MULTIPLICATIVE SEMIDERIVATIONS ON IDEALS OF SEMIPRIME RINGS

Öznur Öölbaşı and Önur Öğırtıcı

Communicated by M. Ashraf

MSC 2010 Classifications: $16 \mathrm{~W} 25,16 \mathrm{U} 80$.
Keywords and phrases: semiprime ring, derivation, semiderivation, multiplicative semiderivation.

Abstract

Let R be a semiprime ring and I is a nonzero ideal of R. A mapping $d: R \rightarrow R$ is called a multiplicative semiderivation if there exists a function $g: R \rightarrow R$ such that (i) $d(x y)=$ $d(x) g(y)+x d(y)=d(x) y+g(x) d(y)$ and (ii) $d(g(x))=g(d(x))$ hold for all $x, y \in R$. In the present paper, we shall prove that $[x, d(x)]=0$, for all $x \in I$ if any one of the following holds: i) $d([x, y])=0$, ii) $d(x o y)=0$, iii) $d(x y) \pm x y=0$, iv) $d(x y) \pm y x=0$, v) $d(x) d(y) \pm x y=0$, vi) $d(x) d(y) \pm y x=0$, vii) $d(x y)= \pm d(x) d(y)$, viii) $d(x y)= \pm d(y) d(x)$, for all $x, y \in I$.

1 Introduction

Let R will be an associative ring with center Z. For any $x, y \in R$ the symbol $[x, y]$ represents the Lie commutator $x y-y x$ and the Jordan product $x o y=x y+y x$. Recall that a ring R is prime if for $x, y \in R, x R y=0$ implies either $x=0$ or $y=0$ and R is semiprime if for $x \in R, x R x=0$ implies $x=0$. It is clear that every prime ring is semiprime ring.

The study of derivations in prime rings was initiated by E. C. Posner in [11]. An additive mapping $d: R \rightarrow R$ is called a derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. In [3], J. Bergen has introduced the notion of semiderivation of a ring R which extends the notion of derivations of a ring R. An additive mapping $d: R \rightarrow R$ is called a semiderivation if there exists a function $g: R \rightarrow R$ such that (i) $d(x y)=d(x) g(y)+x d(y)=d(x) y+g(x) d(y)$ and (ii) $d(g(x))=g(d(x))$ hold for all $x, y \in R$. In case g is an identity map of R, then all semiderivations associated with g are merely ordinary derivations. On the other hand, if g is a homomorphism of R such that $g \neq 1$, then $f=g-1$ is a semiderivation which is not a derivation. In case R is prime and $d \neq 0$, it has been shown by Chang [4] that g must necessarily be a ring endomorphism.

Many authors have studied commutativity of prime and semiprime rings admitting derivations, generalized derivations and semiderivations which satisfy appropriate algebraic conditions on suitable subsets of the rings. In [5], the notion of multiplicative derivation was introduced by Daif motivated by Martindale in [10]. $d: R \rightarrow R$ is called a multiplicative derivation if $d(x y)=d(x) y+x d(y)$ holds for all $x, y \in R$. These maps are not additive. In [9], Goldman and Semrl gave the complete description of these maps. We have $R=C[0,1]$, the ring of all continuous (real or complex valued) functions and define a mapping $d: R \rightarrow R$ such as

$$
d(f)(x)=\left\{\begin{array}{cc}
f(x) \log |f(x)|, & f(x) \neq 0 \\
0, & \text { otherwise }
\end{array}\right\}
$$

It is clear that d is multiplicative derivation, but d is not additive. Recently, some well-known results concerning semiprime rings have been proved for multiplicative derivations.

Inspired by the definition multiplicative derivation, we can define the notion of multiplicative semiderivation such as: A mapping $d: R \rightarrow R$ is called a multiplicative semiderivation if there exists a function $g: R \rightarrow R$ such that (i) $d(x y)=d(x) g(y)+x d(y)=d(x) y+g(x) d(y)$ and (ii) $d(g(x))=g(d(x))$ hold for all $x, y \in R$. Hence, one may observe that the concept of multiplicative semiderivations includes the concept of derivations and the left multipliers (i.e., $d(x y)=d(x) y$ for all $x, y \in R)$. So, it should be interesting to extend some results concerning
these notions to multiplicative semiderivations. Every derivation is a multiplicative semiderivation. But the converse is not ture in general.

