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Abstract Some interesting results, in a very lucid presentation, on multiplication and com-
position operators on the generalized space of entire function have been obtained. This article 
establishes relationship between operator theory and complex analysis.

1 Introduction

Serveral functions, in several ways, may be obtained for any two given functions f and g, viz. 
composing them as gof or fog or else by multiplying them as f.g under suitable conditions. 
Com-position operator (also called substitution operator) is the concept of composition of 
function, while the multiplication of functions give rise to multiplication linear transformation. 
In what follows, are some formal definitions and concepts of the subject.

Let X and Y be two non-empty sets and let f (x) and f (y) are two topological vector spaces of 
complex valued functions, defined on them. Suppose T : Y → X be a mapping such that for f o t 
∈ f (y), whenever f ∈ f (X). We can, hence, define a composition (substitution) trans-formation 
CT as

CT : f (X) → f (Y)

by

CT (f) = foT, f ∈ f(X), (1.1)

if CT is continuous, we call it a composition operator, induced byT. For multiplication transfor-
mation if w : x – Csuch thatf ∈ f (X), then it implies that w.f ∈ f (X).
If µw : f(x)− f(Y )
is defined by

µw(f) = w.f, f ∈ f(X) (1.2)

them a continuous linear multiplication transformation is called a multiplication operator.
While we compile literature on composition operators, it may be observed that it is connected

to and concentrates onLp – space ,Hp – spaces or locally convex function spaces. The literature
available and the references cited in our present work on operator theory, spell a very intimate
relationship between multiplication and composition operators, Singh and Kumar [6]. Infact, one
may visualize the applications of multiplication operators in the study of Hilbert space operators
in the works of Shields and Wallen [5], Abrahmse and Kriete [1] and Singh and Manhas [7]. In
the present paper we have established some results for the multiplication operator on generalized
space of entire functions. The definitions and terms employed, are those due to Halmos [3],
Dugundgi [2] and Rudin [4].

In order to give some preliminaries, we may include following definitions and notations.
In operatorA ∈ B(H) is said to be of finite rank operator if the dimension of the range ofA is

finite.
A sequence (Xn) in a metric spaceX = (X,d) is said to be Cauchy, if for everyε > 0 there is

an N=N (ε) such that
d(Xm, Xn) <∈, ∀m,n > N,
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being the set of natural numbers.
Let X be a metric space andµ be a subset of it, then a pointx0 ∈ X (which may or may not

be a pointµ) is called an accumulation point ofµ, if everynbdor x0 contains atleast on epointy
∈ µ , distinct formx0.

A linear transformationT : H → H, form Hilbert spaceH into itself is said to be bounded
away from zero if there existsE > 0, such that | |Tx | |≥ E | |X | |, for everyx ∈ H.

An operatorA, on a Banach spaceE, is called a Fredholm operator if the range ofA is closed
and the dimensions of kernel ofA and co-kernel ofA are finite.

An operatorA on a Banach spaceE into itself is called an isometry
if ‖AX −AY ‖ = ‖X − Y ‖ , ∀ X, Y ∈ E.

2 Main Results

This section of the paper is devoted to three theorems, in the context of the notations and defini-
tion described in the preceding section.

Theorem 2.1. Letα andβ be two cardinal numbers, where the operation of multiplication in a
set of cardinal number is commutative, additive and distributive over addition.

Let µ∞denotes the multiplication operator, whereµw ∈ C (L, (x, α)) . Thenµw is a Fred-
holm operator, if

(i) α /w (α) is a finite set
(ii) E = {α : w(w(α)) ≥ 2}is finite set, wherew is the cardinal number of w.
(iii) There exists b> 0 such that

β(w(α))

β(α)
≥ b,

for all except finitely many x∈ X.

Proof. We suppose thatµw is a Fredholm operator. If{α1, α2, . . . ., αn} is a finite set contained
in aα / w(α), then

Fweαn = eαn → 0 asn → ∞,
Which asserts the Kerµw cannot be of finite dimensional, which readily contradicts our

assumption, Thus,α / w(α) is a finite set. Here{en : n ∈ N} is orthonormal basis for Hilbert
spaceH.

