Vol. 9(2)(2020), 874-879

On an anti-Kaehler-Codazzi manifold

B. B. Chaturvedi and B. K. Gupta

Communicated by Zafar Ahsan

MSC 2010 Classifications: 53C10, 53C15, 53Q60.

Keywords and phrases: Riemannian manifold, semi-symmetric metric connection, Kaehler manifold, anti-Kaehler manifold, anti-Kaehler-Codazzi manifolds.

Abstract The present paper contains the studied of curvature properties of anti-Kaehler-Codazzi manifolds equipped with a semi-symmetric metric connection.

1 Introduction

Let (M^n, g) n > 2 be 2n-dimensional Riemannian manifold with Riemannian metric g. A connection is said to be symmetric if the torsion tensor with respect to that connection be equal to zero otherwise it is called a non-symmetric connection. If the covariant derivative of a metric tensor with respect to a given connection be zero then the connection is called a metric connection otherwise it is called a non-metric connection. The Riemannian manifold equipped with a semi-symmetric metric connection has been studied by O. C. Andonie [15], M. C. Chaki and A. Konar [14], K. Yano and M. Kon[12], K.Yano[13], B. B. Chaturvedi and P. N. Pandey [9, 10, 11] and B.B. Chaturvedi and B. K. Gupta [6, 7, 8]. The existence of semi-symmetric metric connections on a (k, μ) - contact metric manifolds is studied by A. A. Shaikh and S. K. Jana [2] in 2006. In 2010, generalized pseudo-symmetric Ricci symmetric manifolds admitting semi-symmetric metric

connection was discussed by A. Shaikh, C. *Özgür* and S. K. Jana [3]. Some class of Riemannian manifold is studied by A. A. Shaikh and T. Q. Binh [4] in 2008. In

2013, A. Salimov and S.Turanli [5] studied some curvature properties of anti-Kaehler-Codazzi manifolds with respect to the Riemannian connection. In consequences of these studies, we have inspired to study these curvature properties of anti-Kaehler-Codazzi manifolds with respect to semi-symmetric metric connection.

A. Friedman and J. A. Schouten [1] considered semi-symmetric metric connection ∇ and Riemannian connection D with coefficients Γ_{ij}^h and $\{{}_{ij}^h\}$ respectively. According to them if the torsion tensor T of the connection ∇ on M^n , (n > 2) be

$$T_{ij}^{h} = \delta_{i}^{h}\omega_{j} - \delta_{j}^{h}\omega_{i}, \qquad (1.1)$$

then

$$\Gamma_{ij}^{h} = \{{}^{h}_{ij}\} + \delta^{h}_{i} \omega_{j} - g_{ij} \omega^{h}, \qquad (1.2)$$

where $\omega^h = \omega_t g^{th}$, ω^h being the contravariant components of the generating vector w_h and

$$\nabla_{j} \omega_{i} = D_{j} \omega_{i} - \omega_{i} \omega_{j} + g_{ij} \omega, \text{ where } \omega = \omega^{h} \omega_{h}.$$
(1.3)

A. Friedman and J. A. Schouten [1] also obtained the relation between curvature tensor with respect to semi-symmetric metric connection and Riemannian connection i.e.

$$\overline{R}_{i\,j\,k\,h} = R_{i\,j\,k\,h} - g_{i\,h}\,\pi_{j\,k} + g_{j\,h}\,\pi_{i\,k} - g_{j\,k}\,\pi_{i\,h} + g_{i\,k}\,\pi_{j\,h},\tag{1.4}$$

where

$$\pi_{j\,k} = \nabla_j \,\omega_k - \omega_j \,\omega_k + \frac{1}{2} \,g_{j\,k} \,\omega. \tag{1.5}$$

