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Abstract By constructing a Lyapunov functional, we obtain some sufficient conditions which
guarantee the stability, boundedness and square integrability of solutions for some nonlinear neutral
delay differential equations of third order. Our results improve and extend some well known results
in the literature and one example is given for illustration of the subject.

1 Introduction

In this paper we consider a specific class of third order neutral delay differential equations of the
following form

(x′′(t) + β(t)x′′(t− r))′ + Ψ(x′(t))x′′(t) + g(x′(t)) + f(x(t− σ)) = 0, (1.1)

and
(x′′(t) + β(t)x′′(t− r))′ + Ψ(x′(t))x′′(t) + g(x′(t))

+ f(x(t− σ)) = p(t, x, x(t− r), x′(t), x′(t− r), x′′),
(1.2)

for all t ≥ T ≥ t0 + ρ, where ρ = sup{r, σ},and the functions Ψ(x′(t)), g(x′(t − r))), f(x), β(t)
and p(t, x(t), x(t− r), x′(t), x′(t− r), x′′(t)) are continuous in their respective arguments. Besides,
it is supposed that the derivatives f ′(x), g′(y), β′(t) are continuous for all x, y with f(0) = g(0) =
0, 0 ≤ β(t) and α ≤ β′(t) ≤ 0.

Neutral differential equations have many applications. For example, these equations arise in
the study of two or more simple oscillatory systems with some interconnections between them and
in modeling physical problems such as vibration of masses attached to an elastic bar. See [18]
for reviews of this theory. In the qualitative analysis of such systems, the stability and asymp-
totic behavior of solutions play an important role. There is the permanent interest in obtaining
new sufficient conditions for the stability and boundedness of the solutions of third order neu-
tral differential equations. In many references the authors dealt with the problems by considering
Lyapunov functions or functionals and obtained the criteria for the stability and boundedness see
[1, 2, 8, 10, 11, 12, 13, 14, 15, 16, 17, 20, 21].

By a solution of (1.1) (respectively (1.2)) we mean a continuous function x : [tx,∞)→ R such
that Z(t) = x′′(t) + β(t)x′′(t − r) ∈ C1([tx,∞),R) and which satisfies equation (1.1) (resp. eq.
(1.2)) on [tx,∞). Without further mention, we will assume throughout that every solution x(t) of
(1.1) (eq. (1.2)) under consideration here is continuable to the right and nontrivial, i.e x(t) is defined
on some ray [tx,∞). Moreover, we tacitly assume that (1.1) (eq. (1.2)) possesses such solutions.

2 Stability

Suppose that there are positive constants d0, d1, d, M, δ, Ψ0, Ψ1 and η such that the following
conditions which will be used on the functions that appeared in equation (1.1) are satisfied:

i) Ψ0 < Ψ(y) < Ψ1.



2 A. MOULAI-KHATIR, M. REMILI and D. BELDJERD

ii)
f(x)

x
≥M > 0 (x 6= 0), and |f ′(x)| ≤ δ for all x.

iii) d2 < d0 ≤
g(y)

y
≤ d1.

iv)
δ

2
< d < Ψ0.

v)
∫ t

T

|β′(s)| ds < η.

Remark 2.1. It’s evident to see that β(t) ≤ β(T ) = c, for all t ≥ T .

For the sake of simplicity, we introduce the following notation

Y (t) = x′(t) + β(t)x′(t− r).

Let us, for convenience, replace (1.1) by the equivalent differential system
x′ = y,

y′ = z,

Z ′ = −Ψ(y)z − g(y)− f(x) +
∫ t

t−σ
f ′(x(s))y(s)ds.

(2.1)

It’s easy to see from (2.1) that

Y (t) = y(t) + β(t)y(t− r),
Z(t) = z(t) + β(t)z(t− r),
Y ′(t) = Z(t) + β′(t)y(t− r).

For the case p(t, x(t), x(t − r), x′(t), x′(t − r), x′′(t)) ≡ 0, the stability result of this paper is the
following theorem.

Theorem 2.2. If in addition to the hypotheses (i)-(v), suppose there exists a positive constant ε such
that the following is also satisfied

σ <
2
δ

min
{
ε

c
,

A1

1 + c+ 2d
,A2

}
,

where

−A1 = −dd0 + δ + c

(
d2

1
2

+ δ

)
+ (1 + c)2 +

3α
2
< 0;

−A2 = −B0 + (1 + c)2 +
c

2
(1 + 2B1) + ε < 0, (2.2)

B0 = Ψ0 − d, and B1 = Ψ1 − d.

