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Abstract Gerd H.Frickle et.al [1] introduceg-graph of a graph. Consider the family of all
sets in a grapl’ and we defingZ(v) = (V(v), E(v)) to be the graph whose vertices correspond
1 to 1 with they-sets ofG and two~-sets sayS; and S, are adjacent irG(v) if there exist a
vertexv € S; and a vertexv € S such that is adjacent tav and.S; = S, — {w} U {v} or
equivalentlyS; = S; — {v} U {w}. The concept ofy-graph inspired us to define Modified
graph of a graph. Consider the family of allsets of a graph G and define the modifiedraph
G(vm) = (V(vm), E(vm)) of G to be the graph whose vertic€g~,,) correspond 1-1 with the
~-sets ofG and twoy-setsS; and.S; form an edge irG(~,,) if there exists a vertex € S; and
w € Sy such thatS; = S> — {w} U {v} andSz = S1 — {v} U {w}. In this paper we determine
G(vm) of some grid graphs.

1 Introduction

By a graph we mean a finite, undirected, connected graph without loops and multiple edges. For
graph theoretical terms we refer Hara®] fnd for terms related to domination we refer Haynes

et al.[3,4]. AsetS C V is said to be a dominating set 6fif every vertex inV — S is adjacent

to some vertex ir6 . The domination number af is the minimum cardinality taken over all
dominating sets off and is denoted by(G) . A graphG is regular of degreer if every vertex

of G has degree. Such graphs are calledregular graphs.

A path is an alternating sequence of vertices and edges;, v», ey, ...,
en—1,vn, Which are distinct, such that is an edge joining; andv; .1 for 1 <i <n —1. A path
onn vertices is denoted b¥,,. A pathuvy, e1, v2, €2, ..., €51,
vn, €n,v1 IS called a cycle and a cycle onvertices is denoted bg,,. A graphG = (V, E) is
called a bipartite graph ¥ = V3, U V, and every edge aff joins a vertex ofi; to a vertex of
Vo. If |V1] = m, |V2| = n and if every vertex ol is adjacent to every vertex &%, thenG is
called a complete bipartite graph and is denoted<hy,,. K1 , is called a star. The bistd,, ,,
is the graph obtained by joining the centers of two copie&of, by an edge. IiG is a graph
onn vertices in which every vertex is adjacent to every other vertex, thescalled a complete
graph and is denoted by,,.

For any graphG, its complement is defined to be the graph whose vertex set is same
as that ofG' and two vertices irt; are adjacent if and only if they are not adjacentinLet Gy
andG- be two graphs with disjoint vertex séits andV, and edge setg; and E, respectively.
Then theirCartesian product G x G, is defined to be the graph whose vertex séfis V, and
edge set i (u1,v1), (uz, v2)| €itheruy = up andviv, € Ey or vy = vy anduguy € E1}. A Grid
graph is the Cartesian product of two paths.

Gerd H.Frickle et.al [1] introducegigraph of a graph. Consider the family of afsets in
a graphG and we defingz(y) = (V(v), E(v)) to be the graph whose vertices correspond 1 to
1 with the~-sets ofG and two~-sets says; andS, are adjacent iri7(y) if there exist a vertex
v € S1 and a vertexw € S, such thab is adjacent tav andS; = S> — {w} U {v} or equivalently
S> = 51— {v}U{w}. The concept of-graph inspired us to define Modifiedgraph of a graph.
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2 Main results

Definition 2.1. Consider the family of all—sets of a graph G and define the modifiedgraph
G(vm) = (V(vm), E(vm)) of G to be the graph whose vertic&g~,,) correspond 1-1 with the
~v—sets ofG and twoy—setsS; andS, form an edge irG(y,, ) if there exists a vertex € S; and
w € Sy such thatS; = S, — {w} U {v} andS; = S1 — {v} U {w}. Thus twoy—sets are said to
be adjacent if they differ by one vertex.

Example 2.2.Consider the grapt¥ given in Fig. 2.1. HereS; = {vz,v6}, S2 = {vp,v7}, 53 =
{vz, vg} are they-sets ofG. The Modifiedy- graphG(,,) is given in Fig. 2.2.