Now we prove thatE is a finite set. Because, if the set

E = {α ∈ α : w(w(α)) ≥ 2} (2.1)

is a finite set, then for each pairx,y∈ E, define
fxy : L (x,α) → C

as
fxy = Ex ·Ey, (2.2)

whereEX andEY are evaluation functions onL(x,α), defined byEx(f ) = xf, f ∈ L (x,α). Consider

(µ∗

wfxy)f = fxy(µwf)

= Ex(µwf)− Ey(µwf)

= (µwf)(x)− (µwf)(y)

s.t. (µ∗

wfxy)f = f(w(x))− f(w(y))
= 0.

Since there are many infinitely distinct pairs (xn , yn), with w(xn) = w( yn), so thatfxnyn ∈ker
µ∗

w, thereby we assert that kerµ∗

w cannot be of finite dimensional, which incidentally, is again a
contradiction to the definition and thus,E must be a finite set.

Further, if the condition (iii) of the theorem is taken to be false, then we can find a sequence
{αn} in α, such that

w(w(αn)) = αn and
β(w(αn))

β(αn)
<

1
n
, ∀n ∈ N.
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Now for anyR> 1,
∥

∥

∥

∥

ew(αn)

R1/β(w(an))

∥

∥

∥

∥

=
1
R
.

But
∥

∥

∥

µwew(αn)
R1/β(w(an))

∥

∥

∥
= 1

β(an)/Rβ(w(xn)) → 0, as n → ∞,

Which readily approves a contradiction to our assumption, that the range of µw is closed,
hence condition (iii) must be true and hold good.

Converse of the theorem is asserted, if we consider that the conditions (i)-(iii) are satisfied.
We show thatµw is a Fredholm operator. From conditions (i) and (ii), it is obvious to conclude

that dimension of kerµwand co-dimension of rangeµw are finite. Next we prove that range of
µw is a closed set.

Let f be a limit point of R andµw. Also letµw fn is a sequence inL(x,α) which converges to
f. Thus, for givenǫ, 0< ǫ < 1, choose a positive integern0, such that

|fn(w(x))− fm(w(x))|
β(x)

<∈, (2.3)

For all x ∈ X and for alln, m≥ n0, and this, in turn, implies

|fn(w(x))− fm(w(x))|
β(w(x))

<
β(w(x))

ǫβ(x)
∈ ǫb, (2.4)

for all x ∈ X and for alln, m≥ n0.
Now set

f̂n(x) =

{

fn(x);X ∈ ranw
0 ;X ∈ ranw.

, ran= range.

It is clear from (2.4) that
{

f̂n

}

is a Cauchy sequence inL(x,α) and thus, we can findg∈ L (x,α),
such that

lim
n→∞

f̂n = g

or
lim
n→∞

µwfn = lim
n→∞

µwf̂n = µwg, (2.5)

so that
f = µwg,

which proves thatµw is a closed set, and henceµw is a Fredholm operator.
The theorem is completely proved.

Let us quote following examples :

(i) Let X = Z+ andα : Z+→ Z+be defined byα (n) = n. Definew : Z+→ Z+ by

w(n) = n−k
n+k ; for somek ≥ 0,

then
Ker (µw) = span{e1, e2,. . . . en−1,. . .}
Ker (µw) ={0}

and range ofµw is a closed set.
(II) Let X = C andα : C → C+ is defined byα (n) = n. Definew : C → C by
w(n) = n−k

n+k ; for somek ≥ 0,
then
Ker (µw) = span{e1, e2,. . . . en−1,. . .}

Ker (µw) ={0}
and range ofµw is a closed set.

Theorem 2.2. Letµw ∈ C (L, C),whereµw is the multiplication operator, and w∈ X → C, such
that w∈ w (X), thenµw is an isometry iff f w : X→ X is surjective, andβ = β o w.
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Proof. Following the definition of isometry, given in section 1 of this article, we assume thatµw

is and isometry. Then forC > 1,

d(µwCex ,0) = d(Cex ,0), (2.6)

sup(|C|β(Y ) : Y ∈ w(X)) = |C|β(X), (2.7)

wherew(X) is a finite set for assertingµw to be a bounded operator, Thus, we can findx0 ∈ w(X),
such that

|C|β(X0) = sup
{

|C|β(Y ) : Y ∈ w(X)
}

. (2.8)

Form (2.7) and (2.8), we obtain
β(X) = βw(X). (2.9)

But asX is arbitrary,β = β o w; while if w is not surjective, thenµw ex = 0 for X ǫ X/w (X).
This justifies thatµw has a non-trivial kernel. This, incidentally, is a contradiction to our initial
assumption, that,µw is an isometry. Which straightway proves the first part of theorem, the
necessary condition.