Then the null solution of (2.1) is asymptotically stable.

Proof. The proof of this theorem depends on properties of the continuously differentiable function
W =W (t, xt, yt, zt) defined as

W (t) = V e
− 1
ω

∫ t

T

|β′(s)| ds
, (2.3)

where

V = V1 + V2 + λ

∫ 0

−σ

∫ t

t+s

y2(ξ)dξds,

V1 = dF (x) + f(x)Y + Y 2, (2.4)

V2 =
1
2
Z2 + dyZ +

∫ y

0
(g(u) + dΨ(u)u) du, (2.5)

+

∫ t

t−r

(
µ1y

2(s) + µ2z
2(s)

)
ds, (2.6)
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and
F (x) =

∫ x

0
f(u)du,

λ, µ1 and µ2 are positives constants which will be specified later in the proof.

Noting that

2
∫ x

0
f ′(u)f(u)du = f2(x),

and using (iv), we have

V1 = d

∫ x

0
f(u)du+

(
Y +

1
2
f(x)

)2

− 1
4
f2(x)

≥ d

∫ x

0
f(u)du− 1

2

∫ x

0
f ′(u)f(u)du

≥
∫ x

0

(
d− δ

2

)
f(u)du

≥
(
d− δ

2

)
F (x).

An application of condition (ii), give

F (x) =

∫ x

0
f(u)du ≥ 1

2
Mx2.

From conditions (i) and (iii), we have∫ y

0
(g(u) + dΨ(u)u) du ≥

1
2
(d0 + dΨ0) y

2.

Furthermore,

1
2
Z2 + dyZ +

d0

2
y2 =

1
4
(dy + Z)

2
+
d0

4

(
y +

d

d0
Z

)2

+
1
4
(
d0 − d2) y2 +

1
4

(
1− d2

d0

)
Z2.

Since
∫ t

t−r

(
µ1y

2(s) + µ2z
2(s)

)
ds ≥ 0, we obtain

V2 ≥ k0
(
y2 + Z2) ,

where

k0 = min
{
dΨ0

2
+

1
4
(
d0 − d2) , 1

4

(
1− d2

d0

)}
.

Thus,
V ≥ K0(x

2 + y2 + Z2), (2.7)

where
K0 = min

{
1
2
M

(
d− δ

2

)
, k0

}
.

From (2.3), (2.7) and condition (v) we have

W ≥ K1(x
2 + y2 + Z2), (2.8)

with

K1 = K0e
− η
ω .
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The time derivative of V gives
V ′ = U1 + U2 + U3,

where

U1 = [d−Ψ(y) + µ2] z
2 + [f ′(x) + µ1 + λσ] y2 − dg(y)y

+ [−µ1 + 2β′(t)β(t)] y2(t− r)− µ2z
2(t− r),

U2 = (β(t)f ′(x) + 2β′(t)) yy(t− r) + β′(t)f(x)y(t− r)
+β(t) (d−Ψ(y)) z(t− r)z + 2yz

+2β(t)yz(t− r) + 2β(t)y(t− r)z + 2β2(t)y(t− r)z(t− r)
−β(t)z(t− r) g(y),

and

U3 = [Z + dy]

∫ t

t−σ
f ′(x(s)y(s)ds− λ

∫ t

t−σ
y2(s)ds.

By conditions (i)-(iii) and the fact that β(t) ≤ c and |f(x)| < δ |x|, we get

U1 ≤ [−B0 + µ2] z
2 + [−dd0 + δ + µ1 + λσ] y2

+ [−µ1 + 2β′(t)β(t)] y2(t− r)− µ2z
2(t− r).

Also by using Schwartz inequality we get

U2 ≤ |β′(t)|δ2

2
x2 +

(
1 +

c

2
(
2 + d2

1 + δ
)
+ |β′(t)|

)
y2

+
(

1 +
c

2
(2 +B1)

)
z2

+

(
c

(
1 + c+

δ

2

)
+

3α
2

)
y2(t− r)

+
( c

2
(B1 + 2c+ 3)

)
z2(t− r),

and

U3 ≤ dδσ

2
y2 +

δσ

2
z2 +

cδσ

2
z2(t− r)

+

[
δ

2
(1 + c+ d)− λ

] ∫ t

t−σ
y2(s)ds.