In [6], Daif and Bell proved that R is semiprime ring, U is a nonzero ideal of R and d is a derivation of R such that $d([x, y])= \pm[x, y]$, for all $x, y \in U$, then R contains a nonzero central ideal. On the other hand, in [1], Ashraf and Rehman showed that R is prime ring with a nonzero ideal U of R and d is a derivation of R such that $d(x y) \pm x y \in Z$, for all $x, y \in U$, then R is commutative. Also, Bell and Kappe proved that a derivation d of a prime ring R acts as homomorphism or anti-homomorphism on a nonzero right ideal of R, then $d=0$ on R in [2]. Motivated by these works, we consider similar situations for multiplicative semiderivation on nonzero ideal of semiprime ring R.

The material in this work is a part of first author's Doctoral Thesis which is supervised by Prof. Dr. Öznur Gölbaşı.

2 Results

Throughout the paper, R will be semiprime ring and I be a nonzero ideal of R and d a multiplicative semiderivation of R with associated a nonzero epimorphism g of R.

Also, we will make some extensive use of the basic commutator identities:

$$
\begin{aligned}
& {[x, y z]=y[x, z]+[x, y] z } \\
& {[x y, z]=[x, z] y+x[y, z] } \\
x o(y z)= & (x o y) z-y[x, z]=y(x o z)+[x, y] z \\
(x y) o z= & x(y o z)-[x, z] y=(x o z) y+x[y, z] .
\end{aligned}
$$

Lemma 2.1. [12, Lemma 2.1]Let R be a semiprime ring, I be a nonzero ideal of R and $a \in R$ such that axa $=0$, for all $x \in I$, then $a=0$.

Theorem 2.2. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d([x, y])=0$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. By the hypothesis, we have

$$
\begin{equation*}
d([x, y])=0, \text { for all } x, y \in I \tag{2.1}
\end{equation*}
$$

Replacing y by $y x$ in (2.1) and using this, we get

$$
\begin{equation*}
[x, y] d(x)=0, \text { for all } x, y \in I \tag{2.2}
\end{equation*}
$$

Writting $r y, r \in R$ for y in (2.2) and using (2.2), we obtain that

$$
\begin{equation*}
[x, r] y d(x)=0, \text { for all } x, y \in I, r \in R \tag{2.3}
\end{equation*}
$$

Taking $y x$ by y in (2.3), we have

$$
[x, r] y x d(x)=0, \text { for all } x, y \in I, r \in R
$$

Right multipliying (2.3) with x, we get

$$
[x, r] y d(x) x=0, \text { for all } x, y \in I, r \in R
$$

Subtracting the last two equations, we arrive at

$$
[x, r] y[x, d(x)]=0, \text { for all } x, y \in I, r \in R
$$

Replacing $d(x)$ by r in this equation, we have

$$
[x, d(x)] y[x, d(x)]=0, \text { for all } x, y \in I
$$

By Lemma 1, we get $[x, d(x)]=0$, for all $x \in I$. The proof is completed.

Theorem 2.3. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x o y)=0$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. By our hypothesis, we get

$$
\begin{equation*}
d(x o y)=0, \text { for all } x, y \in I \tag{2.4}
\end{equation*}
$$

Writting $y x$ for y in (2.4) and using (2.4), we obtain that

$$
\begin{equation*}
(x o y) d(x)=0, \text { for all } x, y \in I \tag{2.5}
\end{equation*}
$$

Substituting $r y, r \in R$ for y in this equation and using this, we arrive at

$$
[x, r] y d(x)=0, \text { for all } x, y \in I, r \in R
$$

Using the same arguments after (2.3) in the proof of Theorem 1, we get the required result.
Theorem 2.4. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x y) \pm x y=0$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. If $d=0$, then we get $x y=0$, for all $x, y \in I$, and so $x \in I \cap \operatorname{ann}(I)=(0)$, for all $x \in I$. Since I is a nonzero ideal of R, we assume that $d \neq 0$.