S1

SZA S3

Fig. 2.2

Proposition 2.3. P (v ) & K3.
Proposition 2.4. P31 2(Vm) = Pryo.
Proposition 2.5. P4(y,) = Cy.

Proof. Let v1,v7,v3,v4 be the vertices of the patR;. Then it has 4y-sets namelyS; =
{v1,v3},S2 = {v1,v4},S3 = {vp,v3},S4 = {vp,v4}. Fori = 12 3,4 degS; = 2. Hence
P4(vm) has 4 vertices and each vertex is of deg 2 so thét,,,) = Cy. O

Proposition 2.6. Ps;,1(v,, ) isisomorphic to the graph of order % for k > 2.

Proof. Case (1):k =2

The path obtained iy and it has 8y-sets namelys; = {vz, vs, v7}, S2 = {v2, vs, v6},
S3 = {v2,va,v6}, 54 = {v2,v3,v6},55 = {v2,v4,v7}, 86 = {v1,va,v7}, 57 = {v1,vs,v6} and
Sg = {v1,v3,ve}. The total number of-sets ofP; is 8. So the order of7(v,,,) is 8.

Case (2):k >3

Step (i): Let vy, vp,vs,...,v311 be the vertices of the patRs,.1. Consider the 4y— sets
S1 = {v1,v4,07,...,V3k_2,V3k41}, 2 = {v1,04,07,. .., V3K_2, V3 }

Sz = {vz,vs, vg; - - ., Uar—1, Uak+1}, Sa = {v2,v5,v8, vak—1,v3} Of Papr1. S1is the onlyy-set
with first the vertexy; and last vertexsy, ;.

Step (ii): Now fixing the first and last vertices &% and changing from the 2nd vertex we get
Ss = {v1,v3,ve, Vo, . .., varr1}. Similarly changing from the'3, 4t 5th k" vertex we get
(k — 2) ~v-sets. Thus in step (ii) we gét — 1) y-sets.

Step (iii): Now fixing the first and last vertices ¢ and changing from the™2 vertex we get
{v2,v4,v7,v10, Va2, vars1}. Similarly by changing from the third ,fourth, fifth, . k*" vertex
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we get(k — 2) y-sets. Thus step(iii) containig — 1) k-sets.

Step (iv): (k — 1) y-sets have 2 adjacent vertices. They @rg vs, ve, vo, . . . , vax }, {v2, Us, vs,
V9,...,012,. .. ,ng}, ceey {Uz, Us, U8, . . . , U3k—4, U3k —3, U3k}- Thus this step Contair(§c - l) y-
sets. [Sincqu, Us, U8, . . ., U3k—4, U3k—1, vgk} = 54]

Step (v): The lasty-set of step (iv) iS{v2, vs, vs, v11, - - . , V3k—4, V3k—3, Uak—3}.....(1). FiXing the
first vertex and last two vertices of (1) changing from ttié @ertex we get vy, v4, v7, v10, - - .,
v3k_s5, V3k_3, U3k }- Then changing from the'3, 4% 5th . (k — 1) vertex we getk — 3) -
sets. Thus step (v) hds — 2) y-sets. [Here the last-set is{vy, vs, vg, . . . , V3k_7, V3k_5, V3K _3,

v} (2).

Step(vi): Now consider they-set{vz, vs, vs, . . ., V3—7, V3x—a, U3k —2, V3% } ....(3). Fixing the first
vertex and last two vertices ¢8) and changing from the 2nd vertex we de4, va, v7, vio, - . . ,
v3p_2,v3x . Similarly changing from th 3, 4t 57 (k — 1)*" vertex we getk — 2) v-sets.
Thus step (vi) hask — 1) y-sets including (3).

Step (vii): Now consider all the-sets containing 3 alternate vertices. They{atgva, ve, ve, v12,

<., U3k—6, U3k—3, U3k }, { V2, US, U7, V9, V12, V15, - - . , U3k—6, U3k—3, U3k } - - - , {V2, U5, Vg, - - - , U3k—10,
U3k_8, Usk_6, Usk_3, U3k - Thus step (vii) hask — 3) y-sets. [The last 2-sets are (2) of step (v)
and (3) of step (vi)].

