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Abstract Someinterestingresults,in a very lucid presentationpn multiplication andcom-
position operatorson the generalizedspaceof entirefunction havebeenobtained. This article
establisheselationshipbetweernoperatortheoryandcomplexanalysis.

1 Introduction

Serveralfunctions,in severalways, may be obtainedfor any two given functionsf andg, viz.
composingthem as gof or fog or else by multiplying them as f.g under suitable conditions.
Com-positionoperator (also called substitution operator)is the conceptof composition of
function, while the multiplication of functionsgive rise to multiplication linear transformation.
In what follows, are some formalefinitions and concepts the subject.

Let X andY betwo non-emptysetsandlet f (x) andf (y) aretwo topologicalvectorspaceof
complexvaluedfunctions,definedon them.SupposeT : Y — X beamappingsuchthatfor fo ¢
e f (y), wheneverf e f (X). We can,hence definea composition(substitution)trans-formation
Cras

Crif(X) = f(Y)
by

Cr(f) = foT, f € f(X), (1.1)

if Cr is continuous, we call it a composition operator, induced blor multiplication transfor-
mation if w : x — Csuch thaf e f (X), then it implies that vi. € f (X).
If o * flz) = F(Y)
is defined by
o (f) =w.f, f€f(X) (1.2)

them a continuous linear multiplication transformation is called a multiplication operator.

While we compile literature on compaosition operators, it may be observed that it is connected
to and concentrates dif — space H? — spaces or locally convex function spaces. The literature
available and the references cited in our present work on operator theory, spell a very intimate
relationship between multiplication and composition operators, Singh and Kumar [6]. Infact, one
may visualize the applications of multiplication operators in the study of Hilbert space operators
in the works of Shields and Wallen [5], Abrahmse and Kriete [1] and Singh and Manhas [7]. In
the present paper we have established some results for the multiplication operator on generalized
space of entire functions. The definitions and terms employed, are those due to Halmos [3],
Dugundgi [2] and Rudin [4].

In order to give some preliminaries, we may include following definitions and notations.

In operatorA € B(H) is said to be of finite rank operator if the dimension of the rangk isf
finite.

A sequenceX;,) in a metric spacX = (X,d) is said to be Cauchy, if for every> 0 there is
an N=N ¢) such that

d(Xm, Xyn) <€,Ym,n > N,
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being the set of natural numbers.

Let X be a metric space andbe a subset of it, then a poirg € X (which may or may not
be a pointu) is called an accumulation point of if everynbdor Xy contains atleast on epoint
€ u , distinct formxg.

A linear transformatiom : H — H, form Hilbert spaceH into itself is said to be bounded
away from zero if there exists > 0, such that | T.| | > E | | X ||, for everyx € H.

An operatorA, on a Banach spadg is called a Fredholm operator if the range?ds closed
and the dimensions of kernel Afand co-kernel oA are finite.

An operatorA on a Banach spadgeinto itself is called an isometry
if |]AX —AY|| =X -Y]|, VX, Y €E.

2 Main Results

This section of the paper is devoted to three theorems, in the context abttitéons and defini-
tion described in the preceding section.

Theorem 2.1. Let o and 3 be two cardinal numbers, where the operation of multiplication in a
set of cardinal number is commutative, additive and distributive over additio

Let u.denotes the multiplication operator, wheig € C (L, (z, «)). Thenpu,, is a Fred-
holm operator, if

() a /w (@) is a finite set

(i) E = {a: w(w(a)) > 2}is finite set, wher@ is the cardinal number of w.

(iii) There exists b> 0 such that

Blw(@)
Ba
for all except finitely many x X.
Proof. We suppose that,is a Fredholm operator. fas, ag, . . . ., a5} is a finite set contained

inaa/w(x), then

Fyeq, =eq, — 0asn — oo,

Which asserts the Keti,, cannot be of finite dimensional, which readily contradicts our
assumption, Thusy / w(a) is a finite set. Herde, : n € N} is orthonormal basis for Hilbert
spaceH.

Now we prove thak is a finite set. Because, if the set

E={a ¢ a:o(w(a)) > 2} (2.1)

is a finite set, then for each paiyy € E, define
foy :L(X,a) = C
as
Joy = By - By, (2.2)

whereEx andE,- are evaluation functions dr(x,«), defined byg, (f ) =xf, f € L (x,«). Consider

(/‘Z}fml)f = fmy(/ffwf)

= Ez(ﬂwf) - Ey(ﬂwf)
= (wa)(x) - (/wa)(y)
L (1) = J(0(6) = (0(0)

Since there are many infinitely distinct paixs (y,,), with w(x,,) =w(y,,), so thatf,, ,,, €ker
¥, thereby we assert that kef, cannot be of finite dimensional, which incidentally, is again a
contradiction to the definition and thus must be a finite set.

Further, if the condition (iii) of the theorem is taken to be false, then we cdrefsequence
{an} In @, such that

(w(an))

_ B 1
w(w(ay)) = a, and (o) < n,Vn € N.
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Now for anyR > 1,

ew(an) _ 1
RYB(w(a,))|| R’
But‘ gt (an) H (a,,)/ém’w@"” —0, asn— oo,

WhICh readlly approves a contradiction to our assumption, that the rangg © closed,
hence condition (iii) must be true and hold good.

Converse of the theorem is asserted, if we consider that the conditigiig @)e satisfied.

We show thaf.,, is a Fredholm operator. From conditions (i) and (ii), it is obvious to coreclud
that dimension of kef.,,and co-dimension of range, are finite. Next we prove that range of
1w 1S @ closed set.