Equation (1.4) satisfies

$$(a)\overline{R}_{(ij)\,k\,h} = 0,$$

$$(b)\overline{R}_{ij\,(k\,h)} = 0,$$

$$(c)\overline{R}_{ij\,k\,h} = \overline{R}_{i\,k\,j\,h} \quad if \quad (g_{i\,k}\pi_{j\,h} = g_{i\,j}\pi_{k\,h} \quad and \quad \pi_{j\,k} = \pi_{k\,j}),$$

$$(d)\overline{R}_{i\,j\,k\,h} = \overline{R}_{h\,k\,j\,i} \quad if \quad (g_{i\,k}\pi_{j\,h} = g_{i\,j}\pi_{k\,h} \quad and \quad \pi_{j\,k} = \pi_{k\,j}).$$

$$(1.6)$$

Taking covariant derivative of F_i^h with respect to Riemannian connection D and semi-symmetric metric connection ∇ , we have

$$D_k F_i^h = \partial_k F_i^h + F_i^r \{ {}^h_{rk} \} - F_r^h \{ {}^r_{ik} \},$$
(1.7)

and

$$\nabla_k F_i^h = \partial_k F_i^h + F_i^r \Gamma_{rk}^h - F_r^h \Gamma_{ik}^r.$$
(1.8)

Subtracting (1.7) from (1.8), we have

$$\nabla_k F_i^h - D_k F_i^h = F_i^r \left(\Gamma_{rk}^h - \{ {}^h_{rk} \} \right) - F_r^h \left(\Gamma_{ik}^r - \{ {}^r_{ik} \} \right), \tag{1.9}$$

using (1.2) in (1.9), we get

$$\nabla_k F_i^h = D_k F_i^h. \tag{1.10}$$

Therefore, we can say that the covariant derivative of F_i^h with respect to Riemannian connection D and semi-symmetric metric connection ∇ are equal.

Again taking covariant derivative of (1.8) with respect to semi-symmetric metric connection $\nabla,$ we have

$$\nabla_{j}\nabla_{k}F_{i}^{h} = \partial_{j}\partial_{k}F_{i}^{h} - \partial_{r}F_{i}^{h}\Gamma_{jk}^{r} - \partial_{k}F_{r}^{h}\Gamma_{ij}^{r} + \partial_{k}F_{i}^{r}\Gamma_{rj}^{h} + (\partial_{j}F_{i}^{r} + F_{i}^{m}\Gamma_{mj}^{r} - F_{m}^{r}\Gamma_{ij}^{m})\Gamma_{rk}^{h} + F_{i}^{r}\nabla_{j}\Gamma_{rk}^{h} - (\partial_{j}F_{r}^{h} + F_{r}^{m}\Gamma_{mj}^{r} - F_{m}^{h}\Gamma_{rj}^{m})\Gamma_{ik}^{r} - F_{r}^{h}\nabla_{j}\Gamma_{ik}^{r}.$$

$$(1.11)$$

Interchanging j and k in equation (1.11), we get

$$\nabla_{k}\nabla_{j}F_{i}^{h} = \partial_{k}\partial_{j}F_{i}^{h} - \partial_{r}F_{i}^{h}\Gamma_{jk}^{r} - \partial_{j}F_{r}^{h}\Gamma_{ik}^{r}$$

$$+ \partial_{j}F_{i}^{r}\Gamma_{rk}^{h} + (\partial_{k}F_{i}^{r} + F_{i}^{m}\Gamma_{mk}^{r} - F_{m}^{r}\Gamma_{ik}^{m})\Gamma_{rj}^{h}$$

$$+ F_{i}^{r}\nabla_{k}\Gamma_{rj}^{h} - (\partial_{k}F_{r}^{h} + F_{r}^{m}\Gamma_{mk}^{r} - F_{m}^{h}\Gamma_{rk}^{m})\Gamma_{ij}^{r} - F_{r}^{h}\nabla_{k}\Gamma_{ij}^{r}.$$
(1.12)

