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Abstract Let R be a semiprime ring and I is a nonzero ideal of R. A mapping d : R→ R is
called a multiplicative semiderivation if there exists a function g : R → R such that (i) d(xy) =
d(x)g(y) + xd(y) = d(x)y + g(x)d(y) and (ii) d(g(x)) = g(d(x)) hold for all x, y ∈ R. In the
present paper, we shall prove that [x, d(x)] = 0, for all x ∈ I if any one of the following holds:
i) d([x, y]) = 0, ii) d(xoy) = 0, iii) d(xy)± xy = 0, iv) d(xy)± yx = 0, v) d(x)d(y)± xy = 0,
vi) d(x)d(y)± yx = 0, vii) d(xy) = ±d(x)d(y), viii) d(xy) = ±d(y)d(x), for all x, y ∈ I.

1 Introduction

Let R will be an associative ring with center Z. For any x, y ∈ R the symbol [x, y] represents the
Lie commutator xy − yx and the Jordan product xoy = xy+ yx. Recall that a ring R is prime if
for x, y ∈ R, xRy = 0 implies either x = 0 or y = 0 and R is semiprime if for x ∈ R, xRx = 0
implies x = 0. It is clear that every prime ring is semiprime ring.

The study of derivations in prime rings was initiated by E. C. Posner in [11]. An additive
mapping d : R → R is called a derivation if d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. In
[3], J. Bergen has introduced the notion of semiderivation of a ring R which extends the notion
of derivations of a ring R. An additive mapping d : R → R is called a semiderivation if there
exists a function g : R → R such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y)
and (ii) d(g(x)) = g(d(x)) hold for all x, y ∈ R. In case g is an identity map of R, then all
semiderivations associated with g are merely ordinary derivations. On the other hand, if g is
a homomorphism of R such that g 6= 1, then f = g − 1 is a semiderivation which is not a
derivation. In case R is prime and d 6= 0, it has been shown by Chang [4] that g must necessarily
be a ring endomorphism.

Many authors have studied commutativity of prime and semiprime rings admitting deriva-
tions, generalized derivations and semiderivations which satisfy appropriate algebraic conditions
on suitable subsets of the rings. In [5], the notion of multiplicative derivation was introduced
by Daif motivated by Martindale in [10]. d : R → R is called a multiplicative derivation if
d(xy) = d(x)y + xd(y) holds for all x, y ∈ R. These maps are not additive. In [9], Goldman
and Semrl gave the complete description of these maps. We have R = C[0, 1], the ring of all
continuous (real or complex valued) functions and define a mapping d : R→ R such as

d(f)(x) =

{
f(x) log |f(x)| , f(x) 6= 0

0, otherwise

}
.

It is clear that d is multiplicative derivation, but d is not additive. Recently, some well-known
results concerning semiprime rings have been proved for multiplicative derivations.

Inspired by the definition multiplicative derivation, we can define the notion of multiplica-
tive semiderivation such as: A mapping d : R → R is called a multiplicative semiderivation if
there exists a function g : R → R such that (i) d(xy) = d(x)g(y) + xd(y) = d(x)y + g(x)d(y)
and (ii) d(g(x)) = g(d(x)) hold for all x, y ∈ R. Hence, one may observe that the concept of
multiplicative semiderivations includes the concept of derivations and the left multipliers (i.e.,
d(xy) = d(x)y for all x, y ∈ R). So, it should be interesting to extend some results concerning
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these notions to multiplicative semiderivations. Every derivation is a multiplicative semideriva-
tion. But the converse is not ture in general.

In [6], Daif and Bell proved that R is semiprime ring, U is a nonzero ideal of R and d is
a derivation of R such that d([x, y]) = ±[x, y], for all x, y ∈ U, then R contains a nonzero
central ideal. On the other hand, in [1], Ashraf and Rehman showed that R is prime ring with
a nonzero ideal U of R and d is a derivation of R such that d(xy) ± xy ∈ Z, for all x, y ∈ U,
then R is commutative. Also, Bell and Kappe proved that a derivation d of a prime ring R acts
as homomorphism or anti-homomorphism on a nonzero right ideal of R, then d = 0 on R in
[2]. Motivated by these works, we consider similar situations for multiplicative semiderivation
on nonzero ideal of semiprime ring R.

The material in this work is a part of first author’s Doctoral Thesis which is supervised by
Prof. Dr. Öznur Gölbaşı.

2 Results

Throughout the paper, R will be semiprime ring and I be a nonzero ideal of R and d a multi-
plicative semiderivation of R with associated a nonzero epimorphism g of R.

Also, we will make some extensive use of the basic commutator identities:

[x, yz] = y[x, z] + [x, y]z
[xy, z] = [x, z]y + x[y, z]

xo(yz) = (xoy)z − y[x, z] = y(xoz) + [x, y]z
(xy)oz = x(yoz)− [x, z]y = (xoz)y + x[y, z].

