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Abstract We offer a formalised proof argument to establish the invariance, with respect to
matrix power, of the n− 1 anti-diagonal ratios within a fixed n-dimensional tri-diagonal matrix.

1 Introduction

1.1 Result and Background

This paper follows on from a recent one by the authors [2] in which an invariance property was
proved for a tri-diagonal matrix of arbitrary dimension. The result may be stated thus:

Theorem 1.1. Suppose M = M(a1, . . . , an, u1, . . . , un−1, l1, . . . , ln−1) = M(an,un−1, ln−1) is
an n× n tri-diagonal matrix

M =



a1 u1

l1 a2 u2

l2 a3 u3
. . . . . . . . .

ln−2 an−1 un−1

ln−1 an


,

with anti-diagonal ratios u1/l1, u2/l2, . . . , un−1/ln−1. Then, unless otherwise indeterminate,
the immediate off-diagonal terms of Mk form anti-diagonal ratios that remain invariant as the
power k > 1 to which M is raised increases.

We can illustrate the result for a couple of low values of n (excluding n = 2 since then M
reduces to M(a2,u1, l1) = (a1 u1

l1 a2
) whose single anti-diagonals ratio u1/l1 has been established

as a matrix power invariant elsewhere in the fully general case [1, 4], and for the instance a2 = a1
[3], using a variety of methods).

1.2 Examples

Consider the 3-square tri-diagonal matrix

M(a3,u2, l2) =

 a1 u1 0
l1 a2 u2

0 l2 a3

 , (1.1)

whose successive powers

M2(a3,u2, l2) =

 a2
1 + l1u1 (a1 + a2)u1 u1u2

(a1 + a2)l1 a2
2 + l1u1 + l2u2 (a2 + a3)u2

l1l2 (a2 + a3)l2 a2
3 + l2u2

 , (1.2)
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and so on, each have two anti-diagonal ratios u1/l1 and u2/l2. Likewise, successive powers of
the 4-square tri-diagonal matrix

M(a4,u3, l3) =


a1 u1 0 0
l1 a2 u2 0
0 l2 a3 u3

0 0 l3 a4

 (1.3)

are

M2(a4,u3, l3) =


a2

1 + l1u1 (a1 + a2)u1 u1u2 0
(a1 + a2)l1 a2

2 + l1u1 + l2u2 (a2 + a3)u2 u2u3

l1l2 (a2 + a3)l2 a2
3 + l2u2 + l3u3 (a3 + a4)u3

0 l2l3 (a3 + a4)l3 a2
4 + l3u3

 , (1.4)

and so on, each with three anti-diagonal ratios u1/l1, u2/l2 and u3/l3. Higher powers of these two
matrices have been checked algebraically using computer software, as have powers≥ 2 for other
fully general n-square tri-diagonal matrices (containing 3n− 2 variables) of specific dimension
n = 5 and greater; the interplay between matrix parameters is considerable, as expected, but
Theorem 1.1 bears out in all of the many cases (that is, values of n) examined.

The presentation here details a new proof approach to the result using an inductive line
of argument. It is emphasised that the dimension of M (the value of n) is taken as fixed,
and further that invariance of those anti-diagonal ratios throughout the exponentiated matri-
ces M,M2, . . . ,Mn must be pre-established (for it is needed within the proof).

2 The Proof Approach

We here set down a line of argument to establish that the n − 1 anti-diagonal ratios of Mk are,
for all k ≥ 1, the invariants u1/l1, u2/l2, . . . , un−1/ln−1 (each assumed to be well defined) for
any n-square tri-diagonal matrix M (where n is fixed).

Proof. For n ≥ 2, let Mn[F] be the set of n × n matrices with entries from a field F (the
set forming a vector space over F of dimension n2), and define, for any i = 1, . . . , n − 1,
Gi :Mn[F]→ F to be the linear map

Gi(S) = Si,i+1 − (ui/li)Si+1,i (P.1)

acting on any matrix S ∈ Mn[F], where Sp,q is the row p, column q, element of S. We seek to
show that

Gi(M
k) = 0 (P.2)

for every power k ≥ 1 (i = 1, . . . , n− 1), and n× n tri-diagonal M; we will induct on k.
We assume the result holds for n consecutive values of k = d, d− 1, d− 2, . . . , d− (n− 1),

where k = d is arbitrary and defines the others in the sequence—in other words, 0 = Gi(Md) =
Gi(Md−1) = Gi(Md−2) = · · · = Gi(Md−(n−1)) (i = 1, . . . , n−1, d ≥ n), noting that for n = 2
this would be an assumption for some k = d, d− 1 (d ≥ 2) having shown it is true for particular
initial powers k = 1, 2, while the power values k = 1, 2, 3 are those needed to be checked for
invariance when n = 3, in which case the assumption is of validity for some k = d, d− 1, d− 2
(d ≥ 3), and so on.1 Denoting the n-square identity matrix by In our inductive step proceeds as
follows, based on the Cayley-Hamilton result that for constants s0, s1, . . . , sn−1 ∈ F,

Mn = s0In + s1M+ · · ·+ sn−2M
n−2 + sn−1M

n−1 (P.3)

1For any fixed matrix size n the number of initial powers that require checking is n (starting at power 1), which can
be done computationally (note that it is possible to write down (for i = 1, . . . , n − 1) Gi(M

1) = Gi(M) = Mi,i+1 −
(ui/li)Mi+1,i = ui − (ui/li) · li = 0, and, additionally, Gi(M

2) = (M2)i,i+1 − (ui/li)(M
2)i+1,i = (ai + ai+1)ui −

(ui/li) · (ai+ai+1)li = 0 for any chosen value of n, but beyond this such relations are difficult to determine since as matrix
power increases so does the algebraic complexity of the resulting matrix entries, and rapidly.
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(that is, M satisfies its own order n characteristic equation;2 in the instance n = 2 it reduces
to the familiar identity M2 = s0I2 + s1M for a 2 × 2 matrix M, where s0, s1 are the familiar
constants s0 = −Det{M} = −(a1a2 − l1u1) and s1 = Tr{M} = a1 + a2). This reads

Md+1 = s0M
d−(n−1) + s1M

d−(n−2) + · · ·+ sn−2M
d−1 + sn−1M

d (P.4)

on multiplying throughout by Md−(n−1), whereupon (by linearity of G), for i = 1, . . . , n− 1,

Gi(M
d+1) = s0Gi(M

d−(n−1)) + s1Gi(M
d−(n−2)) + · · ·+ sn−2Gi(M

d−1) + sn−1Gi(M
d)

= s0 · 0 + s1 · 0 + · · ·+ sn−2 · 0 + sn−1 · 0 (P.5)

(by assumption) = 0, and the inductive step is upheld.

For clarity, the argument establishes that if invariance holds for any consecutive run of n powers
of n-square M, then it holds for the next in the sequence—thus, if it holds for powers 1, . . . , n
then it does so for power n+ 1 and (being true for the n powers 2, . . . , n+ 1) in turn for n+ 2,
and so on; the n = 2 version of the proof is Proof II in [4], of which this is its natural extension.
We have not presented a constructive proof of Theorem 1.1 (of the type seen in [2]), but instead
demonstrated that the proof can be reduced to checking a finite number of power cases for any
fixed n ≥ 2—the only limitation here is that for all but small values of n this realistically has to
be done by computer (which was impossible before the advent of algebraic software).
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2To be more precise, every n-square matrix over a commutative ring (such as the real or complex field) satisfies its own
characteristic equation which is monic of degree n.
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