Subtracting (1.11) from (1.12), we get

$$\nabla_{k}\nabla_{j}F_{i}^{h} - \nabla_{j}\nabla_{k}F_{i}^{h} = F_{i}^{m}(\Gamma_{m\,k}^{r}\Gamma_{r\,j}^{h} - \Gamma_{m\,j}^{r}\Gamma_{r\,k}^{h} + \nabla_{k}\Gamma_{m\,j}^{h} - \nabla_{j}\Gamma_{m\,k}^{h}) - F_{r}^{h}(\Gamma_{m\,k}^{r}\Gamma_{i\,j}^{m} - \Gamma_{m\,j}^{r}\Gamma_{i\,k}^{m} + \nabla_{j}\Gamma_{i\,k}^{r} - \nabla_{k}\Gamma_{i\,j}^{r}).$$

$$(1.13)$$

Equation (1.13) implies

$$\nabla_k \nabla_j F_i^h - \nabla_j \nabla_k F_i^h = \overline{R}_{k\,j\,m}^h F_i^m - \overline{R}_{k\,j\,i}^r F_r^h.$$
(1.14)

2 Anti-Kaehler-Codazzi manifold

An even n-dimensional almost complex manifold M^n is said to be an almost complex manifold with almost complex structure F if

$$F^2 + I = 0. (2.1)$$

A semi Riemannian metric g having signature (n,n) is said to be an anti-Hermitian if the metric g satisfies

$$g(FX,Y) = g(X,FY), \qquad (2.2)$$

for any vector fields X and Y. An almost complex manifold M^n with an anti-Hermitian metric define by (2.2) is called an almost anti-Hermitian manifold. An anti-Hermitian manifold is said to be an anti-Kaehler manifold if $D_X F = 0$, where D is a Riemannian connection. We know that the 2-dimensional anti-Kaehler manifold is flat, therefore, throughout this paper we have considered the dimension $n \ge 4$.

Now, we define a fundamental 2-form ω satisfies

$$\omega(X,Y) = g(FX,Y), \tag{2.3}$$

where $\omega(Y, X) + \omega(X, Y) = 0$, this skew-symmetric tensor ω is said to be Killing-Yano tensor if

$$(D_X\omega)(Y,Z) + (D_Y\omega)(X,Z) = 0.$$
 (2.4)

An almost complex manifold is said to be nearly Kaehler manifold if the almost complex structure F satisfies

$$(D_X F)Y + (D_Y F)X = 0, (2.5)$$

for any vector fields X and Y.

The twin anti-Hermitian metric G is defined by

$$G(Y,Z) = g(FY,Z),$$
(2.6)

where G(Y,Z) = G(Z,Y), since G is symmetric but 2-form ω is not symmetric so the Killing-Yano equation (2.4) has no immediate meaning. Therefore we can change the Killing-Yano equation by Codazzi equation

$$(D_X G)(Y, Z) - (D_Y G)(X, Z) = 0.$$
(2.7)

Equation (2.7) is equivalent to

$$(D_X F)Y - (D_Y F)X = 0. (2.8)$$

If almost complex structure of almost anti-Hermitian manifold satisfies (2.8), then the triplet (M^n, F, g) is called an anti-Kaehler-Codazzi manifold.

By straight forward calculation we can also show that the Nijenhuis tensor with respect to Riemannian connection is equal to Nijenhuis tensor with respect to semi-symmetric metric connection i.e.

$$\overline{N}(X,Y) = N(X,Y). \tag{2.9}$$

In 2013, A. Salimov and S.Turanli [5] proved that

Theorem 2.1. Anti-Kaehler-Codazzi manifolds have integrable almost anti-Hermitian structure.

Now we propose:

Theorem 2.2. Anti-Kaehler-Codazzi manifolds equipped with semi-symmetric metric connection have an integrable almost anti-Hermitian structure with respect to the semi-symmetric metric connection.

Proof. From (2.9) we see that the Nijenhuis tensor with respect to Riemannian connection is equal to Nijenhuis tensor with respect to the semi-symmetric metric connection.