Lemma 2.1. [12, Lemma 2.1]Let R be a semiprime ring, I be a nonzero ideal of R and a ∈ R
such that axa = 0, for all x ∈ I, then a = 0.

Theorem 2.2. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d([x, y]) = 0, for all x, y ∈ I,
then [x, d(x)] = 0, for all x ∈ I.

Proof. By the hypothesis, we have

d([x, y]) = 0, for all x, y ∈ I. (2.1)

Replacing y by yx in (2.1) and using this, we get

[x, y]d(x) = 0, for all x, y ∈ I. (2.2)

Writting ry, r ∈ R for y in (2.2) and using (2.2), we obtain that

[x, r]yd(x) = 0, for all x, y ∈ I, r ∈ R. (2.3)

Taking yx by y in (2.3), we have

[x, r]yxd(x) = 0, for all x, y ∈ I, r ∈ R.

Right multipliying (2.3) with x, we get

[x, r]yd(x)x = 0, for all x, y ∈ I, r ∈ R.

Subtracting the last two equations, we arrive at

[x, r]y[x, d(x)] = 0, for all x, y ∈ I, r ∈ R.

Replacing d(x) by r in this equation, we have

[x, d(x)]y[x, d(x)] = 0, for all x, y ∈ I.

By Lemma 1, we get [x, d(x)] = 0, for all x ∈ I. The proof is completed.
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Theorem 2.3. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(xoy) = 0, for all x, y ∈ I,
then [x, d(x)] = 0, for all x ∈ I.

Proof. By our hypothesis, we get

d(xoy) = 0, for all x, y ∈ I. (2.4)

Writting yx for y in (2.4) and using (2.4), we obtain that

(xoy)d(x) = 0, for all x, y ∈ I. (2.5)

Substituting ry, r ∈ R for y in this equation and using this, we arrive at

[x, r]yd(x) = 0, for all x, y ∈ I, r ∈ R.

Using the same arguments after (2.3) in the proof of Theorem 1, we get the required result.

Theorem 2.4. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(xy)±xy = 0, for all x, y ∈ I,
then [x, d(x)] = 0, for all x ∈ I.

Proof. If d = 0, then we get xy = 0, for all x, y ∈ I, and so x ∈ I ∩ ann(I) = (0), for all x ∈ I.
Since I is a nonzero ideal of R, we assume that d 6= 0.

By our hypothesis, we get

d(xy)± xy = 0, for all x, y ∈ I. (2.6)

Replacing y by yz in (2.6), we get

(d(xy)± xy)z + g(xy)d(z) = 0, (2.7)

and so
g(xy)d(z) = 0.

That is
g(x)g(y)d(z) = 0, for all x, y ∈ I. (2.8)

Taking d(r)y, r ∈ R instead of y in this equation and using dg = gd, it reduces to

g(x)d(g(r))g(y)d(z) = 0.

Since g is an epimorphism of R, we have

g(x)d(r)g(y)d(z) = 0, for all x, y, z ∈ I.

This implies that
g(x)d(z)g(y)d(z) = 0, for all x, y, z ∈ I.

Writting ty, t ∈ R for y in this equation and using g is surjective, we obtain that

g(x)d(z)Rg(y)d(z) = (0), for all x, y, z ∈ I.

In particulary, we can write

g(x)d(z)Rg(x)d(z) = (0), for all x, z ∈ I, r ∈ R

and so
g(x)d(z) = 0, for all x, z ∈ I.

Using this in the following equation, we have d(xz) = d(x)z + g(x)d(z) = d(x)z, and so

d(xz) = d(x)z, for all x, z ∈ I.
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Returning our hypothesis and using this, we find that

(d(x)± x)y = 0, for all x, y ∈ I. (2.9)

and so
y(d(x)± x)Ry(d(x)± x) = (0), for all x, y ∈ I.

Since R is semiprime ring, we get

y(d(x)± x) = 0, for all x, y ∈ I. (2.10)

Comparing (2.9) and (2.10), we arrive at

[(d(x)± x), y] = 0,

and so
[(d(x)± x), x] = 0.

It reduces to
[d(x), x] = 0, for all x ∈ I.

This completes the proof.

Theorem 2.5. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(xy)±yx = 0, for all x, y ∈ I,
then [x, d(x)] = 0, for all x ∈ I.

Proof. If d = 0, then we get yx = 0, for all x, y ∈ I and so x ∈ I ∩ ann(I) = (0), for all x ∈ I.
Since I is a nonzero ideal of R, we assume that d 6= 0.

Assume that

d(xy) + yx = 0, for all x, y ∈ I. (2.11)

Taking yz instead of y in this equation, we have

d(xy)z + g(xy)d(z) + yzx = 0, for all x, y, z ∈ I.

