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Abstract: (k, µ)-Paracontact mertric manifolds admitting the almost conformal Ricci Soli-
tons and gradient shrinking Ricci soliton have been studied. We prove the non-existence of
almost conformal Ricci soliton in a (k, µ)-paracontact metric manifold M has been established
under certain condition.

1 Introduction

In recent years the pioneering works of R. S. Hamilton [8] towards the solution of the Poincare
conjecture in dimension 3 have produced a flourishing activity in the research of self similar
solutions, or solitons, of the Ricci flow. The study of the geometry of solitons, in particular their
classification in dimension 3, has been essential in providing a positive answer to the conjecture;
however in higher dimension and in the complete, possibly noncompact case, the understanding
of the geometry and the classification of solitons seems to remain a desired goal for a not too
proximate future. In the generic case a soliton structure on the Riemannian manifold (M, g)
is the choice of a smooth vector field X on M and a real constant λ satisfying the structural
requirement

Ric+
1
2
LXg = λg, (1.1)

where Ric is the Ricci tensor of the metric g and LXg is the Lie derivative of this latter in the
direction ofX . In what follows we shall refer to λ as to the soliton constant. The soliton is called
expanding, steady or shrinking if, respectively, λ > 0, λ = 0 or λ > 0. When X is the gradient
of a potential ψ ∈ C∞(M), the soliton is called a gradient Ricci soliton [5] and the previous
equation (1.1) takes the form

∇∇ψ = S + λg. (1.2)

Both equations (1.1) and (1.2) can be considered as perturbations of the Einstein equation

Ric = λg. (1.3)

and reduce to this latter in case X or ∇ψ are Killing vector fields. When X = 0 or ψ is constant
we call the underlying Einstein manifold a trivial Ricci soliton.

Definition 1.1. A Ricci soliton (g, V, λ) on a Riemannian manifold is defined by

LV g + 2S + 2λ = 0, (1.4)

where S is the Ricci tensor, LV is the Lie derivative along the vector field V on M and is a real
scalar. Ricci soliton is said to be shrinking, steady or expanding according as λ < 0, λ = 0 and
λ > 0, respectively.

Ricci solitons, in the context of general relativity, have been studied by M. Ali and Z. Ah-
san (see [17], [18], [19]). A. E. Fischer [7] introduced a new concept called conformal Ricci
flow which is a variation of the classical Ricci flow equation that modifies the unit volume con-
straint of that equation to a scalar curvature constraint. Since the conformal geometry plays an
important role to constrain the scalar curvature and the equations are the vector field sum of a
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conformal flow equation and a Ricci flow equation, the resulting equations are named as the
conformal Ricci flow equations. These new equations are given by

∂t

∂t
= −2S −

(
p+

2
n

)
g, (1.5)

where R(g) = −1 and p is a non-dynamical scalar field(time dependent scalar field), R(g) is the
scalar curvature of the manifold and n is the dimension of the manifold M .

The conformal Ricci flow equations are analogous to the Navier-Stokes equations of fluid
mechanics and because of this analogy the time dependent scalar field p is called a conformal
pressure and, as for the real physical pressure in fluid mechanics that serves to maintain the
incompressibility of the fluid, the conformal pressure serves as a Lagrange multiplier to confor-
mally deform the metric flow so as to maintain the scalar curvature constraint. The equilibrium
points of the conformal Ricci flow equations are Einstein metrics with Einstein constant −1

n .
Thus the conformal pressure p is zero at an equilibrium point and positive otherwise.

In 2015, N. Basu and A. Bhattacharyya [1] introduced the notion of conformal Ricci soliton
and the equation is as follows

LV g + 2S +

[
2λ−

(
p+

2
n

)]
g = 0, (1.6)

where λ is a constant. Recently, in 2018 M. D. Siddiqi [20] study conformal η-Ricci solitons in
δ-Lorentzian trans-Sasakian manifolds which also colely realted to this paper.

