
Palestine Journal of Mathematics

Vol. 9(2)(2020) , 874–879 © Palestine Polytechnic University-PPU 2020

On an anti-Kaehler-Codazzi manifold

B. B. Chaturvedi and B. K. Gupta 

Communicated by Zafar Ahsan

MSC 2010 Classifications: 53C10, 53C15, 53Q60.

Keywords and phrases: Riemannian manifold, semi-symmetric metric connection, Kaehler manifold, anti-Kaehler manifold, 
anti-Kaehler-Codazzi manifolds.

Abstract The present paper contains the studied of curvature properties of anti-Kaehler-
Codazzi manifolds equipped with a semi-symmetric metric connection.

1 Introduction

Let (Mn, g) n > 2 be 2n-dimensional Riemannian manifold with Riemannian metric g. A con-
nection is said to be symmetric if the torsion tensor with respect to that connection be equal to zero 
otherwise it is called a non-symmetric connection. If the covariant derivative of a metric tensor 
with respect to a given connection be zero then the connection is called a metric connec-tion 
otherwise it is called a non-metric connection. The Riemannian manifold equipped with a semi-
symmetric metric connection has been studied by O. C. Andonie [15], M. C. Chaki and A. Konar 
[14], K. Yano and M. Kon[12], K.Yano[13], B. B. Chaturvedi and P. N. Pandey [9, 10, 11] and B.B. 
Chaturvedi and B. K. Gupta [6, 7, 8]. The existence of semi-symmetric metric connec-tions on a (k, 
µ)- contact metric manifolds is studied by A. A. Shaikh and S. K. Jana [2] in 2006. In 2010, 
generalized pseudo-symmetric Ricci symmetric manifolds admitting semi-symmetric metric 
connection was discussed by A. Shaikh, C. Ö zgür and S. K. Jana [3].

Some class of Riemannian manifold is studied by A. A. Shaikh and T. Q. Binh [4] in 2008. In 
2013, A. Salimov and S.Turanli [5] studied some curvature properties of anti-Kaehler-Codazzi 
manifolds with respect to the Riemannian connection. In consequences of these studies, we have 
inspired to study these curvature properties of anti-Kaehler-Codazzi manifolds with respect to 
semi-symmetric metric connection.

A. Friedman and J. A. Schouten [1] considered semi-symmetric metric connection ∇ and
Riemannian connection D with coefficientsΓh

i j and{ h
i j}respectively. According to them if the

torsion tensor T of the connection∇ onMn, (n > 2) be

Th
i j = δh

i ωj − δh
j ωi, (1.1)

then

Γh
i j = { h

i j} + δh
i ωj − gi j ωh, (1.2)

whereωh = ωtg
t h , ωh being the contravariant components of the generating vectorwh and

∇j ωi = Dj ωi − ωi ωj + gi j ω, whereω = ωh ωh. (1.3)

A. Friedman and J. A. Schouten [1] also obtained the relation between curvature tensor with
respect to semi-symmetric metric connection and Riemannian connection i.e.

Ri j k h = Ri j k h − gi h πj k + gj h πi k − gj k πi h + gi k πj h, (1.4)

where

πj k = ∇j ωk − ωj ωk +
1
2

gj k ω. (1.5)
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Equation (1.4) satisfies

(a)R(i j) k h = 0,

(b)Ri j (k h) = 0,

(c)Ri j k h = Ri k j h if (gi kπj h = gi jπk h and πj k = πk j),

(d)Ri j k h = Rh k j i if (gi kπj h = gi jπk h and πj k = πk j).

(1.6)

Taking covariant derivative ofFh
i with respect to Riemannian connection D and semi-symmetric

metric connection∇, we have

Dk Fh
i = ∂k Fh

i + F r
i { h

r k} − Fh
r {

r
i k}, (1.7)

and
∇k Fh

i = ∂k Fh
i + F r

i Γh
r k − Fh

r Γr
i k. (1.8)

Subtracting (1.7) from (1.8), we have

∇k Fh
i − Dk Fh

i = F r
i (Γh

r k − { h
r k}) − Fh

r (Γr
i k − { r

i k}), (1.9)

using (1.2) in (1.9), we get
∇k Fh

i = Dk Fh
i . (1.10)

Therefore, we can say that the covariant derivative ofFh
i with respect to Riemannian connection

D and semi-symmetric metric connection∇ are equal.
Again taking covariant derivative of (1.8) with respect to semi-symmetric metric connection

∇, we have

∇j∇k Fh
i =∂j∂k Fh

i − ∂r Fh
i Γr

j k − ∂k Fh
r Γr

i j

+ ∂k F r
i Γh

r j + (∂j F r
i + Fm

i Γr
m j − F r

mΓm
i j )Γh

r k

+ F r
i ∇jΓh

r k − (∂j Fh
r + Fm

r Γr
m j − Fh

mΓm
r j )Γr

i k − Fh
r ∇jΓr

i k.