From theorem (2.1), we get

$$N(X,Y) = 0,$$
 (2.10)

using this in (2.9), we have

$$\overline{N}(X,Y) = 0. \tag{2.11}$$

This means if Nijenhuis tensor in anti-Kaehler-Codazzi manifolds has an integrable almost anti-Hermitian structure with respect to Riemannian connection then it is also has an integrable almost anti-Hermitian structure with respect to the semi-symmetric metric connection.

3 Some curvature properties with respect to a semi-symmetric metric connection

Applying the Ricci identity to the tensor field F, we get

$$D_k D_j F_i^h - D_j D_k F_i^h = R_{kjm}^h F_i^m - R_{kji}^r F_r^h.$$
(3.1)

Now, subtracting (1.14) from (3.1), we get

$$(D_k D_j F_i^h - \nabla_k \nabla_j F_i^h) - (D_j D_k F_i^h - \nabla_j \nabla_k F_i^h) = R_{kjm}^h F_i^m - R_{kji}^r F_r^h - \overline{R}_{kjm}^h F_i^m + \overline{R}_{kji}^r F_r^h$$
(3.2)

Contracting (3.2) by h and k and using (1.10), we have

$$(D_h D_j F_i^h - \nabla_h \nabla_j F_i^h) = S_{jm} F_i^m - R_{hji}^r F_r^h - \overline{S}_{jm} F_i^m + \overline{R}_{hji}^r F_r^h.$$
(3.3)

Equation (3.3) implies

$$(D_h D_j F_i^h - \nabla_h \nabla_j F_i^h) = S_{jm} F_i^m - R_{hjil} g^{rl} F_r^h - \overline{S}_{jm} F_i^m + \overline{R}_{hjil} g^{rl} F_r^h = S_{jm} F_i^m - R_{hjil} G^{hl} - \overline{S}_{jm} F_i^m + \overline{R}_{hjil} G^{hl}.$$
(3.4)

In 2013, A. Solimov and S. Turanli [5] considered

$$H_{j\,i} = R_{h\,j\,i\,l}\,G^{h\,l}.\tag{3.5}$$

Similarly, we can take

$$\overline{H}_{j\,i} = \overline{R}_{h\,j\,i\,l}\,G^{h\,l},\tag{3.6}$$

using (3.5) and (3.6) in (3.4), we have

$$(D_h D_j F_i^h - \nabla_h \nabla_j F_i^h) = S_{jm} F_i^m - H_{ji} - \overline{S}_{jm} F_i^m + \overline{H}_{ji}, \qquad (3.7)$$

where S_{jm} , \overline{S}_{jm} and G^{hl} are Ricci tensor with respect to Riemannian connection, semisymmetric metric connection and twin anti-Hermitian metric G respectively. From (1.6) and (3.6), \overline{H}_{ji} can be written as

$$\overline{H}_{j\,i} = \frac{1}{2} (\overline{R}_{h\,j\,i\,l} + \overline{R}_{l\,j\,i\,h}) \, G^{l\,h} = \frac{1}{2} (\overline{R}_{h\,j\,i\,l} + \overline{R}_{i\,h\,l\,j}) \, G^{l\,h}.$$
(3.8)

Interchanging i and j in (3.8), we get

$$\overline{H}_{ij} = \frac{1}{2} (\overline{R}_{h\,i\,j\,l} + \overline{R}_{l\,i\,j\,h}) \, G^{l\,h} = \frac{1}{2} (\overline{R}_{h\,i\,j\,l} + \overline{R}_{j\,h\,l\,i}) \, G^{l\,h}.$$
(3.9)

Subtracting (3.8) from (3.9), we get

$$\overline{H}_{ij} - \overline{H}_{ji} = \frac{1}{2} (\overline{R}_{h\,ij\,l} + \overline{R}_{l\,ij\,h} - \overline{R}_{h\,j\,i\,l} - \overline{R}_{l\,j\,i\,h}) G^{l\,h}, \qquad (3.10)$$

now using (1.6)in (3.10), we get

$$\overline{H}_{ij} = \overline{H}_{ji}. \tag{3.11}$$

Hence from (3.11), we conclude

Theorem 3.1. In an anti-Kaehler-Codazzi manifold equipped with a semi-symmetric metric connection. The tensor \overline{H}_{ij} defined by (3.6) is symmetric.

