A*) = L(A)* forall A € M.

From Claim 15 and Claim 16, we get
A(AT) = A(AT) +A(AT) + A(435) + A(A3)
= A(An)" +A(A1R)" +A(Ax)" + A(Ap)*
= (A(An) +A(A) +A(A2) + A(A2))"
= A(A)
for all A € M. Then by using T = —Tj, we have that
L(AT) = [A",To] = A(A7) = A(A)"
(L(A) = [A, To])*
L(A)" = (ATy — ToA)”
= L(A)" — (-ThA" + A*Tp)
= L(A)" - [A"T]

*
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forall A € M. Thatis L(A*) = L(A)* forall A € M.

Hence we obtain that L is an additive x-derivation, as desired. O

References

(1]

(2]

(3]
(4]

(5]

(6]

(7]

(8]
(9]
[10]

Z.F. Bai and S.P. Du, The structure of nonlinear Lie derivation on von Neumann algebras, Linear Algebra
Appl. 436, 2701-2708 (2012).

Z.F. Bai, S.P. Du and Y. Guo, The automatic additivity of £-Lie derivations on von Neumann algebras,
arXiv: 1302.3927v1, 1-12 (2013).

M. Bresar, Centralizing mappings on von Neumann algebras, Proc. Ams. Math. Soc. 111, 501-510 (1991).

M. Bresar, Commuting traces of biadditive mappings, commutativity-preserving mappings and Lie map-
pings, Trans. Amer. Math. Soc. 335, 525-546 (1993).

B.E. Johnson, Symmetric amenability and the nonexistence of Lie and Jordan derivations, Math. Proc.
Cambridge Philos. Soc. 120, 455-473 (1996).

C. Li, Q. Chen and T. Wang, *-Lie derivable mappings on von Neumann algebras, Commun. Math. Stat.
4, 81-92 (2016).

M. Mathieu and A.R. Villena, The structure of Lie derivations on C*-algebras, J. Funct. Anal. 202, 504—
525 (2003).

C.R. Miers, Lie isomorphisms of operator algebras, Pacific J. Math. 38, 717-735 (1971).
C.R. Miers, Lie derivations of von Neumann algebras, Duke Math. J. 40, 403—409 (1973).

W.Y. Yu and J.H. Zhang, Nonlinear Lie derivations of triangular algebras, Linear Algebra Appl. 432,
2953-2960 (2010).

Author information

Hiilya Inceboz and Berna Arslan, Department of Mathematics, Adnan Menderes University, Aydin, 09010,
TURKEY.
E-mail: hinceboz@adu.edu.tr, byorganci@adu.edu.tr

Received: October 4, 2018.
Accepted: April 3, 2019.



	1 Introduction and preliminaries
	2 The Results