Conversily, if the given condition of the theorem are satisfied, then

‖µwf‖ = sup
{

|f(w(x))|
β(x) ;x ∈ X

}

i.e.
= sup

{

|f(w(x))|
β(x) ;x ∈ X

}

= ||f ||, (2.10)

which proves thatµw is an isometry, and thereby the theorem is completely asserted.

Following example may be of interest.
Let X = [0,1] and let us define

C : X → Z+

by

C(x) =

{

n;X = m/n ∈ (0,1), (m,n) = 0
0; otherwise

andw : X → X by w(X) = (1-X).
If X is irrational, then clearlyβ (T(X)=1=β (X).
Again , if X = 0 or 1, thenβ (w(0)= β(1) = β (w(1))= β (0) =1.
Further, ifX = m/nand (m,n) =1, then

β
(

w
(m

n

))

= β
(m

n

)

=
1
n
,

thus,β = β o w alsow is surjective. Thusµw is an isometry i.e. isometric multiplication operator.

Theorem 2.3. If X is a metric space andµw be a subspace of X, ifµw ∈ C (L (x, C)),µw being
the multiplication operator, thenµw is compact subspace of X ifµw has closed range.

In order to prove this theorem, we require to prove following lemma.
Lemma :
Let µw be a non-empty subset of a metric space (X,d) andµwbe its closure, then
(i) X ∈ µw , iff there is a sequence{Xn} in µ such thatXn →X.
(ii) µw is closed, iffXn ∈ µw , Xn →X implies thatX ∈ µw .

Proof. (i) Let X ∈ µw.
If X ∈ µw, we have sequence{X, X,. . .} while if X ∈ µw , it is a point of accumulation ofµ .

Hence for eachn = 1,2,. . . , the ballβ (x ;1/n) contains anXn ∈ µw andXn→X , becauseYn→0
asn → ∞.
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Conversely, if (xn) is in µ andXn→X thenx∈ µ or every nbd. ofx contains pointxn 6= x is a
point of accumulation ofµ . HenceX ∈ µw, by definition of closure.
(ii) µ is closed , iff µw = µw, so this follows from (i).

Proof of Main Theorem:
Let µw is a complete subspace ofX, then we prove thatµw has closed range. Let also that,E

be a measureable subset ofS, where

S = x ∈ X ;w(x) 6= 0. (2.11)

Then, for∈ > 0, such that
||w(x)g ||≥ ∈ ||g ||

for µ - almost allx ∈ E and for allg ∈ C , for a measurable setEn andX with 0 < (µ(En)) < 1
and a vectoren ∈ C, such that

||w(x)en|| <
1
Zn

||en||,

We let

g =
∞
∑

n=1

w.xEne
n

||en||p
√

µ(En)
· (2.12)

Then

f ||g(x)||pdµ =
∞
∑

n=1

∫

En

||w(x)en||
pdµ

<

∞
∑

n=1

1
µ(En)

∫

En

∣

∣

∣

∣

1
Zn

∣

∣

∣

∣

p

dµ.

<

∞
∑

n=1

1
Znp

< ∞. (2.13)

For

f =
n
∑

k=1

w.xEkek

||ek||p
√

µ(Ek)
, k = 0,1,2, ...

||µwf ||
p ≥

∫

S

||w(x)f(x)||pdµ(x)

≥

∫

S

||f(x)||pdµ(x). (2.14)

Now suppose,µwf
(n) → g for some sequence

{f (n)} < L(X,C).

Clearly,

||µwf
(n) − µwf

(m)|| ≥

∫

s

||f (n) − f (m)||pdµ.

Now, sequence{f (n)} is a Cauchy sequence inL (X,C), where

f (n)(x) =

{

fn(x);x ∈ S

0 ; x ∈ S
.

Hence, there existsf ∈ L (X,C), such that
|| f (n) – f ||→ 0, asn → ∞ ,

so that,
µwf

(n) → µwf,

and as such,
g = µwf .
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This shows thatµw has closed range. Then we prove thatµw is a complete subspace. Ifxn is a
Cauchy sequence inµw, thenxn to x ∈ X, which implies thatx ∈ µw (by (lemma)) andx ∈ µw,
becauseµw=µw.

Hencexn converges inµw, and so it proves thatµw is a complete subspace ofX.
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