For all x, y, z ∈ I, we can write this equation

d(xy)z + g(xy)d(z) + yzx+ yxz − yxz = 0, for all x, y, z ∈ I

and so
(d(xy) + yx)z + g(xy)d(z) + y[z, x] = 0, for all x, y, z ∈ I.

Using the hypothesis, we arrive at

g(xy)d(z) + y[x, z] = 0, for all x, y, z ∈ I. (2.12)

Replacing z by x in (2.12) and using this, we get

g(xy)d(x) = 0, for all x, y ∈ I.

Writing d(t)ry, t, r ∈ R for y in this equation and using g is surjective, we obtain that

g(x)g(d(t))Rg(y)d(x) = (0).

Using dg = gd, we have
g(x)d(g(t))Rg(y)d(x) = (0).

We can write this equation using g is surjective such as

g(x)d(r)Rg(y)d(x) = (0),

and so
g(x)d(x)Rg(x)d(x) = (0).
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Hence we find that
g(x)d(x) = 0, for all x ∈ I.

Now, let return (2.12). Writing z by y in this equation and using g(z)d(z) = 0, we arrive at

z[x, z] = 0, for all x, z ∈ I. (2.13)

Replacing x by yx in this equation and using this, we get

zy[x, z] = 0, for all x, y, z ∈ I,

and so
zyw[x, z] = 0, for all x, y, z, w ∈ I. (2.14)

Similarly, (2.13) gives that

yzw[x, z] = 0, for all x, y, z, w ∈ I. (2.15)

Subtracting (2.15) from (2.14), we arrive at

[y, z]w[x, z] = 0, for all x, y, z, w ∈ I,

and so
[x, z]I[x, z] = (0), for all x, z ∈ I.

By Lemma 1, we get
[x, z] = (0), for all x, z ∈ I

Replacing z by d(x)z in this equation and using this, we get

[x, d(x)]z = 0, for all x, z ∈ I

and so
[x, d(x)]I[x, d(x)] = (0), for all x ∈ I.

Again using Lemma 1, we get the required result.
Now, we get

d(xy)− yx = 0, for all x, y ∈ I.

For all x, y, z ∈ I, we can write

d(x(yz))− (yz)x = 0, for all x, y, z ∈ I

and
d((xy)z)− z(xy) = 0, for all x, y, z ∈ I.

Subtracting these two equations, we find that

zxy − yzx = 0, for all x, y, z ∈ I.

That is [y, zx] = 0, for all x, y, z ∈ I. Writing z by y in this equation and using this equation, we
have

z[x, z] = 0, for all x, z ∈ I.

This is the same as (2.13) above. Using the same arguments after this equation, we get the
required result.

Theorem 2.6. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(x)d(y) ± xy = 0, for all
x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.
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Proof. If d = 0, then we get xy = 0, for all x, y ∈ I. We had done in the proof of Theorem 3.
So, we have d 6= 0.

By our hypothesis, we get

d(x)d(y)± xy = 0, for all x, y ∈ I. (2.16)

Replacing y by yz in this equation and using the hypothesis, we get

d(x)d(y)z + d(x)g(y)d(z)± xyz = 0,

and so
d(x)g(y)d(z) = 0, for all x, y, z ∈ I.

Taking ry, r ∈ R instead of y in this equation and using g is an epimorphism, we have

d(x)Rg(y)d(z) = (0),

and so
g(y)d(x)Rg(y)d(x) = (0), for all x, y ∈ I.

By the semiprimeness of R, we obtain that

g(y)d(x) = 0, for all x, y ∈ I. (2.17)

Hence we get d(xy) = d(x)y + g(x)d(y) = d(x)y,and so

d(xy) = d(x)y, for all x, y ∈ I. (2.18)

On the other hand, right multiplying our hypothesis with y, we get

d(x)d(y)y ± xy2 = 0, for all x, y ∈ I. (2.19)

Now, writing xy in place of x in the hypothesis and using (2.18), we find that

d(x)yd(y)± xy2 = 0, for all x, y ∈ I. (2.20)

Subtracting (2.19) from (2.20), we obtain that

d(x)[d(y), y] = 0, for all x, y ∈ I.

Replacing x by xz in this equation and using this, we get

d(x)z[d(y), y] = 0, for all x, y, z ∈ I.

It follows that
[d(y), y]z[d(y), y] = 0, for all x, y, z ∈ I.

By Lemma 1, we get [d(y), y] = 0, for all y ∈ I.

Theorem 2.7. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(x)d(y) ± yx = 0, for all
x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Proof. Using the same arguments begining of the proof of Theorem 3, we must have d 6= 0.
By our hypothesis, we get

d(x)d(y)± yx = 0, for all x, y ∈ I. (2.21)

Replacing y by yx in this equation and using this, we get

d(x)g(y)d(x) = 0, for all x, y ∈ I.