Now equation (3.7) can be written as

$$D_{h}(D_{j}F_{i}^{h} - D_{i}F_{j}^{h}) - \nabla_{h}(\nabla_{j}F_{i}^{h} - \nabla_{i}F_{j}^{h}) = (S_{jm}F_{i}^{m} - H_{ji}) - (S_{im}F_{j}^{m} - H_{ij}) + (\overline{S}_{im}F_{j}^{m} - \overline{H}_{ij}) - (\overline{S}_{jm}F_{i}^{m} - \overline{H}_{ji}),$$
(3.12)

In 2013, A. Solimov and S. Turanli [5] shown that

$$H_{i\,i} = H_{j\,i}.$$
 (3.13)

using (1.10), (2.8) and (3.13) in equation (3.12), we have

$$S_{jm} F_i^m - S_{im} F_j^m - \overline{S}_{jm} F_i^m + \overline{S}_{im} F_j^m = 0.$$
(3.14)

In 2013, A. Solimov and S. Turanli [5] proved that

Theorem 3.2. In an anti-Kaehler-Codazzi manifold, the Ricci tensor is pure with respect to Riemannian connection D i.e.

$$S_{jm} F_i^m = S_{im} F_j^m. ag{3.15}$$

Using (3.15) in (3.14), we get

$$\overline{S}_{j\,m}\,F_i^m = \overline{S}_{i\,m}\,F_j^m.\tag{3.16}$$

Thus we conclude:

Theorem 3.3. If M^n be an anti-Kaehler-Codazzi manifold equipped with semi-symmetric metric connection ∇ then the Ricci tensor with respect to a semi-symmetric metric connection ∇ is pure if the Ricci tensor with respect to Riemannian connection D is pure.

In 2013, A. Salimov and S. Turanli [5] considered *Ricci tensor with respect to Riemannian connection D which is given by

$$S_{ji}^* = -H_{jr} F_i^r = -R_{hjrl} G^{lh} F_i^r, aga{3.17}$$

Now, we are taking *Ricci tensor with respect to semi-symmetric metric connection ∇

$$\overline{S^*}_{j\,i} = -\overline{H}_{j\,r}\,F_i^r = -\overline{R}_{h\,j\,r\,l}\,G^{l\,h}\,F_i^r,\tag{3.18}$$

In 2013 A. Salimov and S. Turanli [5] proved that

Theorem 3.4. Let (M, g, F) be an anti-Kaehler-codazzi manifold then

$$S_{j\,m} = S_{j\,m}^*,$$
 (3.19)

if only if

$$D_h D_j F_i^h = 0, (3.20)$$

where S_{jm}^* and S_{jm} are *Ricci tensor with respect to Riemannian connection and Ricci tensor with respect to Riemannian connection.

Now, we propose:

Theorem 3.5. If \overline{S}_{jm}^* and \overline{S}_{jm} be *Ricci tensor with respect to a semi-symmetric metric connection and Ricci tensor with respect to semi-symmetric metric connection in an anti-Kaehler-Codazzi manifold equipped with a semi-symmetric metric connection and $D_h D_j F_i^h = 0$ then $\overline{S}_{jm}^* = \overline{S}_{jm}$ if and only if $\nabla_h \nabla_j F_i^h = 0$.