(1.11)

Interchanging j and k in equation (1.11), we get

∇k∇j Fh
i =∂k∂j Fh

i − ∂r Fh
i Γr

j k − ∂j Fh
r Γr

i k

+ ∂j F r
i Γh

r k + (∂k F r
i + Fm

i Γr
m k − F r

mΓm
i k )Γh

r j

+ F r
i ∇kΓh

r j − (∂k Fh
r + Fm

r Γr
m k − Fh

mΓm
r k )Γr

i j − Fh
r ∇kΓr

i j .

(1.12)

Subtracting (1.11) from (1.12), we get

∇k∇j Fh
i −∇j∇k Fh

i =Fm
i (Γr

m kΓh
r j − Γr

m jΓh
r k + ∇kΓh

m j −∇jΓh
m k)

− Fh
r (Γr

m k Γm
i j − Γr

m j Γm
i k + ∇jΓr

i k −∇kΓr
i j).

(1.13)

Equation (1.13) implies

∇k∇j Fh
i −∇j∇k Fh

i = R
h

k j m Fm
i − R

r

k j i Fh
r . (1.14)

2 Anti-Kaehler-Codazzi manifold

An even n-dimensional almost complex manifoldMn is said to be an almost complex manifold
with almost complex structure F if

F 2 + I = 0. (2.1)

A semi Riemannian metric g having signature (n,n) is said to be an anti-Hermitian if the metric
g satisfies

g(FX, Y ) = g(X,FY ), (2.2)
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for any vector fields X and Y. An almost complex manifoldMn with an anti-Hermitian metric
define by (2.2) is called an almost anti-Hermitian manifold. An anti-Hermitianmanifold is said
to be an anti-Kaehler manifold ifDXF = 0, where D is a Riemannian connection. We know
that the 2-dimensional anti-Kaehler manifold is flat, therefore, throughout this paper we have
considered the dimensionn ≥ 4.

Now, we define a fundamental 2-formω satisfies

ω(X,Y ) = g(FX, Y ), (2.3)

whereω(Y,X) + ω(X,Y ) = 0, this skew-symmetric tensorω is said to be Killing-Yano tensor
if

(DXω)(Y,Z) + (DY ω)(X,Z) = 0. (2.4)

An almost complex manifold is said to be nearly Kaehler manifold if the almostcomplex struc-
ture F satisfies

(DX F )Y + (DY F )X = 0, (2.5)

for any vector fields X and Y.
The twin anti-Hermitian metric G is defined by

G(Y,Z) = g(FY,Z), (2.6)

whereG(Y,Z) = G(Z, Y ), since G is symmetric but 2-formω is not symmetric so the Killing-
Yano equation (2.4) has no immediate meaning. Therefore we can change the Killing-Yano
equation by Codazzi equation

(DX G)(Y,Z) − (DY G)(X,Z) = 0. (2.7)

Equation (2.7) is equivalent to

(DX F )Y − (DY F )X = 0. (2.8)

If almost complex structure of almost anti-Hermitian manifold satisfies (2.8), then the triplet
(Mn, F, g) is called an anti-Kaehler-Codazzi manifold.
By straight forward calculation we can also show that the Nijenhuis tensor with respect to Rie-
mannian connection is equal to Nijenhuis tensor with respect to semi-symmetric metric connec-
tion i.e.

N(X,Y ) = N(X,Y ). (2.9)

In 2013, A. Salimov and S.Turanli [5] proved that

Theorem 2.1. Anti-Kaehler-Codazzi manifolds have integrable almost anti-Hermitian structure.

Now we propose:

Theorem 2.2. Anti-Kaehler-Codazzi manifolds equipped with semi-symmetric metric connection
have an integrable almost anti-Hermitian structure with respect to the semi-symmetric metric
connection.

Proof. From (2.9) we see that the Nijenhuis tensor with respect to Riemannian connection is
equal to Nijenhuis tensor with respect to the semi-symmetric metric connection.

From theorem (2.1), we get
N(X,Y ) = 0, (2.10)

using this in (2.9), we have
N(X,Y ) = 0. (2.11)

This means if Nijenhuis tensor in anti-Kaehler-Codazzi manifolds has an integrable almost anti-
Hermitian structure with respect to Riemannian connection then it is also has an integrable al-
most anti-Hermitian structure with respect to the semi-symmetric metric connection.
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3 Some curvature properties with respect to a semi-symmetric metric
connection

Applying the Ricci identity to the tensor field F, we get

DkDj Fh
i − DjDk Fh

i = Rh
k j m Fm

i − Rr
k j i Fh

r . (3.1)

Now, subtracting (1.14) from (3.1), we get

(DkDj Fh
i −∇k∇j Fh

i )−(DjDk Fh
i −∇j∇k Fh

i ) = Rh
k j m Fm

i −Rr
k j i Fh

r −R
h

k j m Fm
i +R

r

k j i Fh
r .