The concept of almost Ricci soliton was first introduced by S. Pigola, M. Rigoli, M. Rimoldi,
A. G. Setti in 2010 [12]. R. Sharma has also done excellent work in almost Ricci soliton [14].
A Riemannian manifold (Mn, g) is an almost Ricci soliton [13] if there exists a complete vector
field X and a smooth soliton function λ such that λ : Mn −→ R satisfying

Rij +
1
2
(Xi;j +Xj;i) = λgij , (1.7)

where Rij and Xi;j +Xj;i stands for the Ricci tensor and the Lie derivative LXg in local coor-
dinates respectively. It will called shrinking, steady or expanding according as λ < 0, λ = 0 and
λ > 0, respectively.

Now a gradient Ricci soliton on a Riemannian manifold (Mn, gij) is defined by [6]

S +Hessψ = ρg, (1.8)

where Hessψ = ∇∇ψ and for some constant ρ and for a smooth function ψ on M . ψ is called a
potential function of the Ricci soliton and ∇ is the Levi-Civita connection on M . In particular a
gradient shrinking Ricci soliton [2] satisfies the equation,

S +Hessψ − 1
2τ
g = 0, (1.9)

where τ = T − t and T is the maximal time of the solution. Again for conformal Ricci soliton if
the vector field is the gradient of a function f , then we call it as a conformal gradient shrinking
Ricci soliton [5]. For conformal gradient shrinking Ricci soliton the equation is

S +Hessψ −
(

1
2τ
− 2
n
− p

)
g (1.10)

where τ = T − t and T is the maximal time of the solution and ψ is the Ricci potential function.
On the other hand, the roots of contact geometry lie in differential equations as in 1872

Sophus Lie introduced the notion of contact transformation as a geometric tool to study systems
of differential equations. This subject has manifold connections with the other fields of pure
mathematics, and substantial applications in applied areas such as mechanics, optics, phase space
of dynamical system, thermodynamics and control theory.

R. Sharma [13] initiated the study Ricci almost solitons in K-contact geometry. Recently,
Calvaruso and Perrone [4] studied Ricci solitons in three-dimensional paracontact geometry. R.
Sharam [14] also, studied some propetries of K-contact and (k, µ)-contact geometry. Therefore,
in the present paper we studied the almost Conformal Ricci solitons in (k, µ)-paracontact metric
manifolds.
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2 Preliminaries

A (2n + 1)-dimensional smooth manifold M is said to be an almost paracontact manifold if it
admits an almost paracontact structure (φ, ξ, η), where φ is a (1, 1)- tensor field, ξ a vector field
and its dual 1-form η and for any vector field X on M satisfying [9]

φ2X = X − η(X)ξ, (2.1)

η(ξ) = 1, φ(ξ) = 0, η(φ) = 0, (2.2)

the tensor field φ induces an almost paracomplex structure on each fibre of D = ker(η), that is,
the eigen distributions D+

φ and D−φ of φ corresponding to the eigenvalues 1 and −1, respectively,
have same dimension n.

An almost paracontact structure is said to be normal [15] if and only if the (1, 2)-type torsion
tensor Nφ = [φ, φ]−2dη⊗ ξ vanishes identically, where [φ, φ] denotes the Nijenhuis tensor of φ.
If an almost paracontact manifold M equipped with a pseudo-Riemannian metric g of signature
(n+ 1, n) such that

g(φX, φY ) = −g(X,Y ) + η(X)η(Y ), (2.3)

for all X,Y ∈ χ(M), where χ(M) is the Lie algebra of all smooth vector fields on the manifold
M , then (M, g) is called an almost paracontact metric manifold. An almost paracontact structure
is said to be a paracontact structure if

g(X,φY ) = dη(X,Y ) (2.4)

where g is the associated metric [15]. For any almost paracontact metric manifold (M2n+1, φ, ξ, η, g)
admits (at least, locally) a φ-basis [15], that is, a pseudo orthonormal basis of vector fields of the
form {ξ, E1, E2, ..., En, φE1, φE2, ..., φEn}, where ξ, E1, E2, ..., En are space-like vector fields
and then, by (2.3) vector fields φE1, φE2, ..., φEn are time-like. In a paracontact metric manifold
there exists a symmetric, trace-free (1, 1)-tensor h = 1

2Lξφ satisfying [15]

φh+ hφ = 0, hξ = 0, (2.5)

∇Xξ = −φX + φhX, (2.6)

where ∇ is Levi-Civita connection of the pseudo-Riemannian manifold and for all X ∈ χ(M).
It is clear that the tensor h satisfies h = 0 if and only if ξ is a Killing vector field and then
(φ, ξ, η, g) is said to be a K-paracontact manifold. An almost paracontact manifold is said to be
para-Sasakian if and only if the following condition holds [15]