Step (viii): Using the abovék — 3) v-sets we can writék — 3)Cxy-sets with 2 pairs of alternate
vertices with first vertex, and last 2 verticess,_3,n3;. There are noy-sets other than the
~-sets got by the above 8 steps. Thus total numberssts

=44k —1+k—14+k-14k—2+k—14+k—3+ (k—3)C;

K2 — Tk + 12
2
12k — 104+ k2 — Tk +12 (2.1)

— 6k -5+

2
_ kK*+5k+2
- 2,

S2k+2

S2k+3
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Remark 2.7.(1) Vertices of stepgv), (vi), (viz) and (viii) are of deg 4. Vertices of stefd:)
exceptSs, vertices of stefgiii) and vertices of stefiv) are of deg 3 and, Ss, Ss, are the only
3 vertices of deg 2.

(2) Each dominating set is some number of swaps f6ands, Ss, Sg, S7,

..., Skrs and hence’;, 1 (7., ) is a connected graph and is isomorphic to the graph given in Fig.
2.3

Theorem 2.8.(P,0P;)(yy,) isa4-regular graph of 6 vertices.

Proof. Let {u1,up, v1,v2}be the vertices of the griébOP,. Let St = wug,up, S2 = ug,v1,S53 =
{ul,vg},54 = {u2,01}755 = {UZ,Uz},Se = {Ul,vz} are the 6’y- sets OfP2|:|P2. Here S; is
adjacent taS,, S3, S4, Se; Sz is adjacent taS1, S3, S4, Se; S3 is adjacent taS1, S», Ss, Sg; Sa IS
adjacent ta515, Ss, Se; Ss is adjacent tahy, Sz, S4, Se andSg is adjacent tehy, S3, S4, S6. O

Theorem 2.9.(P,0Py) (v ) isa 3- regular graph with 12 vertices.
Proof. Consider the grid>[P, given in Fig. 24.

u1 u2 us3 U4
U1 v2 U3 V4
Fig.24

Let uy, up, us, ug and vy, vz, v3,v4 be the vertices of the first and second row of the grid
PP, 81 = {u1,v3,v4},52 = {u1, v3,usa},S3 = {u1,v3,uz},S4 = {v1, v3, uz}, S5 = {1, v2, ua},
Se = {u1, uz,va},S7 = {u1, uz, va},Sg = {v1,u3, ua}, Sg = {v1,u2,us},S10 = {v1, v2, ua},511 =
{uz, v2,us},S12 = {u2,v2,v4} are they-sets of P,1P,. HereS; is adjacent tas,, S3, Se, S IS
adjacent taSy, Ss, Ss, S3 is adjacent tab, Sz, Sa, Sy is adjacent tas3, S7, Sg; Ss is adjacent to
S, S10, S11; Se IS adjacent tehy, Sg, S12; S7 is adjacent th,, Sg, Sg; Sg is adjacent th,, S7, Sio;

Sy is adjacent ths, S7, S12; S10 IS adjacent tes, Sg, S11; S11 is adjacent taSs, S1o, S12 andSio
is adjacent tag, So, S11. The graph P,0P) (v.,) is given in Fig. 2.5.

Fig. 25
Thus(P,0Ps)(vm) is a cubic graph with 12 vertices. O
Theorem 2.10.(P,0Ps) (7., ) isisomorphic to the graph G givenin Fig. 2.6.
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Proof. Consider the grid%0Ps givenin Fig. 27. Letus, up, us, ug, us, ug andvy, vz, vs, va, vs, vg
be the vertices of the first and second rows of the gsid Ps. S1={u1, vs, us, ve}, So={u1, vs, us,
ve}, S3={u1,v3, us, vs}, S4={u1,v3, us, ve}, S5={v1, us, vs, us}, Se={v1, us3, vs, ve}, S7={v1, us, vs,
ug}, Sg={v1, u3, v4, ue}, S9={v1, us, va, us}, S10={u1, v2, us, v}, S11={v1, v2, ua, v}, S12={uz, vo,
ua, v}, S13={u2, v2, us, vs}, S1a={u1, uo, va, ue}, S15={u1, v3, va, us}, S16={u2, v2, v4, u},
S17={v1, uz, ug, vs} are they-sets of ,OPs. HereS; is adjacent taS,, Ss, S4; Sz is adjacent
to S1, S3, S1s; S3 is adjacent taSy, Sz; S4 is adjacent taSy, Sio; Ss is adjacent taSs, S7, Sg;
Sg is adjacent taSs, S7, S17; S7 is adjacent taSs, Sg; Sg is adjacent taSs, Sg; Sg is adjacent
to Sg, S14, S16; S10 IS adjacent ta5y, S11, S12; S11 IS adjacent td519, S12, S17; S12 IS adjacent to
S10, S11; S14 is adjacent tdSy, S1s, S16; S15 IS adjacent th2, S14; S16 iS adjacent tdy, Si4; S17
is adjacent tbg, S11 and Si13 is an isolated vertex. Thus we get the graph given in Fig. 2