Letf be a limit point of R and.,,. Also let ., f,, is a sequence ib(x,a) which converges to
f. Thus, for givere, 0 < € < 1, choose a positive integag, such that

[falw(@)) = fonw(@)| " <e, (2.3)
For allx € X and for alln, m > ng, and this, in turn, implies
(o) = Fuuw) " < 2D e o, @4

for all x € X and for alln, m > ng.

Now set
A fo(z); X € ranw
n(T) = , ran=range
fa(@) { 0 ; X € ranw. g
Itis clear from @.4) that{fn} is a Cauchy sequence lifx,«r) and thus, we can fing € L (x,a),
such that
lim fn =9
n— oo
or
M oy frn = I|m uwfn = U9, (2.5)

n—o0

so that

f = /J’U}ga
which proves that.,, is a closed set, and hengg is a Fredholm operator.
The theorem is completely proved.

Let us quote following examples :
() LetX=2Z, anda : Z;— Z, be defined byy (n) = n. Definew: Z, — Z. by

w(n) = 2=¢; for somek > 0,
then
Ker (1) = span{e;, e,....€,-1,...}
Ker (u.,) ={0}
and range of.,,is a closed set.
(I Let X C anda : C — C, is defined by (n) = n. Definew: C — C by

w(n) = 2=¢; for somek > 0,
then
Ker (i) = span{er, €,....€, 1,...}
Ker (1) ={0}

and range of.,,is a closed set.

Theorem 2.2. Letu,, € C (L, C),whereu,, is the multiplication operator, and w X — C, such
that we w (X), thenu,, is an isometry iff f w : X— X is surjective, angd = 5 o w.
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Proof. Following the definition of isometry, given in section 1 of this article, we asstivat,,
is and isometry. Then fdC > 1,

d(/ffwcew ) O) = d(cew ) O>’ (26)

supg|C1PY) 1Y e w(X)) = |CPH), (2.7)

wherew(X) is a finite set for asserting,, to be a bounded operator, Thus, we can fgd w(X),
such that
CP(X0) = sup{|0|ﬁ<Y> Y € w(X)} . (2.8)

Form (2.7) and (2.8), we obtain
B(X) = pw(X). (2.9)

But asX is arbitrary,8 = 8 o w; while if w is not surjective, them,, e, = 0 for X ¢ X/w (X).
This justifies thafu,, has a non-trivial kernel. This, incidentally, is a contradiction to our initial
assumption, thaty,, is an isometry. Which straightway proves the first part of theorem, the
necessary condition.

Conversily, if the given condition of the theorem are satisfied, then

a1l = sup{ £ (w(@))" e € X}

:sup{ If(w@)P@ 2 e X}

= I£1l, (2.10)
which proves that.,, is an isometry, and thereby the theorem is completely asserted.

Following example may be of interest.
Let X =[0,1] and let us define
C:X—2Z,
by
Cla) = { n X = m/ne (0,1),(m,n)=0
0; otherwise

andw : X — X by w(X) = (1-X).

If Xis irrational, then clearly (T(X)=1=5 (X).

Again , if X=0or 1, then3 (W(0)= (1) =3 (w(1))= 5 (0) =1.
Further, ifX = m/nand (n,n =1, then

m m 1
(@) =2G) =%
n n n
thus, = 8 ow alsow is surjective. Thug,, is an isometry i.e. isometric multiplication operator.

Theorem 2.3. If X is a metric space ang,, be a subspace of X, if,, € C (L (x, C)), ., being
the multiplication operator, thep,, is compact subspace of Xif, has closed range.

In order to prove this theorem, we require to prove following lemma.
Lemma:

Let 1, be a non-empty subset of a metric spa¥g( andz,, be its closure, then
() X e @, , iff there is a sequencgX,, } in  such thatX,, —X.

(ii) w is closed, iffX,, € py, , X, =X implies thatX € p,, .

Proof. (i) LetXem,.

If X € pw, we have sequendeX, X, ..} while if X € p,, , itis a point of accumulation qf .
Hence for eacm = 1,2,. .., the balB (x ;1/n) contains arX,, € i, andX,—X, becauseY,,—0
asn — oo.
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Conversely, if k,) is in 4 andX,,— X thenx € u or every nbd. ok contains poink,, # X is a
point of accumulation of. . HenceX € 1,,,, by definition of closure.
(i) wis closed, iff u,, =7, SO this follows from (i).

Proof of Main Theorem:
Let 1, is a complete subspace Xfthen we prove that,, has closed range. Let also thit,
be a measureable subsetSfvhere

S=x¢e X;w(z)#0. (2.12)

Then, fore > 0, such that

[Iw()g |1> € [Igll
for i - almost allx € E and for allg € C, for a measurable s&,, andX with 0 < (u(E,)) < 1

and a vectoe, < C, such that
1
[lo(@)eall < = leall,

We let

o0

w.rE,e"
g= Z _— . (2.12)

o llenl[Pv/i(En)

Then
Sl =3 [ lnenlan

nlE

=1
< § Zp < OO (2.13)
n=1

1 P

For
f= Z wiBKer 4 _012,..

lex||Py/1(Er)
it IIP > / [w() £ ()| Pdpu(z)

> [If@IPdnte). (2.14)
Now supposey., /™) — g for some sequence
{f™} < L(X,0).
Clearly,
i = N1 > [ 15 = £

Now, sequencéf(™} is a Cauchy sequence in(X,C), where

Hence, there existse L (X,C), such that
[|f (®) —f||— 0,asn— oo,
so that,

wa(n) — waa
and as such,
9=t f
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This shows that:,, has closed range. Then we prove thatis a complete subspace.df is a
Cauchy sequence jn,, thenz,, to z € X, which implies thak € 7z,, (by (lemma)) and € .,
because:, =7,

Hencex, converges in.,,, and so it proves that,, is a complete subspace Xf
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