(∇Xφ)Y = −g(X,Y ) + η(Y )X (2.7)

for any X,Y ∈ χ(M). A normal paracontact metric manifold is para-Sasakian and satisfies

R(X,Y )ξ = −[η(Y )X − η(X)Y ] (2.8)

for any X,Y ∈ χ(M), but unlike contact metric geometry the relation (2.8) does not imply
that the paracontact manifold is para-Sasakian manifold. Every para Sasakian manifold is a K-
paracontact manifold, but the converse is not always true, as it is shown in three dimensional
case. Paracontact metric manifolds have been studied by Cappelletti-Montano et al ([3], [4]),
Martin-Molina ([10], [11]) and many others.

According to Cappelletti-Montano et al [3] we have the following definition.

Definition 2.1. A paracontact metric manifold is said to be (k, µ)-paracontact manifold if the
curvature tensor R satisfies

R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (2.9)

for all vector fields X,Y ∈ χ(M) and k, µ are real constants.

In a (k, µ)-paracontact manifold (M2n+1, φ, ξ, η, g), n > 1, the following relations hold [6]:

h2 = (k + 1)φ2 (2.10)
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(∇Xφ)Y = −g[X − hX, Y ]ξ + η(Y )[X − hX], for k 6= −1, (2.11)

(∇Xh)Y = −[(1 + k)g(X,φY ) + g(X,φhY )]ξ (2.12)

+η(Y )φh(hX −X)− µη(X)φhY, for k 6= −1,

QX = [2(n− 1) + µ]X + [2(n− 1) + µ]hY (2.13)

+[2(n− 1) + n(2k − µ)]η(X)ξ, for k 6= 1, ,

S(X, ξ) = 2nkη(X) (2.14)

Qξ = 2nkξ (2.15)

Qφ− φQ = 2[2(n− 1) + µ]hφ (2.16)

for any vector fields X,Y ∈ χ(M), where Q is the Ricci operator defined by S(X,Y ) =
g(QX,Y ). Making use of (2.6) we have

(∇Xη)Y = g(X,φY ) + g(φhX, Y ) (2.17)

for all vector fields X,Y ∈ χ(M).
For the main results first of all we need the following Lemmas:

Lemma 2.2. ( [16], Theorem 3.3) Let M2n+1, n > 1, be a paracontact metric manifold satisfies
R(X,Y )ξ = 0, for all X,Y ∈ χ(M). Then M2n+1 is locally isometric to a product of a flat
(n + 1)-dimensional manifold and an n-dimensional manifold of negative constant curvature
equal to −4.

Lemma 2.3. ( [3]) Let (M,φ, ξ, η, g) be a (k, µ)-paracontact metric manifold. Then for any
vector fields X,Y ∈ χ(M) we have

(∇Xφh)Y = g(h2X − hX, Y )ξ + η(Y )[h2X − hX] (2.18)

−µη(X)hY, for k > −1

(∇Xφh)Y = (1 + k)g(X,Y )ξ − g(hX, Y )ξ + η(Y )(h2X − hX) (2.19)

−µη(X)hY, for k < −1.

3 Almost conformal Ricci Solitons in (k, µ)-paracontact Metric Manifolds

In this section we discuss almost conformal Ricci solitons in (k, µ)-paracontact manifolds. We
prove the following:

Theorem 3.1. There does not exist almost conformal Ricci soliton in a (k, µ)-paracontact metric
manifold M2n+1 (n > 1) whose potential vector field is the Reeb vector field ξ with k < 1 or
k > 1.

Proof. Let a (k, µ)-paracontact metric manifold admits a Ricci almost soliton. Then we have
from (1.6)

(Lξg)(X,Y ) + 2S(X,Y )−
[

2λ−
(
p+

2
n

)]
g(X,Y ) = 0. (3.1)

Which is equivalent to

g(∇Xξ, Y ) + g(∇Y ξ,X) + 2S(X,Y ) (3.2)
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−
[

2λ−
(
p+

2
n

)]
g(X,Y ) = 0

Using (2.6) in (3.2) we get

g(−φX + φhX, Y ) + g(−φY + φhY,X) + 2S(X,Y ) (3.3)

−
[

2λ−
(
p+

2
n

)]
g(X,Y ) = 0

This implies

g(φhX, Y ) + S(X,Y )− 1
2

[
2λ−

(
p+

2
n

)]
g(X,Y ) = 0 (3.4)

that is

φhY +QY − 1
2

[
2λ−

(
p+

2
n

)]
Y = 0. (3.5)

Now, taking covariantly derivative of (3.5) with respect to X .