By our hypothesis, we get

$$
\begin{equation*}
d(x y) \pm x y=0, \text { for all } x, y \in I \tag{2.6}
\end{equation*}
$$

Replacing y by $y z$ in (2.6), we get

$$
\begin{equation*}
(d(x y) \pm x y) z+g(x y) d(z)=0 \tag{2.7}
\end{equation*}
$$

and so

$$
g(x y) d(z)=0
$$

That is

$$
\begin{equation*}
g(x) g(y) d(z)=0, \text { for all } x, y \in I \tag{2.8}
\end{equation*}
$$

Taking $d(r) y, r \in R$ instead of y in this equation and using $d g=g d$, it reduces to

$$
g(x) d(g(r)) g(y) d(z)=0
$$

Since g is an epimorphism of R, we have

$$
g(x) d(r) g(y) d(z)=0, \text { for all } x, y, z \in I
$$

This implies that

$$
g(x) d(z) g(y) d(z)=0, \text { for all } x, y, z \in I
$$

Writting $t y, t \in R$ for y in this equation and using g is surjective, we obtain that

$$
g(x) d(z) R g(y) d(z)=(0), \text { for all } x, y, z \in I
$$

In particulary, we can write

$$
g(x) d(z) R g(x) d(z)=(0), \text { for all } x, z \in I, r \in R
$$

and so

$$
g(x) d(z)=0, \text { for all } x, z \in I
$$

Using this in the following equation, we have $d(x z)=d(x) z+g(x) d(z)=d(x) z$, and so

$$
d(x z)=d(x) z, \text { for all } x, z \in I
$$

Returning our hypothesis and using this, we find that

$$
\begin{equation*}
(d(x) \pm x) y=0, \text { for all } x, y \in I \tag{2.9}
\end{equation*}
$$

and so

$$
y(d(x) \pm x) R y(d(x) \pm x)=(0), \text { for all } x, y \in I
$$

Since R is semiprime ring, we get

$$
\begin{equation*}
y(d(x) \pm x)=0, \text { for all } x, y \in I \tag{2.10}
\end{equation*}
$$

Comparing (2.9) and (2.10), we arrive at

$$
[(d(x) \pm x), y]=0
$$

and so

$$
[(d(x) \pm x), x]=0
$$

It reduces to

$$
[d(x), x]=0, \text { for all } x \in I
$$

This completes the proof.
Theorem 2.5. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x y) \pm y x=0$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. If $d=0$, then we get $y x=0$, for all $x, y \in I$ and so $x \in I \cap \operatorname{ann}(I)=(0)$, for all $x \in I$. Since I is a nonzero ideal of R, we assume that $d \neq 0$.

Assume that

$$
\begin{equation*}
d(x y)+y x=0, \text { for all } x, y \in I \tag{2.11}
\end{equation*}
$$

Taking $y z$ instead of y in this equation, we have

$$
d(x y) z+g(x y) d(z)+y z x=0, \text { for all } x, y, z \in I
$$

For all $x, y, z \in I$, we can write this equation

$$
d(x y) z+g(x y) d(z)+y z x+y x z-y x z=0, \text { for all } x, y, z \in I
$$

and so

$$
(d(x y)+y x) z+g(x y) d(z)+y[z, x]=0, \text { for all } x, y, z \in I
$$

Using the hypothesis, we arrive at

$$
\begin{equation*}
g(x y) d(z)+y[x, z]=0, \text { for all } x, y, z \in I \tag{2.12}
\end{equation*}
$$

Replacing z by x in (2.12) and using this, we get

$$
g(x y) d(x)=0, \text { for all } x, y \in I
$$

Writing $d(t) r y, t, r \in R$ for y in this equation and using g is surjective, we obtain that

$$
g(x) g(d(t)) R g(y) d(x)=(0)
$$

Using $d g=g d$, we have

$$
g(x) d(g(t)) R g(y) d(x)=(0)
$$

We can write this equation using g is surjective such as

$$
g(x) d(r) R g(y) d(x)=(0)
$$

and so

$$
g(x) d(x) R g(x) d(x)=(0)
$$

Hence we find that

$$
g(x) d(x)=0, \text { for all } x \in I
$$

Now, let return (2.12). Writing z by y in this equation and using $g(z) d(z)=0$, we arrive at

$$
\begin{equation*}
z[x, z]=0, \text { for all } x, z \in I \tag{2.13}
\end{equation*}
$$

