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Abstract The object of the present paper is to characterize 3-dimensional trans-Sasakian
manifolds satisfying the Miao-Tam critical equation and Fischer-Marsden conjecture. It is shown
that a 3-dimensional trans-Sasakian manifold satisfying the Miao-Tam critical equation or the
Fischer-Marsden conjecture is either β-Kenmotsu or a space of constant curvature. Also, we
proved that a complete 3-dimensional trans-Sasakian manifold satisfying the Miao-Tam criti-
cal equation or the Fischer-Marsden conjecture is isometric to a sphere. As a corollary of the
Fischer-Marsden conjecture, it is shown that the solution space of the Fischer-Marsden con-
jecture on a complete, non-compact 3-dimensional cosymplectic manifold is a linear space of
harmonic functions over the field of real numbers.

1 Introduction

Let M be an n-dimensional compact orientable manifold together with the Riemannian met-
ric g and let M denote the set of all smooth Riemannian metrics on (M, g) and g∗ be any
symmetric bilinear form on M . Then the linearization of the scalar curvature Lg(g∗) is given by

Lg(g∗) = −∆g(Trgg
∗) + div(div(g∗))− g(g∗, Sg),

where ∆g is the negative Laplacian of g and Sg is its (0, 2) Ricci tensor. The formal L2-adjoint
L∗
g of the linearized scalar curvature Lg is defined as

L∗
g(λ) = −(∆gλ)g +∇2

gλ− λSg,

where ∇2
g is the Hessian operator with respect to the metric g defines by (∇2

gλ)(X,Y ) =
Hessλ(X,Y ) = g(∇XDλ, Y ), D is the gradient operator. Throughout the paper we refer the
equation

L∗
g(λ) = g (1.1)

as the Miao-Tam critical equation and

L∗
g(λ) = 0 (1.2)

as Fischer-Marsden equation. Obviously, if the potential function λ is a non-zero constant, then
(1.1) becomes an Einstein metric. In [19], Miao-Tam proved that any Riemannian metric g satis-
fying (1.1) must have constant scalar curvature. In [19], the authors proved that any connected,
compact, Einstein manifold with smooth boundary satisfying Miao-Tam critical condition is iso-
metric to a geodesic ball in a simply connected space form Rn, Hn or Sn. Recently Patra and
Ghosh [23] studied the Miao-Tam critical equation on contact metric manifolds. In [25], Wang
studied the critical condition (1.1) on certain class of Riemannian manifolds. In [9], Fischer-
Marsden conjectured that a compact Riemannian manifold (M, g) that admits a non-trivial so-
lution of (1.2) is necessarily an Einstein manifold. From this it follows that a critical metric
g always has constant scalar curvature. A counter example of this conjecture was obtained by
Kobayshi [16] and Lafontaine [17] when g is conformally flat. In [4], Cerena and Guan proved
that if a Riemannian manifold (M, g) is closed, homogeneous and admits a Fischer-Marsden
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solution, then (M, g) must be of the form Sm ×N , where Sm and N are respectively Euclidean
sphere and Einstein manifold. Recently Patra and Ghosh [22] proved that if a non-Sasakian
(k, µ)-contact metric manifold satisfies (1.2), then for n = 1, M3 is flat and for n > 1, M2n+1

is locally isometric to the product of an Euclidean space En+1 and a sphere Sn(4) of constant
curvature 4.

A new class of almost contact metric manifolds, namely trans-Sasakian manifolds, has been
introduced by Oubina [21]. It is known that there are sixteen different types of structures on
the almost Hermitian manifold (M,J,G) [10], and recently, using the structure in the classW4
on (M,J,G) a structure (φ, ξ, η, g, α, β) on M called trans-Sasakian structure is introduced [20],
which generalizes Sasakian structure and Kenmotsu structure on almost contact metric manifolds
([2], [13]), where α, β are smooth functions defined onM . In general, a trans-Sasakian manifold
(M,φ, ξ, η, g, α, β) is called a trans-Sasakian manifold of type (α, β) and trans-Sasakian mani-
folds of type (0, 0), (α, 0) and (0, β) are called a cosymplectic, a α-Sasakian and a β-Kenmotsu
manifolds, respectively, provided α, β ∈ R [12]. After the introduction of trans-Sasakian mani-
folds, Blair and Oubiña [2] and Marrero [18] studied the geometry of trans-Sasakian manifolds.
Marrero [18] has shown that a trans-Sasakian manifold of dimension ≥ 5 is either a cosymplec-
tic manifold, a α-Sasakian manifold or a β-Kenmotsu manifold. Since then there is an attention
on studying geometry of 3-dimensional trans-Sasakian manifolds only. In ([5]-[8],[14],[15],
[26]), authors have studied 3-dimensional trans-Sasakian manifolds with some restrictions on
the smooth functions α, β appearing in the definition of trans-Sasakian manifolds.
Throughout the paper we assume that the smooth functions α and β satisfy the condition