(∇XφhY ) +∇XQY −
1
2
X

(
2λ−

(
p+

2
n

))
Y = 0. (3.6)

Now we break our discussion in two cases:

Case(i): Let k > 1. Applying (2.13) and (2.18) in (3.6) we have

(1 + k)g(X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )X − (k + 1)η(X)η(Y )ξ (3.7)

−η(Y )hX − µη(X)hY + [2(n− 1) + µ](∇Xh)Y

+[2(n− 1) + n(2k − µ)][(∇Xη)(Y )ξ + η(Y )∇Xξ −
1
2
X

(
2λ−

(
p+

2
n

))
Y = 0.

Using (2.6), (2.12) and (2.17) we have

(1 + k)g(X,Y )− g(hX, Y )ξ + (k + 1)η(Y )X − (k + 1)η(X)η(Y )ξ − η(Y )hX − µη(X)hY

−[2(n− 1) + µ][(k + 1)g(X,φY )ξ + g(X,φhY )ξ − (k + 1)η(Y )φX + η(Y )φhX + µη(X)φhY ]

+2(n− 1) + n(2k − µ)][g(X,φY )ξ + g(φhX, Y )ξ − η(Y )φX + η(Y )φX + η(Y )]

−1
2
X

(
2λ−

(
p+

2
n

))
Y = 0. (3.8)

Contracting X in (3.8) X = ξ = ei we get

(2n+ 1)(k + 1)η(Y ) =
1
2

(
2λ−

(
p+

2
n

))
Y (3.9)

Also putting Y = Z = ξ in (3.4) yields λ = 2nk +
(
p
2 + 1

n

)
, which is a constant. Applying this

in (3.9) we have k = −1, which is a contradiction as we consider k > −1.
case(ii) Let k < −1. Making use of (2.13) and (2.19) in (3.5) we have

g((k + 1)φ2X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )φ2X (3.10)

−η(Y )hX − µη(X)hY + [2(n− 1) + µ](∇Xh)Y

+[2(n− 1) + n(2k − µ)][(∇Xη)(Y )ξ + η(Y )∇Xξ]
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−1
2
X

(
2λ−

(
p+

2
n

))
Y = 0.

Now, using equations (2.6), (2.12) and (2.17) in the above equation gives

g((k + 1)φ2X,Y )ξ − g(hX, Y )ξ + (k + 1)η(Y )φ2X (3.11)

−η(Y )hX − µη(X)hY + [2(n− 1) + µ][(k + 1)g(X,φY )ξ + g(X,φhY )ξ

−(k + 1)η(Y )φX + η(Y )φhX + µη(X)φhY ]

+[2(n− 1) + n(2k − µ)][g(X,φY )ξ + g(φhX, Y )ξ − η(Y )φX + η(Y )φhX]

−1
2
X

(
2λ−

(
p+

2
n

))
Y = 0.

Contracting X in (3.11) we get

2n(k + 1)η(Y )− 1
2

(
2λ−

(
p+

2
n

))
Y = 0. (3.12)

Again, putting Y = Z = ξ in (3.4) yields λ = 2nk +
(
p
2 + 1

n

)
, which is a constant. Applying

this in (3.12) we have k = −1, which is a contradiction as we consider k < −1.
Combining the two cases our theorem follows.

Theorem 3.2. If a (k, µ)-paracontact metric manifoldM2n+1 (n > 1) admits a almost conformal
Ricci soliton for k = −1 whose potential vector field is the Reeb vector field ξ, then the almost
conformal Ricci soliton is expanding with Qξ = −2nξ.

Proof. Replacing Y by ξ in (3.6) we get Qξ = 1
2

(
2λ−

(
p+ 2

n

))
ξ . On the other hand from

(2.15) and k = −1 we have Qξ = −2nξ. Thus we obtain λ = −2n+
(
p
2 + 1

n

)
. This shows that

the almost conformal Ricci soliton is expanding.