u1 U2 us U4q Uus Ug
g S O O Vg T
v1 v2 v3 V4 Us Ve
Fig.27

O

Theorem 2.11.(P,0F,)(vym) Where n = 2k, k > 4 isisomorphic to the graph G with order
4| =1 | of which 8 vertices have deg 3 and the remaining vertices have deg 2. The graph G is
giveninFig. 2.8.

Sq Sk+5 Sk+4 - - - -5
A A A c
S2 S3 Sak14 l ) S2k+5
Sok+4 Q  Syuis
|
|
Sok+43
1 |
1 1
1 S3k+3
1
Sar+3 Sy
Sk+6 Sg
o o o
o o o
S3k+4 S3k45 = = = = Sipio Se
Fig.28

Proof.

uy

uz u3 Un
172 U3 o Up,
Fig. 29

Consider the gridP,[0P,, whenn = 2k that is given in Fig. 2. Letug, up,
us, . .., u, andvy,vo,vs,...,v, be the vertices of thesLand 2¢ rows of the grid PP,
whenn = 2k. We know thatP,0P, has domination numbef™|. Consider the 6y-

U1

setsS1 = {u1,v3,us,v7,. .., Up_3,Up_1,Up},S2 = {U1,v3,U5,V7,...,Vp_3,Upn_1,Vn},53 =
{ula U3, U5, V7,...,Un-3,Un-1, vn—l}a S4 = {’U]_, U3, Vs, V7,...,Un-3,Un—-1, un}a S5 = {’U]_, uz, vs,
U7, .. Up—3,VUn—1,Un},S6 = {V1,U3,V5,U7, . .., Un_3,Vn_1,V, } OFf P.OIP,.

Case(1):k is odd
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Step(i): Fixing the first and last vertices ¢f; and changing from the”2 vertex we getS; =
{u1, up, v, up, Ug, U10 - - - , Un_4, Vn_2,Un }. Fixing the first 2 vertices and changing from tHé 3
vertex we getSg = {uz, v3, v4, us, V8, u10- - - , Vn_2, up } . Proceeding like this, fixing thex — 1)
vertices and changing from thé" vertex we getSy. .5 = {u1, vs, us, v7,ug, . .., Vp_3, Vn_2, Uy +

. Thus we getk — 1) v-sets in Step(i).

Step(ii): Now fixing the first vertex ob, and changing the'? vertex we gety .6 = {u1, vz, ua,
V6, U8, V10 - -, Un_2,VUn } . Fixing first 2 vertices of5, and changing from the™3 vertex we get
{u1,v3, ug, ve, ug, V10 - - , Vn_4, Un_2, vy }. Continuing upto the change &f" vertex of S, we
get(k — 1) y-sets. Here the lastset is{u1, v3, us, v7, . . . , Un_5, V3, Up_2, Vi } = Sok14-

Step(iii): S3 is the only~-set with first vertexu; and first 2 vertices:,,_1,v,_1 andS, is the
only v-set with first vertex; and last 2 vertices;,_1, uy_1.

Step(iv): Fixing the first vertex ofSs and changing from the”2 vertex we getSy, 5 =
{v1,u2, v4, ug, v, u10, - - . , Un—a, Vn_2,un }. FiXing the first 2 vertices and changing from the
34 vertex we gefvy, us, va, us, Vs, U10 - - - , Vn_2, Un } . CONtinuing upto the change k" vertex
we getSay. 3 = {v1, us, vs, Uz, . . . , Un_3, Vn_2, Uy } . THUS We get step (iv) has — 1) y-sets.