Writing ry, r ∈ R instead of y in this equation and using g is an epimorphism, we have

d(x)Rg(y)d(x) = (0).
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In particulary, we get
g(y)d(x)Rg(y)d(x) = (0),

and so
g(y)d(x) = 0, for all x, y ∈ I.

Hence we have d(xy) = d(x)y + g(x)d(y) = d(x)y,and so d(xy) = d(x)y, for all x, y ∈ I.
Now, right multiplying our hypothesis with y, we get

d(x)d(y)y ± yxy = 0, for all x, y ∈ I.

Taking xy in place of x in the hypothesis and using d(xy) = d(x)y, we have

d(x)yd(y)± yxy = 0, for all x, y ∈ I.

Comparing the last two equations, we obtain that

d(x)[d(y), y] = 0, for all x, y ∈ I.

Applying the same arguments as used the end of the proof of Theorem 5, we arrive at
[x, d(x)] = 0, for all x ∈ I.

Theorem 2.8. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(xy) = ±d(x)d(y), for all
x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Proof. Assume that

d(xy) = d(x)y + g(x)d(y) = ±d(x)d(y), for all x, y ∈ I. (2.22)

Replacing y by yz in (2.22) and using the hypothesis, we have

d(x)yz + g(x)d(yz) = ±d(xy)d(z).

Since d is multiplicative semiderivation of R, we get

d(x)yz + g(x)d(yz) = ±(d(x)yd(z) + g(x)d(y)d(z))

and so
d(x)yz + g(x)d(yz) = ±d(x)yd(z) + g(x)d(yz).

That is
d(x)y(z ∓ d(z)) = 0, for all x, y, z ∈ I. (2.23)

It follows that
d(x)yd(w)(z ∓ d(z)) = 0, for all x, y, z, w ∈ I. (2.24)

Returning (2.22), we can write

d(x)y + g(x)d(y) = ±d(x)d(y).

That is
d(x)(y ∓ d(y)) = −g(x)d(y), for all x, y, z ∈ I. (2.25)

We can write from (2.24) using (2.25)

d(x)yg(w)d(z) = 0

and so
g(w)d(x)yRg(w)d(x)y = (0), for all x, y, w ∈ I.

Since R is semiprime, we conclude that g(w)d(x)I = 0, for all x,w ∈ I.
Now, right multiplying (2.25) with y and using g(x)d(y)y = 0, we get

d(x)(y ∓ d(y))y = 0, for all x, y ∈ I.
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By (2.23), we can write

d(x)y(y ∓ d(y)) = 0, for all x, y, z ∈ I.

Subtracting the last two equations, we get

d(x)[d(y), y] = 0, for all x, y ∈ I. (2.26)

Replacing x by xz in (2.26) and using this, we obtain

d(x)z[d(y), y] = 0, for all x, y ∈ I (2.27)

which yields that
xd(x)z[d(y), y] = 0, for all x, y ∈ I.

Taking xz instead of z in (2.27), we get

d(x)xz[d(y), y] = 0, for all x, y ∈ I.

Subtracting the last two equations, we find that

[d(x), x]z[d(y), y] = (0), for all x, y, z ∈ I.

In particular,
[d(x), x]z[d(x), x] = (0), for all x, z ∈ I.

By Lemma 1, we have [d(x), x] = (0), for all x ∈ I.

Theorem 2.9. Let R be a semiprime ring, I be a nonzero ideal of R and d be a multiplicative
semiderivation associated with a nonzero epimorphism g of R. If d(xy) = ±d(x)d(y), for all
x, y ∈ I, then [x, d(x)] = 0, for all x ∈ I.

Proof. We have

d(xy) = d(x)y + g(x)d(y) = ±d(y)d(x), for all x, y ∈ I. (2.28)

Taking xy in place of y in this equation, we get

d(x)xy + g(x)d(xy) = ±d(xy)d(x).

Since d is a multiplicative semiderivation of R, we have

d(x)xy + g(x)d(xy) = ±d(x)yd(x)± g(x)d(y)d(x).

Using the hypothesis, we arrive at

d(x)xy = d(x)yd(x), for all x, y ∈ I. (2.29)

Replacing y by yx in (2.29) and using this, we obtain

d(x)y[d(x), x] = 0, for all x, y ∈ I. (2.30)

Left multiplying this equation by x, we get

xd(x)y[d(x), x] = 0, for all x, y ∈ I.

Writing y by xy in (2.30), we have

d(x)xy[d(x), x] = 0, for all x, y ∈ I.

Subtracting the last two equations, we find that

[d(x), x]y[d(x), x] = 0, for all x, y ∈ I.

By Lemma 1, we have [d(x), x] = (0), for all x ∈ I. This completes the proof.
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