φ gradα = gradβ, (1.3)

which implies that

Xβ + (φX)α = 0 (1.4)

and hence ξβ = 0.

Motivated by the above studies, in this paper, we consider the Miao-Tam critical equation and
the Fischer-Marsden conjecture in the framework of 3-dimensional trans-Sasakian manifolds.
Precisely we have shown that a 3-dimensional trans-Sasakian manifold satisfying the Miao-Tam
critical equation or the Fischer-Marsden conjecture is either β-Kenmotsu or a space of constant
curvature. In addition, we prove that a complete 3-dimensional trans-Sasakian manifold satis-
fying the Miao-Tam critical equation or the Fischer-Marsden conjecture is either β-Kenmotsu
or isometric to a sphere. As a corollary of the Fischer-Marsden conjecture we obtain that the
solution space of the Fischer-Marsden conjecture on a complete, non-compact 3-dimensional
cosymplectic manifold is a linear space of harmonic functions over R. Also we obtain several
fruitful corollaries.

2 Preliminaries

Let (M,φ, ξ, η, g) be a 3-dimensional almost contact metric manifold, where φ being a (1, 1)-
tensor field, ξ a unit vector field and η smooth 1-form dual to ξ with respect to the Riemanian
metric g satisfying

φ2 = −I + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0 (2.1)

and

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.2)

X,Y ∈ χ(M), where χ(M) being the Lie algebra of smooth vector fields on M [1]. If there are
smooth functions α, β on an almost contact metric manifold (M,φ, ξ, η, g) satisfying

(∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX), (2.3)
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X,Y ∈ χ(M), then it is said to be a trans-Sasakian manifold, where∇ is the Levi-Civita connec-
tion with respect to the metric g ([2], [18], [21]). We shall denote the trans-Sasakian manifold by
(M,φ, ξ, η, g, α, β) and it is called trans-Sasakian manifold of type (α, β). From (2.3) it follows
that

∇Xξ = −αφX + β(X − η(X)ξ), (2.4)

(∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ). (2.5)

A trans-Sasakian manifold is said to be

• cosymplectic or co-Kaehler if α = β = 0,

• quasi-Sasakian manifold if β = 0 and ξ(α) = 0,

• α-Sasakian manifold if α is a non-zero constant and β = 0,

• β-Kenmotsu manifold if α = 0 and β is a non-zero constant.

Therefore, trans-Sasakian manifold generalizes a large class of almost contact manifolds. From
[5] we know that for a 3-dimensional trans-Sasakian manifold

2αβ + ξα = 0. (2.6)

The Ricci operator Q satisfies [5]

Q(ξ) = φ(∇α)−∇β + 2(α2 − β2)ξ − g(∇β, ξ)ξ. (2.7)

S(X,Y ) = (
r

2
+ ξβ − (α2 − β2))g(X,Y )

−( r
2
+ ξβ − 3(α2 − β2))η(X)η(Y )

−(Y β + (φY )α)η(X)− (Xβ + (φX)α)η(Y ) (2.8)

and

R(X,Y )Z = (
r

2
+ 2ξβ − 2(α2 − β2))(g(Y,Z)X − g(X,Z)Y )

−g(Y,Z)(( r
2
+ ξβ − 3(α2 − β2))η(X)ξ

−η(X)(φ gradα− gradβ) + (Xβ + (φX)α)ξ)

+g(X,Z)((
r

2
+ ξβ − 3(α2 − β2))η(Y )ξ

−η(Y )(φ gradα− gradβ) + (Y β + (φY )α)ξ)