So, after rearrangement and using the fact that α ≤ β′(t) ≤ 0, we have

V ′ ≤
[
−dd0 + δ + 1 +

c

2
(
2 + d2

1 + δ
)
+ µ1 +

(
dδ

2
+ λ

)
σ

]
y2

+

[
−B0 + 1 +

c

2
(2 +B1) + µ2 +

δσ

2

]
z2

+

[
−µ1 + c

(
1 + c+

δ

2

)
+

3α
2

]
y2(t− r)

+

[
−µ2 +

c

2
(3 +B1 + 2c) +

cδσ

2

]
z2(t− r)

+

[
δ2

2
x2 + y2

]
|β′(t)|

+

[
δ

2
(1 + c+ d)− λ

] ∫ t

t−σ
y2(s)ds.



STABILITY, BOUNDEDNESS and SQUARE INTEGRABILITY 5

By taking

δ

2
(1 + c+ d) = λ,

c

(
1 + c+

δ

2

)
+

3α
2

= µ1,

c

2
(3 +B1 + 2c) + ε = µ2,

we get

V ′ ≤
[
−dd0 + δ + c

(
d2

1
2

+ δ

)
+ (1 + c)2 +

3α
2

+ δ (1 + c+ 2d)
σ

2

]
y2

+
[
−B0 + (1 + c)2 +

c

2
(1 + 2B1) + ε+ δ

σ

2

]
z2

+

[
−ε+ cδσ

2

]
z2(t− r)

+

[
δ2

2
x2 + y2

]
|β′(t)|.

With the use of (2.2), we obtain

V ′ ≤
[
−A1 + [δ (1 + c+ 2d)]

σ

2

]
y2(t) +

[
−A2 + δ

σ

2

]
z2(t)

+

[
−ε+ cδσ

2

]
z2(t− r)

+ |β′(t)|
[
δ2

2
x2(t) + y2(t)

]
.

If
σ <

2
δ

min
{
ε

c
,

A1

1 + c+ 2d
,A2

}
,

then

V ′ ≤ −K2
(
y2(t) + z2(t)

)
+ |β′(t)|

[
δ2

2
x2(t) + y2(t)

]
,

where
K2 = min

{
−A1 + [δ (1 + c+ 2d)]

σ

2
,−A2 + δ

σ

2

}
.

From condition (v), one can see that

e

(
− η
ω

)
< e

(
− 1
ω

∫ t

T

|β′(s)| ds
)

= E(t) < 1.

Hence, by (2.3), we have

W ′(t) =

(
V ′ − |β

′(t)|
ω

V

)
E(t)

≤
(
−K2

[
y2(t) + z2(t)

]
+ |β′(t)|

[
δ2

2
x2(t) + y2(t)

]
− K0 |β′(t)|

ω
(x2 + y2 + Z2)

)
E(t)

≤
(
−K2

[
y2(t) + z2(t)

]
+K3 |β′(t)| (x2 + y2 + Z2)− K0 |β′(t)|

ω
(x2 + y2 + Z2)

)
E(t)

≤ −K4
[
y2(t) + z2(t)

]
, (2.9)

where
K4 = K2e

− ηω ,K3 =
1
2

max{2, δ2}, ω =
K0

K3
.
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From (2.9), W3(‖X‖) = K2e
− η
ω
[
y2(t) + z2(t)

]
is a positive definite function. The above discus-

sion guarantees that the null solution of (2.1) is asymptotically stable and completes the proof of
Theorem 2.2.

3 Boundedness

For the case p(t, x, y, x(t− r), y(t− r), z(t)) = p (·) 6= 0, equation (1.1) is equivalent to the system
x′ = y,

y′ = z,

Z ′ = −Ψ(y)z − g(y)− f(x) + p (·) +
∫ t

t−σ
f ′(x(s))y(s)ds.

(3.1)

Theorem 3.1. Assume that all the conditions of Theorem 2.2 are satisfied and there exist positive
constants q1 and q2 such that

I1) |p(t, x, y, x(t− r), y(t− r), z(t))| ≤ q(t) < q1,

I2)
∣∣∣∣∫ t

0
q(s)ds

∣∣∣∣ < q2.

Then there exists a positive constant D such that any solution of (3.1) satisfies

|x(t)| ≤ D, |y(t)| ≤ D, |Z(t)| ≤ D. (3.2)

Proof. On differentiating (2.3) along the system (3.1), we obtain

W ′(3.1) = W ′(2.1) + (Zp (·) + dyp (·)) e
− 1
ω

∫ t

T

|β′(s)| ds

≤ Zp (·) + dyp (·) .

Using condition (I1), we get
W ′(3.1) ≤ q(t)|Z|+ dq(t)|y|.