Step(v): Fixing the first vertex ofs and changing from the'2 vertex we ges, .4 = {v1, v2, ua,

Vg, U8, V10, - - - , Un—4, Un_2, Un }. Fixing the first 2 vertices afs and changing from the’3 vertex
we get{v1, us, ua, vg, ug, V10, - - - , Un—4a, Un—2, U, } . Proceeding in a similar manner we arrive at
the setSa,12 = {v1,u3,v5,u7, ..., Un_3,Un_2,v,} . Thus we getk — 1) y-sets.

Step(vi): S4k+3 = {UZ, V2, U4, V6, U8, V10 - - - , Up—2, ’Un} andS4k+4 = {UZ, V2, V4, Ug, U8, UL0, - - -
vn—2, Un + are the 2y-sets with first 2 vertices,, v» and last 2 vertices,, u,, respectively. Thus
total number ofy-sets

=6+k—-1+k—-1+k-1+2

=4k —-4+8

=4k +4

=4(k+1)

2k +1
=4[5

(2.2)

Case(2):k is even

Step(i): Fixing the first vertex of; and changing from the’2 vertex we ge; = {u1, vz, u4, ve,
..., Un_2,uy, }. Fixing the first 2 vertices of; and changing from the3 vertex we getSg =
{u1,v3,u4,ve, us, - - ., Vn_2,u, } . Proceeding like this we get (by changing from te vertex)
Sk+5 = {u1,v3,us,v7. .., Up_3,Vp_2,upn } . Thus step(i) hask — 1) y-sets.

Step(ii): Fixing the first vertex ob, and changing from the"2 vertex we geby, ¢ = {u1, uz, v,

Ug, Vg, - . ., Un_4,Un_2,V, +. Fixing the first 2 vertices ob, and changing from the”3 ver-
tex we getSy7 = {u1,v3,va,ug,vs, ..., un_2,v,+ . Proceeding like this we arrive at the set
{u1, v3, us, uz, . .., upn—_3, Un—_2, vy} . Thus this step contain® — 1) y-sets.

Step(iii): S3 andS, are the only 2y-sets with last 2 vertices,,_1, v,,_1 and first vertex:; and
v1 repectively.

Step(iv): Fixing the first vertex ofSs and changing from the”2 vertex we getSy, 5 =
{v1,v2,v4, Ve, Ug, V10 - - , Un_2,Vp }. Fixing the first 2 vertices ofs and changing from the”3
vertex we getSopi6 = {v1, us, va, ve, ug, ..., vn_2,u,} . Proceeding like this we gz 3 =
{v1,u3,V5,u7, ..., VUp_3,Un_2,u,} . Thus Step(iv) hask — 1) y-sets.

Step(v): Fixing the first vertex ofs and changing from the'2 vertex we gets; 4 = {v1, uz, v,
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ug, - - ., Un_2,v,}. Fixing the first 2 vertices obg and changing from the’3 vertex we get
S35 = {v1,us,v4,us,...,u,_2,v,} . Proceeding like this by changing” vertex we get
Sapr2 = {Ul, U3, V5, U7y« . oy Up—_3, Un—2, ’Un} . Thus Step(v) haék - 1) vy—sets.

Step(Vi): Sar+3 = {u2,v2,us,ve,v8, . .., Vp—2, un } ANASapia = {u2, v2, us, U, Vs, . . ., Vp—2,Vp }
are only 2~-sets with first 2 vertices,, v, and the last vertices,,, v, respectively. Thus the
total number ofy-sets=6+k —1+k—1+k—1+2=4(k+1) =42 Thusin both
cases we get the total numberpbets of 0P, = 4 | % |.

HereSy, S, S3; Sa, S5, Se, S7, S2i+5, Sak+a; Sk+6, S3k+4, Sart3 form atriangle.Sy, Siis, Si14,
Sk+3, ..., S7formapath ;Szp. 5, S2iv6, S2k+7, - - - » S3kt2, S3143, S5 form a path;Sz, Saxi4, S2r13,
..., Sk1e form a path ;Szii4, Sa+s, . . . Sart2, Se form a path in(P0R, ) (7 )-

Thus(P,OP,)(vm), Wheren = 2k, k > 4 is connected and is given in Fig.82. ]
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