−((Zβ + (φZ)α)η(Y ) + (Y β + (φY )α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(Y )η(Z))X

((Zβ + (φZ)α)η(X) + (Xβ + (φX)α)η(Z)

+(
r

2
+ ξβ − 3(α2 − β2))η(X)η(Z))Y (2.9)

hold, where S is the Ricci tensor of type (0, 2), R is the Riemannian curvature tensor of type
(1, 3) and r is the scalar curvature of the manifold M .
If M satisfies the condition (1.3), then the equations (2.8) and (2.9) reduces to

S(X,Y ) = (
r

2
− (α2 − β2))g(X,Y )− (

r

2
− 3(α2 − β2))η(X)η(Y ), (2.10)



4 Dibakar Dey and Pradip Majhi

R(X,Y )Z = (
r

2
− 2(α2 − β2))(g(Y,Z)X − g(X,Z)Y )

−g(Y, Z)(( r
2
− 3(α2 − β2))η(X)ξ

+g(X,Z)((
r

2
− 3(α2 − β2))η(Y )ξ)

−( r
2
− 3(α2 − β2))η(Y )η(Z)X

+(
r

2
− 3(α2 − β2))η(X)η(Z)Y. (2.11)

From (2.10) we get

S(X, ξ) = 2(α2 − β2)η(X) (2.12)

and from (2.11) it follows that

R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ), (2.13)

R(ξ,X)Y = (α2 − β2)(g(X,Y )ξ − η(Y )X). (2.14)

3 Critical metrics on 3-dimensional trans-Sasakian manifolds

To prove our main results we first state the followings:

Lemma 3.1. (Lemma 3.4 of [11]) Let a Riemannian manifold (Mn, g) satisfies the Miao-Tam
equation. Then the curvature tensor R can be expressed

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ{(∇XQ)Y − (∇YQ)X}
+(Xf)Y − (Y f)X, (3.1)

where D is the gradient operator and f = − rλ+1
n−1 .

Lemma 3.2. (Lemma 3.1 of [22]) If (g, λ) is a non-trivial solution of the Fischer-Marsden equa-
tion (1.2) on a (2n + 1)-dimensional contact metric manifold M , then the curvature tensor R
can be expressed

R(X,Y )Dλ = (Xλ)QY − (Y λ)QX + λ{(∇XQ)Y − (∇YQ)X}
+(Xf)Y − (Y f)X, (3.2)

for any vector fields X, Y on M and f = − rλ2n .

Lemma 3.3. (Theorem 1 of [3]) For a trans-Sasakian manifold Mn, n > 1, under the condition
φ gradα = (n− 2) gradβ, we have

[(∇ξS)(Y, Z)− (∇Y S)(ξ, Z)]

= βS(Y,Z)− (n− 1)(α2 − β2)βg(Y, Z)

−(n− 1)(α2 − β2)αg(Y, φZ) + αS(Y, φZ).

Now for a 3-dimensional trans-Sasakian manifold under the condition (1.3), we can write
from Lemma 3.3

[(∇ξQ)Y − (∇YQ)ξ] = βQY − 2(α2 − β2)βY

+2(α2 − β2)αφY − αφQY. (3.3)

We now prove our main results.

Theorem 3.4. Let M be a 3-dimensional trans-Sasakian manifold fulfilling the condition (1.3).
If there is a non-constant function λ on M satisfying the Miao-Tam critical equation (1.1), then
the manifold M is either β-Kenmotsu or of constant curvature.
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Proof. Substituting X = ξ in (3.1) and using (3.2) we get

R(ξ, Y )Dλ = (ξλ)QY − 2(α2 − β2)(Y λ)ξ + λ{βQY − 2(α2 − β2)βY

+2(α2 − β2)αφY − αφQY } − r

2
(ξλ)Y +

r

2
(Y λ)ξ. (3.4)

Taking inner product of (3.4) with X we obtain

g(R(ξ, Y )Dλ,X) = (ξλ)S(X,Y )− 2(α2 − β2)(Y λ)η(X) + λ{βS(X,Y )
−2(α2 − β2)βg(X,Y ) + 2(α2 − β2)αg(X,φY )

−αg(X,φQY )} − r

2
(ξλ)g(X,Y ) +

r

2
(Y λ)η(X). (3.5)

Again,

g(R(ξ, Y )Dλ,X) = −g(R(ξ, Y )X,Dλ).