Now, the inequality |u| ≤ u2 + 1 lead

W ′(3.1) ≤ K5q(t)
[
y2 + Z2 + 2

]
≤ K5q(t)

[
x2 + y2 + Z2 + 2

]
, (3.3)

where K5 = max{1, d}.
In view of (2.8), the above estimates imply that

W ′(3.1) ≤
K5

K1
q(t)W +K6q(t), (3.4)

with K6 = 2K5. Integrating both sides from t1 to t, we easily obtain

W (t)−W (T ) ≤ K6

∫ t

T

q(s)ds+
K5

K1

∫ t

T

W (s)q(s)ds.

Let
q3 =W (T ) +K6q2. (3.5)

Thus

W (t) ≤ q3 +
K5

K1

∫ t

T

W (s)q(s)ds.

By using Gronwall inequality, it follows that

W (t) ≤ q3 exp
(
K5

K1

∫ t

T

q(s)ds

)
≤ q4, (3.6)
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where q4 = q3 exp
(
K5

K1
q2

)
. This result implies that there exists a constant D such that

|x(t)| ≤ D, |y(t)| ≤ D, |Z(t)| ≤ D.

This completes the proof of Theorem 3.1.

4 Square Integrability

Our next result concerns the square integrability of solutions to equation (1.2).

Theorem 4.1. If conditions (i)–(v), (I1) and (I2) hold, then any solution x of (1.2) satisfies∫ ∞
t0

(
x′′2(s) + x′2(s) + x2(s)

)
ds <∞.

Proof. Define H(t) as

H(t) =W (t) + ε0

∫ t

T

(z2(s) + y2(s))ds, (4.1)

where ε0 > 0, is a constant to be specified later. By differentiating H(t) and using (3.4), we obtain

H ′(t) ≤ [ε0 −K4] (z
2(t) + y2(t)) +

K5

K1
q(t)W +K6q(t).

If we Choose ε0 −K4 < 0, then from (3.6) we get

H ′(t) ≤ K7q(t), (4.2)

where K7 =
K5

K1
q4 +K6. Integrating (4.2) from T to t, and using condition (I2) of Theorem 3.1, we

obtain

H(t)−H(T ) =

∫ t

T

H ′(s)ds ≤ K7q2.

Using (3.5) and equality H(T ) =W (T ), we get

H(t) ≤ K5

K1
q4q2 + q3.

We can conclude by (4.1) that∫ t

T

(z2(s) + y2(s))ds <
K5q4q2 +K1q3

K1ε0
,

which imply the existence of positive constants σ1 and σ2, such that∫ t

T

y2(s)ds ≤ σ1 and
∫ t

T

z2(s)ds ≤ σ2.

Hence ∫ t

T

x′2(s)ds ≤ σ1 and
∫ t

T

x′′2(s)ds ≤ σ2. (4.3)

Next multiplying (1.2) by x(t− σ), we obtain

[x′′(t) + βx′′(t− r)]′ x(t− σ) + Ψ(x′(t))x′′(t)x(t− σ) + g(x′(t))x(t− σ)
+f(x(t− σ))x(t− σ) = p(t, x, x(t− σ), x′(t), x′(t− σ), x′′)x(t− σ). (4.4)

Integrating (4.4) from T to t, we have∫ t

T

f(x(s− σ))x(s− σ)ds = L1(t) + L2(t) + L3(t) + L4(t), (4.5)
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where

L1(t) = −
∫ t

T

(x′′(s) + β(s)x′′(s− r))x(s− σ)ds,

L2(t) = −
∫ t

T

Ψ(x′(s))x′′(s)x(s− r)ds,

L3(t) = −
∫ t

T

g(x′(s))x(s− r)ds,

L4(t) =

∫ t

T

p(t, x, x(s− r), x′(t), x′(s− r), x′′)x(s− r)ds.

Integrating by parts and using (3.2) and (4.3), we obtain

L1(t) = −x(t− σ) [x′′(t) + β(t)x′′(t− r)] +
∫ t

T

(
[x′′(t) + β(s)x′′(t− r)]x′(s− σ)

)
ds+ C1

≤ C1 +D2(1 + c) +
1
2

∫ t

T

(
[x′′(s) + β(s)x′′(s− r)]2 + x′2(s− σ)

)
ds

≤ C1 +D2(1 + c) +
1
2

∫ t

T

(
x′′2(s) + c2x′′2(s− r) + 2cx′′(s)x′′(s− r) + x′2(s− σ)

)
ds

≤ l1,

where
C1 = |x(T − σ) [x′′(T ) + β(T )x′′(T − r)] |,

and
l1 = C1 +D2(1 + c) +

1
2
[(

1 + 2c+ c2)σ2 + σ1
]
.