Proof. Equation (3.17) and (3.18) can be written as

$$S_{jr}^* F_i^r = H_{ji} \quad and \quad \overline{S_{jr}^*} F_i^r = \overline{H}_{ji}, \tag{3.21}$$

from (3.7) and (3.21), we have

$$(D_h D_j F_i^h - \nabla_h \nabla_j F_i^h) = (S_{jr}^* F_i^r - S_{jr} F_i^r) - (\overline{S}_{jm}^* F_i^m - \overline{S}_{jm} F_i^m), \qquad (3.22)$$

using (3.19) and (3.20) in (3.22), we get

$$\nabla_h \nabla_j F_i^h = \overline{S}_{j\,m}^* F_i^m - \overline{S}_{j\,m} F_i^m, \qquad (3.23)$$

equation (3.23) implies that

$$\nabla_h \nabla_j F_i^h = 0, \quad \text{if only if} \quad \overline{S}_{j\,m}^* F_i^m = \overline{S}_{j\,m} F_i^m.$$

4 Acknowledgement

The second author expresses his thanks to (UGC) New Delhi, India for providing Senior Research Fellowship (SRF).

References

- [1] A. Friedman and J. A. Schouten, *Über die geometric derhalbsymmetricschen Übertragung*, Math. Z. **21**, 211–223 (1994).
- [2] A. A. Shaikh and S. K. Jana, On quarter symmetric metric connections on a (K, μ)- contact metric manifolds, Commun. Fac, Sci. Univ. Ank. Series A1, 55(1), 33–45 (2006).
- [3] A. A. Shaikh and C. Özgür and S. K. Jana, On generalized pseudo Ricci symmetric manifolds admitting semi-symmetric connection, Proc. of Estonian Acad. of Sciences, 59(3), 207–215 (2010).
- [4] A. A. Shaikh and T. Q. Binh, On some class of Riemannian manifolds, Bull. Transilvania Univ., Brasov 15(50), III, 351–362 (2008).
- [5] A. Solimov and S. Turanli, Curvature properties of anti-Kaehler-Codazzi manifolds, C. R. Acad. Sci. Paris, Ser.I. 351, 225–227 (2013).
- [6] B. B. Chaturvedi and B. K. Gupta, Study on semi-symmetric metric spaces, Novi Sad J. Math 44(2), 183–194 (2014).
- [7] B. B. Chaturvedi and B. K. Gupta, *Study of conharmonic recurrent symmetric Kaehler manifold with semi-symmetric metric connections*, Journal of International Academy of Physical Sciences 18(1), 183–194 (2014).
- [8] B. B. Chaturvedi and B. K. Gupta, *Study of a sem-symmetric space with a non-recurrent Torsion tensor*, Journal of International Academy of Physical Sciences, 20(3), 155–163 (2016).
- [9] B. B.Chaturvedi and P. N. Pandey, Semi-symmetric non metric connection on a Kähler manifold, Differential Geometry-Dynamical System 10, 86–90 (2008).
- [10] P. N. Pandey and B. B. Chaturvedi, Almost Hermitian manifold with semi-symmetric recurrent connection, J. Internat Acad Phy. Sci. 10, 69–74 (2006).
- [11] P. N. Pandey and B. B. Chaturvedi, Semi-symmetric metric connection on a Kähler manifold, Bull. Alld. Math. Soc. 22, 51–57 (2007).
- [12] K. Yano and M. Kon, Structure on manifolds series in Pure Mathematics, World Scientific Publishing Co. Singapore 3 (1984).
- [13] K. Yano, On semi-symmetric metric connections, Rev. Roumanie Math. Pures Appl. 15, 1579–1586 (1970).
- [14] M. C. Chaki and A. Konar, On a type of semi-symmetric connection on a Riemannian manifold, J. Pure Math 1, 77–80 (1981).
- [15] O. C. Andonie, Surune connection semi-symmetrique quilasse invariant la tenseur de Bochner, Ann. Fac. Sci. Kuishawa Zaire 247–253 (1976).

Author information

B. B. Chaturvedi and B. K. Gupta, Department of Pure and Applied Mathematics, Guru Ghasidas Vishwavidyalaya Bilaspur (C.G.), India.

E-mail: brajbhushan25@gmail.com and brijeshggv75@gmail.com

Received: October 28, 2018. Accepted: February 7, 2019.