Making use of (2.14), the above equation yields

g(R(ξ, Y )Dλ,X) = −(α2 − β2)g(X,Y )(ξλ) + (α2 − β2)η(X)(Y λ). (3.6)

From (3.5) and (3.6) we get

−(α2 − β2)g(X,Y )(ξλ) + (α2 − β2)η(X)(Y λ)

= (ξλ)S(X,Y )− 2(α2 − β2)(Y λ)η(X) + λ{βS(X,Y )
−2(α2 − β2)βg(X,Y ) + 2(α2 − β2)αg(X,φY )

−αg(X,φQY )} − r

2
(ξλ)g(X,Y ) +

r

2
(Y λ)η(X). (3.7)

Now interchanging X and Y in (3.7) and subtracting the resulting equation from (3.7) gives

(
r

2
− 3(α2 − β2)){η(X)(Y λ)− η(Y )(Xλ)}

= 2α(α2 − β2)λ{g(φX, Y )− g(X,φY )}
−αλ{g(φQX, Y )− g(φQY,X)}. (3.8)

From (2.10), we can see that Qφ = φQ on M under the condition (1.3). Using this relation, the
foregoing equation yields

(
r

2
− 3(α2 − β2)){η(X)(Y λ)− η(Y )(Xλ)} = 4α(α2 − β2)λg(φX, Y )

−2αλg(φQX, Y ). (3.9)

Putting X = φX and Y = φY in (3.9) and using (2.2) we get

αλ{2(α2 − β2)g(φX, Y )− g(QφX, Y )} = 0. (3.10)

Since λ is a non-constant function, replacing X by φX in (2.10) and using (2.1) we have

α{S(X,Y )− 2(α2 − β2)g(X,Y )} = 0, (3.11)

which implies that
either α = 0 or S(X,Y ) = 2(α2 − β2)g(X,Y ).

Case 1: If α = 0, then from (1.4), we have β = constant. This implies that the manifold M
is β-Kenmotsu.

Case 2: If S(X,Y ) = 2(α2−β2)g(X,Y ), then the manifold is Einstein. Since the dimension
of the manifold is three, then it becomes a space of constant curvature. This complees the proof.2
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Remark 3.5. Since β is constant if we change the metric g by βg by homothetic transforma-
tion, this homothetic transformation gives the homothety between β-Kenmotsu manifold and the
Kenmotsu manifold.

Corollary 3.6. Let M be a 3-dimensional trans-Sasakian manifold fulfilling the condition (1.3).
If there is a non-constant function λ on M satisfying the Miao-Tam critical equation (1.1), then
the manifold M is homothetic to a Kenmotsu manifold, provided M is not of constant curvature.

Remark 3.7. Since α = 0 and β = constant, from (2.7) it follows that

S(X, ξ) = −2β2g(X, ξ),

which implies that the characteristic vector field ξ is an eigen vector of the Ricci operator Q
corresponding to the eigen value −2β2.

Corollary 3.8. Let M be a complete 3-dimensional trans-Sasakian manifold fulfilling the con-
dition (1.3) with α2 > β2. If there is a non-constant function λ on M satisfying the Miao-
Tam critical equation (1.1), then the manifold M is isometric to a spherical space of curvature
(α2 − β2).

Proof. Considering the dimension of the manifold and tracing (1.1), yields ∆λ = − rλ+3
2 .

From (3.11), we obtained that the manifold satisfies

S(X,Y ) = 2(α2 − β2)g(X,Y ),

which implies r = 6(α2 − β2). Substituting this value of S and r in (1.1) we obtain

∇2λ = {−(α2 − β2)λ− 1
2
}g. (3.12)

Now we apply Tashiro’s theorem [24]: “ If a complete Riemannian manifold Mn of dimension
≥ 2 admits a special concircular field ρ satisfying ∇∇ρ = (−c2ρ + b)g, then it is isometric to
a spherical space of curvature c2 ” to conclude that the manifold M is isometric to a spherical
space of curvature (α2 − β2). This complete the proof. 2

Now if we take α a non-zero constant and β = 0, then the manifold becomes a 3-dimensional
α-Sasakian manifold and we can state the above corollary as given below.