Replacing x by $y x$ in this equation and using this, we get

$$
z y[x, z]=0, \text { for all } x, y, z \in I
$$

and so

$$
\begin{equation*}
z y w[x, z]=0, \text { for all } x, y, z, w \in I \tag{2.14}
\end{equation*}
$$

Similarly, (2.13) gives that

$$
\begin{equation*}
y z w[x, z]=0, \text { for all } x, y, z, w \in I \tag{2.15}
\end{equation*}
$$

Subtracting (2.15) from (2.14), we arrive at

$$
[y, z] w[x, z]=0, \text { for all } x, y, z, w \in I
$$

and so

$$
[x, z] I[x, z]=(0), \text { for all } x, z \in I
$$

By Lemma 1, we get

$$
[x, z]=(0), \text { for all } x, z \in I
$$

Replacing z by $d(x) z$ in this equation and using this, we get

$$
[x, d(x)] z=0, \text { for all } x, z \in I
$$

and so

$$
[x, d(x)] I[x, d(x)]=(0), \text { for all } x \in I
$$

Again using Lemma 1, we get the required result.
Now, we get

$$
d(x y)-y x=0, \text { for all } x, y \in I
$$

For all $x, y, z \in I$, we can write

$$
d(x(y z))-(y z) x=0, \text { for all } x, y, z \in I
$$

and

$$
d((x y) z)-z(x y)=0, \text { for all } x, y, z \in I
$$

Subtracting these two equations, we find that

$$
z x y-y z x=0, \text { for all } x, y, z \in I
$$

That is $[y, z x]=0$, for all $x, y, z \in I$. Writing z by y in this equation and using this equation, we have

$$
z[x, z]=0, \text { for all } x, z \in I
$$

This is the same as (2.13) above. Using the same arguments after this equation, we get the required result.

Theorem 2.6. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x) d(y) \pm x y=0$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. If $d=0$, then we get $x y=0$, for all $x, y \in I$. We had done in the proof of Theorem 3 . So, we have $d \neq 0$.

By our hypothesis, we get

$$
\begin{equation*}
d(x) d(y) \pm x y=0, \text { for all } x, y \in I \tag{2.16}
\end{equation*}
$$

Replacing y by $y z$ in this equation and using the hypothesis, we get

$$
d(x) d(y) z+d(x) g(y) d(z) \pm x y z=0
$$

and so

$$
d(x) g(y) d(z)=0, \text { for all } x, y, z \in I
$$

Taking $r y, r \in R$ instead of y in this equation and using g is an epimorphism, we have

$$
d(x) R g(y) d(z)=(0)
$$

and so

$$
g(y) d(x) R g(y) d(x)=(0), \text { for all } x, y \in I
$$

By the semiprimeness of R, we obtain that

$$
\begin{equation*}
g(y) d(x)=0, \text { for all } x, y \in I \tag{2.17}
\end{equation*}
$$

Hence we get $d(x y)=d(x) y+g(x) d(y)=d(x) y$, and so

$$
\begin{equation*}
d(x y)=d(x) y, \text { for all } x, y \in I \tag{2.18}
\end{equation*}
$$

On the other hand, right multiplying our hypothesis with y, we get

$$
\begin{equation*}
d(x) d(y) y \pm x y^{2}=0, \text { for all } x, y \in I \tag{2.19}
\end{equation*}
$$

Now, writing $x y$ in place of x in the hypothesis and using (2.18), we find that

$$
\begin{equation*}
d(x) y d(y) \pm x y^{2}=0, \text { for all } x, y \in I \tag{2.20}
\end{equation*}
$$