Corollary 3.3. The almost conformal Ricci soliton in a (k, µ)-paracontact metric manifold re-
duces to a Ricci soliton if λ = constant.

4 Almost conformal gradient shrinking Ricci soliton on (k, µ)-paracontact
metric manifold

A conformal gradient shrinking Ricci soliton equation is given by

S +∇∇f =

(
1

2τ
− 2
n
+ p

)
g. (4.1)

This reduces to

∇YDf +QY =

(
1

2τ
− 2
n
+ p

)
Y (4.2)

for ant X ∈ χ(M), where D is the gradient operator of g. From (4.2) it follows

∇X∇YDf +∇XQY = (
1

2τ
− 2

3
− p)∇XY.

Now,

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= (
1

2τ
− 2

3
− p)[∇XY −∇YX − [X,Y ]]−∇X(QY ) +∇Y (QX) +Q[X,Y ],

where R is the curvature tensor.
Since ∇ is Levi-Civita connection, so from the above equation we get

R(X,Y )Df = −∇X(QY ) +∇Y (QX) +Q[X,Y ] = (∇YQ)X − (∇XQ)Y. (4.3)
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Also

R(X,Y )Df = (∇XQ)Y − (∇YQ)X − (Y A)X + (XA)Y, (4.4)

where A = ( 1
2τ −

2
3 − p).

Taking the covariant deriavtive of (2.13) along vector field X and using (2.17) we have

(∇XQ)Y = {2(n− 1) + n(2k − µ)} [g(X,φY )ξ + g(φhX, Y )ξ) (4.5)

−η(Y )φX + η(Y )φhX] + {2(n− 1) + µ} (∇Xh)Y.

Applying (2.15) in (4.5) gives

(∇XQ)Y − (∇YQ)X = [2(n− 1) + µ][−(k + 1)[2g(X,φY )ξ (4.6)

+η(X)φY − η(Y )φX] + (1− µ)(η(X)φhY − η(Y )φhX)] + [2(n− 1) + n(2k − µ)]

×[2g(X,φY )ξ + η(X)φY − η(Y )φX + η(Y )φhX − η(X)φhY ].

Now, using (4.5) and (4.4), we obtain

R(X,Y )Df = [2(n− 1) + µ][(k + 1)[2g(X,φY )ξ + η(X)φY − η(Y )φX] (4.7)

+(1− µ)(η(X)φhY − η(Y )φhX)]− [2(n− 1) + n(2k − µ)]

×[2g(X,φY )ξ + η(X)φY − η(Y )φX + η(Y )φhX − η(X)φhY ]− (Y A)X + (XA)Y.

Taking inner product of (4.7) with ξ we obtain

g(R(X,Y )Df, ξ) = 2(µ− 2k + µk + nµ)g(X, )− Y Aη(X) + (XA)η(Y ). (4.8)

Substituting X = ξ in (4.8) we get

g(R(ξ, Y )Df, ξ) = (ξA)η(Y )− (Y A). (4.9)

Also from (2.9) it follows

R(ξ, Y )X = k[g(X,Y )ξ − η(X)Y ] + µ[g(hX, Y )ξ − η(X)hY ]. (4.10)

Taking the inner product of (4.10) with ξ gives

g(R(ξ, Y )Df, ξ) = kg(Y,Df − (ξf)ξ) + µg(hY,Df) (4.11)

In view of (4.9) and 4.11) we have

kg(Y,Df − ξf)ξ) + µg(hY,Df)− (ξA)η(Y ) + (Y A) = 0, (4.12)

from which we obtain

kDf − k(ξf)ξ + µhDf +DA− (ξA)ξ = 0. (4.13)

Contracting X in (4.4) and using the fact that the scalar curvature of the manifold is constant,
we have

QDf = −2nDA.