In the same way, after using (i)-(iii), (I1), (I2), (3.2) and (4.3), one arrives at

L2(t) ≤
∫ t

T

|Ψ(x′(s))x′′(s)x(s− σ)| ds

≤
(∫ t

T

[Ψ (x′(s))x′′(s)]
2
ds

) 1
2
(∫ t

T

x2(s− σ)ds
) 1

2

≤ l2

(∫ t

T

x2(s− σ)ds
) 1

2

,

L3(t) ≤
∫ t

T

|g′(x′(s))x(s− σ)| ds

≤
(∫ t

T

[g′(x′(s))]
2
ds

) 1
2
(∫ t

T

x2(s− σ)ds
) 1

2

≤
(
d2

1

∫ t

T

x′2(s)ds

) 1
2
(∫ t

T

x2(s− σ)ds
) 1

2

≤ l3

(∫ t

t1

x2(s− σ)ds
) 1

2

,

L4(t) ≤
∫ t

T

|p(s, x, y, x(s− σ), x′(s− σ), x′′(s))x(s− σ)| ds

≤ D

∫ t

T

|q(s)| ds ≤ l4,

where
l2 =

√
Ψ2

1σ2, l3 =
√
d2

1σ1, and l4 = Dq2.
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In the other hand from condition (ii), we have∫ t

T

x(s− σ)f(x(s− σ))ds ≥M
∫ t

T

x2(s− σ)ds.

Hence, by (4.5) and condition I3 of Theorem 4.1, we obtain

M

∫ t

T

x2(s− σ)ds ≤ l1 + l2

(∫ t

T

x2(s− σ)ds
) 1

2

+ l3

(∫ t

T

x2(s− σ)ds
) 1

2

+ l4. (4.6)

If ∫ t

T

x2(s− σ)ds→∞ as t→∞,

then dividing both sides of (4.6) by
(∫ t

T

x2(s− σ)ds
) 1

2

, we immediately obtain a contradiction.

Hence, we deduce that
∫ t

T

x2(s − σ)ds < ∞, then
∫ +∞

T

x2(s)ds < ∞. This fact completes the

proof of Theorem 4.1.

5 Example

As a particular case of (1.2), consider the following third order neutral differential equation(
x′′(t) +

1
10
e−

10
3 tx′′(t− r)

)′
+

(
11
2

+
1
2

sinx′(t)
)
x′′(t) + (4.775)x′(t) +

1
200

x′(t) cos(x′(t))

+

[
19
10
x(t− r) + x(t− r)√

10 + |x(t− r)|

]
=

1
1 + t2 + |x|+ |y|+ |z|

,

The appearing functions in the equation are as follows

5 = Ψ0 ≤ Ψ(y) =
11
2

+
1
2

sin y ≤ Ψ1 = 6,

4.41 = d2 < d0 = 4.77 ≤ g(y)

y
= 4.775 +

1
200

cos y ≤ d1 = 4.87.

0 < β(t) =
1

10
e−

10
3 t ≤ 1

10
= c,

β′(t) = −1
3
e−

10
3 t < 0 and |β′(t)| =

∣∣∣∣−1
3
e−

10
3 t

∣∣∣∣ ≤ 1
3
= α,

1 =
δ

2
< d = 2.1 < Ψ0 = 5.

and the function
f(x) =

19
10
x+

x√
10+ | x |

.

It is clear, from this relation, that f(0) = 0. Also, since 0 ≤ 1√
10+ | x |

≤ 1 for all x, we have that

f(x)

x
≥ 19

10
=M,

for all x 6= 0. Moreover

|f ′(x)| =

∣∣∣∣∣19
10

+
1

(
√

10+ | x |)2

∣∣∣∣∣ ≤ 2 = δ.
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We also have

−dd0 + δ + c

(
d2

1
2

+ δ

)
+ (1 + c)2 +

3α
2

= −4.91 = −A1 < 0,

−B0 + (1 + c)2 +
c

2
(3 + 2B1) + ε = −1.05 = −A2 < 0, for ε =

1
10
.

The function
p(t, x, y, z) =

1
1 + t2 + |x|+ |y|+ |z|

≤ 1
1 + t2

= q(t),

and ∫ +∞

0
|q(t)|dt <∞,

for all t, x, y, z.
All assumptions of Theorem (4.1) hold true, thus, the conclusions also follow.
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