Subtracting (2.19) from (2.20), we obtain that

$$
d(x)[d(y), y]=0, \text { for all } x, y \in I
$$

Replacing x by $x z$ in this equation and using this, we get

$$
d(x) z[d(y), y]=0, \text { for all } x, y, z \in I
$$

It follows that

$$
[d(y), y] z[d(y), y]=0, \text { for all } x, y, z \in I
$$

By Lemma 1, we get $[d(y), y]=0$, for all $y \in I$.
Theorem 2.7. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x) d(y) \pm y x=0$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.
Proof. Using the same arguments begining of the proof of Theorem 3, we must have $d \neq 0$.
By our hypothesis, we get

$$
\begin{equation*}
d(x) d(y) \pm y x=0, \text { for all } x, y \in I \tag{2.21}
\end{equation*}
$$

Replacing y by $y x$ in this equation and using this, we get

$$
d(x) g(y) d(x)=0, \text { for all } x, y \in I
$$

Writing $r y, r \in R$ instead of y in this equation and using g is an epimorphism, we have

$$
d(x) R g(y) d(x)=(0)
$$

In particulary, we get

$$
g(y) d(x) R g(y) d(x)=(0)
$$

and so

$$
g(y) d(x)=0, \text { for all } x, y \in I
$$

Hence we have $d(x y)=d(x) y+g(x) d(y)=d(x) y$, and so $d(x y)=d(x) y$, for all $x, y \in I$.
Now, right multiplying our hypothesis with y, we get

$$
d(x) d(y) y \pm y x y=0, \text { for all } x, y \in I
$$

Taking $x y$ in place of x in the hypothesis and using $d(x y)=d(x) y$, we have

$$
d(x) y d(y) \pm y x y=0, \text { for all } x, y \in I
$$

Comparing the last two equations, we obtain that

$$
d(x)[d(y), y]=0, \text { for all } x, y \in I
$$

Applying the same arguments as used the end of the proof of Theorem 5, we arrive at $[x, d(x)]=0$, for all $x \in I$.

Theorem 2.8. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x y)= \pm d(x) d(y)$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. Assume that

$$
\begin{equation*}
d(x y)=d(x) y+g(x) d(y)= \pm d(x) d(y), \text { for all } x, y \in I \tag{2.22}
\end{equation*}
$$

Replacing y by $y z$ in (2.22) and using the hypothesis, we have

$$
d(x) y z+g(x) d(y z)= \pm d(x y) d(z)
$$

Since d is multiplicative semiderivation of R, we get

$$
d(x) y z+g(x) d(y z)= \pm(d(x) y d(z)+g(x) d(y) d(z))
$$

and so

$$
d(x) y z+g(x) d(y z)= \pm d(x) y d(z)+g(x) d(y z)
$$

That is

$$
\begin{equation*}
d(x) y(z \mp d(z))=0, \text { for all } x, y, z \in I \tag{2.23}
\end{equation*}
$$

It follows that

$$
\begin{equation*}
d(x) y d(w)(z \mp d(z))=0, \text { for all } x, y, z, w \in I \tag{2.24}
\end{equation*}
$$

Returning (2.22), we can write

$$
d(x) y+g(x) d(y)= \pm d(x) d(y)
$$

That is

$$
\begin{equation*}
d(x)(y \mp d(y))=-g(x) d(y), \text { for all } x, y, z \in I \tag{2.25}
\end{equation*}
$$

We can write from (2.24) using (2.25)

$$
d(x) y g(w) d(z)=0
$$

and so

$$
g(w) d(x) y R g(w) d(x) y=(0), \text { for all } x, y, w \in I
$$

Since R is semiprime, we conclude that $g(w) d(x) I=0$, for all $x, w \in I$.
Now, right multiplying (2.25) with y and using $g(x) d(y) y=0$, we get

$$
d(x)(y \mp d(y)) y=0, \text { for all } x, y \in I
$$

By (2.23), we can write

$$
d(x) y(y \mp d(y))=0, \text { for all } x, y, z \in I
$$

Subtracting the last two equations, we get

$$
\begin{equation*}
d(x)[d(y), y]=0, \text { for all } x, y \in I \tag{2.26}
\end{equation*}
$$