Applying 4.13) gives

2nkDf + 2nµhDf = QDf + 2n(k(ξf)) + (ξA))ξ (4.14)

Taking inner product of (4.14) with ξ and since Qξ = 2nkξ it follows the

k(ξf) + (ξA) = 0. (4.15)

Using (4.17) in (4.14) we get

2nDf + 2nµhDf = QDf. (4.16)
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Putting X = ξ (4.2) we obtain

∇ξDf =

[(
1

2τ
− 2
n
+ p

)
− 2nk

]
ξ (4.17)

Replacing X by φX and Y by φY in (4.8) and (2.16), receptively, then comparing the right hand
side we have

(µ− 2k + µk + nµ)g(φX, Y ) = 0. (4.18)

Since dη 6= 0, it follow that the above equation gives

k =
µ(n+ 1)

2− µ
. (4.19)

Differentiating (4.14) along ξ implies

2nkξDf + 2nµ(∇ξh)Df + 2nµh(∇ξDf) = (∇ξQ)Df +Q(∇ξDf) (4.20)

Now using (2.12), (4.5) and (4.20) we get

µ[µ(2n− 1)− 2(n− 1)]hφDf = 0. (4.21)

Operating h on (4.21) and since k 6= 1 we obtains

µ[µ(2n− 1)− 2(n− 1)]φDf = 0. (4.22)

Thus we consider the following cases:
Case1. If µ = 0, then from (4.19) it follows that k = 0. Consequently (2.9) gives

R(X,Y )ξ = 0. Therefore, using Lemma 2.2 we can stateM2n+1 is locally isometric to a product
of a flat (n + 1)-dimensional manifold and an n-dimensional manifold of negative constant
curvature equal to −4.
Case 2. If φDf = 0. Applying φ on both sides we obtain

Df = (ξf)ξ. (4.23)

Taking differentiation of (4.23) along any arbitrary vector field X , we have

∇XDf = X(ξf)ξ + (ξf)(−φX + φhX).

Replacing X by φX and taking inner product with φY we have

g(∇φXDf, φY ) = −(ξf)[g(X,φY ) + g(hX, φY ]. (4.24)

Interchanging X by Y in the above equation yields

g(∇φYDf, φX) = −(ξf)[g(Y, φX) + g(hY, φX]. (4.25)

Applying Poincare’s lemma: On a contractible manifold, all closed forms are exact. There-
fore d2f(X,Y ) = 0, for all X,Y ∈ χ(M). From which we have

XY (f)− Y X(f)− [X,Y ]f = 0,

that is,

Xg(gradf, Y )− Y g(gradf,X)− g(gradf, [X,Y ]) = 0.

This is equivalent to

∇Xg(gradf, Y )− g(gradf,∇XY )− g(gradf,X) + g(gradf,∇Y X) = 0.

Since ∇g = 0, the above equation yields

∇Xg(gradf, Y )− g(gradf,X) = 0,

that is, g(∇XDf, Y ) = g(∇Y Df,X). Replacing X by φX and Y by φY in the foregoing
equation we obtain g(∇φXDf, φY ) = g(∇φY Df, φX). Applying this in (4.24) and (4.25) we
have (ξf)g(X,φY ) = 0, that is, (ξf)dη(X,Y ) = 0. Since dη6 = 0, it follows that ξf = 0.
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Consequently from (4.23) we obtain Df = 0, this implies f is constant. Therefore from (4.1)
we have

S(X,Y ) =

(
1

2τ
− 2
n
+ p

)
g(X,Y ). (4.26)

This shows the manifold is an Einstein manifold.
Case 3. If µ(2n−1)−2(n−1) = 0, that is, µ = 2(n−1)2n−1 . Using (4.19) we get k = n 1

n .
From (2.13) and (4.19) we obtain

(2(1− n) + nµ2nk)(Df − ()ξ) + (2(n− 1) + µ− 2nµ)hDf = 0. (4.27)

Making use of µ = 2(n1)2n1and k = n 1
n in the above equation and noticing n > 1 we have

Df = (ξf). Proceeding in the same way as in Case 2 we obtain the manifold is an Einstein
manifold.
Therefore now, we can state the following:

Theorem 4.1. Let (M, g) be a (2n+1)-dimensional (n > 1) (k, µ)-paracontact metric manifold
with k 6= −1. If g is a gradient almost conformal Ricci soliton, then either the manifold is locally
isometric to a product of a flat (n+ 1)-dimensional manifold and an n-dimensional manifold of
negative constant curvature equal to −4, or, M2n+1 is an Einstein manifold.
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