(3.2)
Contracting (3.2) by h and k and using (1.10), we have

(DhDj Fh
i −∇h∇j Fh

i ) = Sj m Fm
i − Rr

h j i Fh
r − Sj m Fm

i + R
r

h j i Fh
r . (3.3)

Equation (3.3) implies

(DhDj Fh
i −∇h∇j Fh

i ) =Sj m Fm
i − Rh j i l g

r l Fh
r − Sj m Fm

i + Rh j i l g
r l Fh

r

= Sj m Fm
i − Rh j i l G

h l − Sj m Fm
i + Rh j i l G

h l.
(3.4)

In 2013, A. Solimov and S. Turanli [5] considered

Hj i = Rh j i l G
h l. (3.5)

Similarly, we can take
Hj i = Rh j i l G

h l, (3.6)

using (3.5) and (3.6) in (3.4), we have

(DhDj Fh
i −∇h∇j Fh

i ) = Sj m Fm
i − Hj i − Sj m Fm

i + Hj i, (3.7)

whereSj m, Sj m and Gh l are Ricci tensor with respect to Riemannian connection, semi-
symmetric metric connection and twin anti-Hermitian metric G respectively.
From (1.6) and (3.6),Hj i can be written as

Hj i =
1
2
(Rh j i l + Rl j i h)Gl h =

1
2
(Rh j i l + Ri h l j)Gl h. (3.8)

Interchanging i and j in (3.8), we get

Hi j =
1
2
(Rh i j l + Rl i j h)Gl h =

1
2
(Rh i j l + Rj h l i)Gl h. (3.9)

Subtracting (3.8) from (3.9), we get

Hi j − Hj i =
1
2
(Rh i j l + Rl i j h − Rh j i l − Rl j i h)Gl h, (3.10)

now using (1.6)in (3.10), we get
Hi j = Hj i. (3.11)

Hence from (3.11), we conclude

Theorem 3.1. In an anti-Kaehler-Codazzi manifold equipped with a semi-symmetric metriccon-
nection. The tensorHi j defined by (3.6) is symmetric.

Now equation (3.7) can be written as

Dh(Dj Fh
i − Di Fh

j ) −∇h(∇j Fh
i −∇i Fh

j ) =(Sj m Fm
i − Hj i) − (Si m Fm

j − Hi j )

+ (Si m Fm
j − Hi j) − (Sj m Fm

i − Hj i),

(3.12)
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In 2013, A. Solimov and S. Turanli [5] shown that

Hi j = Hj i. (3.13)

using (1.10), (2.8) and (3.13) in equation (3.12), we have

Sj m Fm
i − Si m Fm

j − Sj m Fm
i + Si m Fm

j = 0. (3.14)

In 2013, A. Solimov and S. Turanli [5] proved that

Theorem 3.2. In an anti-Kaehler-Codazzi manifold, the Ricci tensor is pure with respect to
Riemannian connection D i.e.

Sj m Fm
i = Si m Fm

j . (3.15)

Using (3.15) in (3.14), we get

Sj m Fm
i = Si m Fm

j . (3.16)

Thus we conclude:

Theorem 3.3. If Mn be an anti-Kaehler-Codazzi manifold equipped with semi-symmetric metric
connection∇ then the Ricci tensor with respect to a semi-symmetric metric connection∇ is pure
if the Ricci tensor with respect to Riemannian connection D is pure.

In 2013, A. Salimov and S. Turanli [5] considered∗Ricci tensor with respect to Riemannian
connection D which is given by

S∗

j i = −Hj r F r
i = −Rh j r l G

l hF r
i , (3.17)

Now, we are taking∗Ricci tensor with respect to semi-symmetric metric connection∇

S∗

j i = −Hj r F r
i = −Rh j r l G

l h F r
i , (3.18)

In 2013 A. Salimov and S. Turanli [5] proved that

Theorem 3.4. Let (M, g, F) be an anti-Kaehler-codazzi manifold then

Sj m = S∗

j m, (3.19)

if only if
DhDjF

h
i = 0, (3.20)

whereS∗

j m and Sj m are ∗Ricci tensor with respect to Riemannian connection and Ricci
tensor with respect to Riemannian connection.

Now, we propose:

Theorem 3.5. If S
∗

j m and Sj m be∗Ricci tensor with respect to a semi-symmetric metric con-
nection and Ricci tensor with respect to semi-symmetric metric connection inan anti-Kaehler-
Codazzi manifold equipped with a semi-symmetric metric connection andDhDjF

h
i = 0 then

S
∗

j m = Sj m if and only if∇h∇j Fh
i = 0.

Proof. Equation (3.17) and (3.18) can be written as

S∗

j r F r
i = Hj i and S∗

j rF
r
i = Hj i, (3.21)

from (3.7) and (3.21), we have

(DhDj Fh
i −∇h∇j Fh

i ) = (S∗

j r F r
i − Sj r F r

i ) − (S
∗

j m Fm
i − Sj m Fm

i ), (3.22)

using (3.19) and (3.20) in (3.22), we get

∇h∇j Fh
i = S

∗

j m Fm
i − Sj m Fm

i , (3.23)

equation (3.23) implies that

∇h∇j Fh
i = 0, if only if S

∗

j m Fm
i = Sj m Fm

i .
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