Replacing x by $x z$ in (2.26) and using this, we obtain

$$
\begin{equation*}
d(x) z[d(y), y]=0, \text { for all } x, y \in I \tag{2.27}
\end{equation*}
$$

which yields that

$$
x d(x) z[d(y), y]=0, \text { for all } x, y \in I
$$

Taking $x z$ instead of z in (2.27), we get

$$
d(x) x z[d(y), y]=0, \text { for all } x, y \in I
$$

Subtracting the last two equations, we find that

$$
[d(x), x] z[d(y), y]=(0), \text { for all } x, y, z \in I
$$

In particular,

$$
[d(x), x] z[d(x), x]=(0), \text { for all } x, z \in I
$$

By Lemma 1, we have $[d(x), x]=(0)$, for all $x \in I$.
Theorem 2.9. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative semiderivation associated with a nonzero epimorphism g of R. If $d(x y)= \pm d(x) d(y)$, for all $x, y \in I$, then $[x, d(x)]=0$, for all $x \in I$.

Proof. We have

$$
\begin{equation*}
d(x y)=d(x) y+g(x) d(y)= \pm d(y) d(x), \text { for all } x, y \in I \tag{2.28}
\end{equation*}
$$

Taking $x y$ in place of y in this equation, we get

$$
d(x) x y+g(x) d(x y)= \pm d(x y) d(x)
$$

Since d is a multiplicative semiderivation of R, we have

$$
d(x) x y+g(x) d(x y)= \pm d(x) y d(x) \pm g(x) d(y) d(x)
$$

Using the hypothesis, we arrive at

$$
\begin{equation*}
d(x) x y=d(x) y d(x), \text { for all } x, y \in I \tag{2.29}
\end{equation*}
$$

Replacing y by $y x$ in (2.29) and using this, we obtain

$$
\begin{equation*}
d(x) y[d(x), x]=0, \text { for all } x, y \in I \tag{2.30}
\end{equation*}
$$

Left multiplying this equation by x, we get

$$
x d(x) y[d(x), x]=0, \text { for all } x, y \in I
$$

Writing y by $x y$ in (2.30), we have

$$
d(x) x y[d(x), x]=0, \text { for all } x, y \in I
$$

Subtracting the last two equations, we find that

$$
[d(x), x] y[d(x), x]=0, \text { for all } x, y \in I
$$

By Lemma 1, we have $[d(x), x]=(0)$, for all $x \in I$. This completes the proof.

3 Acknowledgment

This work is supported by the Scientific Research Project Fund of Cumhuriyet University under the project number F-565.

References

[1] M. Ashraf, N. Rehman, On derivations and commutativity in prime rings, East-West J. Math., 3(1), 87-91, (2001).
[2] H. E. Bell, and L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta math. Hungarica, 53, 339-346, (1989).
[3] J. Bergen, Derivations in prime rings, Canad. Math. Bull., 26, 267-270, (1983).
[4] J. C. Chang, On semiderivations of prime rings, Chinese J. Math., 12, 255-262, (1984).
[5] M. N. Daif, When is a multiplicative derivation additive, Int. J. Math. Math. Sci., 14(3), 615-618, (1991).
[6] M. N. Daif, H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci., 15(1), 205206, (1992).
[7] M. N. Daif, M. S. Tamman El-Sayiad, Multiplicative generalized derivation which are additive, East-West J. Math., 9(1), 31-37, (1997).
[8] B. Dhara, S. Ali, On multiplicative (generalized) derivation in prime and semiprime rings, Aequat. Math., 86, 65-79, (2013).
[9] H. Goldman, P. Semrl, Multiplicative derivations on $C(X)$, Monatsh Math., 121(3), 189-197, (1969).
[10] W. S. Martindale III, When are multiplicative maps additive, Proc. Amer. Math. Soc., 21, 695-698, (1969).
[11] E. C. Posner, Derivations in prime rings, Proc Amer. Math. Soc., 8, 1093-1100, (1957).
[12] M. S. Samman and A. B. Thaheem, Derivations on semiprime rings, International Journal of Pure and Applied Math., (4), 465-472, (2003).

Author information

Öznur Öölbaşı and Önur Öğırtıcı, Öumhuriyet Öniversity, Öaculty Öf Science, Öepartment Öf Öathematics, Sivas, TURKEY.
E-mail: ogolbasi@cumhuriyet.edu.tr

Received: December 2, 2018.
Accepted: May 23, 2019.