Corollary 3.9. Let M be a complete 3-dimensional α-Sasakian manifold. If there is a non-
constant function λ on M satisfying the Miao-Tam critical equation (1.1), then the manifold M
is isometric to a spherical space of curvature α2.

Again if we take α = 1 and β = 0, then the trans-Sasakian manifold reduces to a Sasakian
manifold. Thus we can state the following:

Corollary 3.10. Let M be a complete 3-dimensional Sasakian manifold. If there is a non-
constant function λ on M satisfying the Miao-Tam critical equation (1.1), then the manifold
M is isometric to a unit sphere.

Remark 3.11. Since 3-dimensional K-contact manifold reduces to a Sasakian manifold, the
above corollary recovers the theorem of Patra and Ghosh [23].

Theorem 3.12. Let M be a 3-dimensional trans-Sasakian manifold fulfilling the condition (1.3).
If there is a non-constant function λ on M satisfying the Fischer-Marsden equation (1.2), then
the manifold M is either β-Kenmotsu or of constant curvature.

The proof of the Theorem 3.12 is similar to that of Theorem 3.4. Here we have to initialize the
proof with Lemma 3.2. So we do not mention the proof here. We only obtain the consequences
of this theorem.

Corollary 3.13. Let M be a 3-dimensional α-Sasakian manifold. If there is a non-constant
function λ on M satisfying the Fischer-Marsden equation (1.2), then the manifold M is a space
of contant curvature.
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Corollary 3.14. Let M be a complete 3-dimensional trans-Sasakian manifold fulfilling the con-
dition (1.3) with α2 > β2. If there is a non-constant function λ on M satisfying the Fischer-
Marsden equation (1.2), then the manifold M is isometric to the sphere S3(

√
(α2 − β2)) of

radius 1√
(α2−β2)

.

Proof. Considering the dimension n = 3 and tracing the Fischer-Marsden equation (1.2) yields
∆λ = − rλ2 .
In a simillar manner as in (3.11), we can easily obtain that the manifold satisfies

S(X,Y ) = 2(α2 − β2)g(X,Y ),

which implies r = 6(α2 − β2). Substituting this value of S and r in (1.2) we obtain

∇2λ = −(α2 − β2)λg. (3.13)

The foregoing equation reveals that

∇XDλ = −(α2 − β2)λX. (3.14)

We now apply Obata’s theorem [20]: “ In order for a complete Riemannian manifold of dimen-
sion n ≥ 2 to admit a non-constant function λ with ∇XDλ = −c2λX for any vector X , it
is necessary and sufficient that the manifold is isometric with a sphere Sn(c) of radius 1

c ” to
conclude that the manifold is isometric to the sphere S3(

√
(α2 − β2)) of radius 1√

(α2−β2)
. This

completes the proof. 2

Now if we take α = 1 and β = 0, then the trans-Sasakian manifold reduces to a Sasakian
manifold. Thus we can state the following:

Corollary 3.15. Let M be a complete 3-dimensional Sasakian manifold. If there is a non-
constant function λ on M satisfying the Fischer-Marsden equation (1.2), then the manifold M is
isometric to a unit sphere.

Remark 3.16. Since 3-dimensional K-contact manifold reduces to a Sasakian manifold, the
above corollary recovers the theorem of Patra and Ghosh [22].

Again if we take α = β = 0, then the trans-Sasakian manifold reduces to a cosymplectic
manifold. Hence from (3.13) we have ∇2λ = 0, which implies that the function λ is harmonic.
Moreover if λ1, λ2 be two harmonic functions satisfying (1.2) then their sum (λ1 + λ2) and
scalar prodauct kλ, k ∈ R is again a harmonic function. This shows that the solution space S(λ)
of (1.2) of harmonic functions is a linear space over R. Thus we arrive to the following:

Corollary 3.17. Let M be a complete, non-compact 3-dimensional cosymplectic manifold. Then
the solution space S(λ) of the Fischer-Marsden equation (1.2) is a linear space of harmonic
functions over the set of real numbers.

Again if the cosymplectic manifold is compact, then the function λ satisfying ∇2λ = 0
becomes constant. Hence we can state the following:

Corollary 3.18. IfM be a compact 3-dimensional cosymplectic manifold, then Fischer-Marsden
equation (1.2) admits only trivial solution on M .
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