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Abstract In this paper, we present Hölder’ s and Minkowski’s inequalities with Euclidean
norm in the set of bicomplex numbers and define bicomplex sequence spaces. We also inves-
tigate the completeness property of our bicomplex sequence spaces using these Hölder’ s and
Minkowski’ s inequalities.

1 Introduction

Bicomplex numbers have been studied for quite a long time and a lot of work has been done
in this area. In 1892, Corrado Segre published a paper [12] in which he defined an infinite
set of algebras and gave the concept of bicomplex numbers. The most comprehensive study
of analysis in the bicomplex setting is available in the book of Price [11]. Alpay et al. [1]
developed a general theory of functional analysis with bicomplex scalars. In recent years, many
important results were obtained in this area. Few of them, which pertain and lead to our work,
are [6], [7], [8], [9], [10], [13], [14], [15]. Goyal and Goyal [7] developed bicomplex Hurwitz
zeta function and discussed the zeros and analytic continuation of this function. Goyal et al.
in [8] defined bicomplex Gamma and Beta functions and studied various properties connected
with these functions. Goyal [6] developed bicomplex Polygamma function and investigated
integral representation, recurrence relation, multiplication formula and reflection formula for
this function. Srivastava [13] initiated the systematic study of topological aspects of BC. He
defined three topologies τ1, τ2 and τ3 on BC. Kumar and Saini in [9] developed topological
modules over the ring of bicomplex numbers and discussed bicomplex convexivity, hyperbolic
valued semi-norms and hyperbolic valued Minkowski functionals in bicomplex modules. They
also gave the conditions under which topological bicomplex modules and locally bicomplex
convex modules become hyperbolic normable and hyperbolic metrizable, respectively.

Sequence spaces play an important role in functional analysis. These Banach spaces and their
structure has been studied by many authors [2], [3], [5]. A function f of a bicomplex variable is

said to be an entire function if it is holomorphic in the entire bicomplex space BC. If f (ζ) =
∞∑
k=1

αk (ζ − η)k represents an entire function, the series
∞∑
k=1

αk is called entire bicomplex series

and the sequence (αk) is called entire bicomplex sequence [11]. Srivastava and Srivastava [14]
defined and studied a class of entire bicomplex sequences, and also showed that this class is a
bicomplex module. Nigam [10] and Wagh [15] studied the subclasses of this class.

In this paper, we examine the validity of the bicomplex version of the well - known Hölder’
s and Minkowski’ s inequalities for sums, introduce bicomplex sequence spaces with Euclidean
norm in the set of bicomplex numbers and study completeness property of the spaces.

Now, we give definition and algebraic operations of bicomplex nıumbers and summarize the
notion of sequence and series in the set of bicomplex numbers. For further details we refer the
reader to [1], [11].

Definition 1.1. [11] Let i and j be independent imaginary units such that i2 = j2 = −1, ij = ji
and C (i) be the set of complex numbers with the imaginary unit i. The set of bicomplex numbers
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BC is defined by
BC = {ζ = ζ1 + jζ2 : ζ1, ζ2 ∈ C (i)} .

Lemma 1.2. [11] The set BC forms a ring with respect to the addition and multiplication defined
as

ζ + η = (ζ1 + jζ2) + (η1 + jη2) = (ζ1 + η1) + j (ζ2 + η2) ,

ζ.η = ζη = (ζ1 + jζ2) . (η1 + jη2) = (ζ1η1 − ζ2η2) + j (ζ1η2 + ζ2η1) .

Lemma 1.3. [11] For every ζ, η ∈ BC we have

|‖ζ‖BC − ‖η‖BC| ≤ ‖ζ − η‖BC (1.1)

and
‖ζη‖BC ≤

√
2 ‖ζ‖BC ‖η‖BC , (1.2)

where ‖‖BC is Euclidean norm in BC defined by

‖‖BC : BC→ [0,∞) , ζ → ‖ζ‖BC = ‖ζ1 + jζ2‖BC =
(
|ζ1|2 + |ζ2|2

) 1
2
. (1.3)

Definition 1.4. [11] A sequence in BC (a bicomplex sequence) is a function defined by ζ : N→
BC, n→ ζn, ζn ∈ BC. This sequence converges to a point ζ∗ ∈ BC if and only if to each ε > 0
there corresponds an n0 (ε) ∈ N such that ‖ζn − ζ∗‖BC < ε for all n ≥ n0 (ε) . The sequence
ζ = (ζn) is a Cauchy sequence in BC (a bicomplex Cauchy sequence) if and only if to each
ε > 0 there corresponds an n0 (ε) ∈ N such that ‖ζn − ζm‖BC < ε for all n,m ≥ n0 (ε) . Also,
ζ = (ζn) converges to a point in BC if and only if it is a bicomplex Cauchy sequence.

Lemma 1.5. [11] If ζ : N → BC, n → ζn = ζ1n + jζ2n is a bicomplex sequence and lim
n→∞

ζn =

ζ∗1 + jζ∗2 = ζ∗ then the following limits exist and have the values shown:

lim
n→∞

ζ1n = ζ∗1 , lim
n→∞

ζ2n = ζ∗2 . (1.4)

Furthermore, if the limits exist as indicated in (1.4), then lim
n→∞

ζn exists and lim
n→∞

ζn = ζ∗.

Definition 1.6. [11] Let (ζk)k∈N be a bicomplex sequence. Then, the infinite sum

∞∑
k=1

ζk =
∞∑
k=1

(ζ1k + jζ2k) = ζ1 + ζ2 + ...+ ζn + ... (1.5)

is called an infinite series in BC.Define the sequence s : N→ BC, n→ sn by setting sn =
n∑
k=1

ζk

for all n ∈ N. The infinite series (1.5) converges if and only if

lim
n→∞

sn (1.6)

exists; if the limit (1.6) does not exist, the series diverges. If lim
n→∞

sn = ζ∗ then, ζ∗ is called the

sum of series, and we write
∞∑
k=1

ζk = ζ∗.

Lemma 1.7. [11] The infinite series (1.5) converges and has the sum ζ∗ = ζ∗1 + jζ∗2 if and only
if the following infinite series converge and have the sums shown:

∞∑
k=1

ζ1k = ζ∗1 ,

∞∑
k=1

ζ2k = ζ∗2 .

Lemma 1.8. [11] By definition of absolutely convergence, we know that
∞∑
k=1

ζk converges ab-

solutely if and only if
∞∑
k=1
‖ζk‖BC converges. Then a series in BC converges if it converges

absolutely in BC.
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Lemma 1.9 (Young’ s Inequality). [4] Let 1 < p < q < ∞ be such that 1
p + 1

q = 1. Then
a.b ≤ ap

p + bq

q for a and b positive real numbers. The equality holds if ap = bq.

Lemma 1.10. [16] Let p ∈ (0, 1) . Then for a ≥ 0 and b ≥ 0 we have (a+ b)
p ≤ ap + bp. The

equality holds if and only if at least one of a and b is equal to 0.

Lemma 1.11 (Hölder’ s Inequality). [16] Let (αn : n ∈ N) and (βn : n ∈ N) be two sequences
of complex numbers. Let p, q ∈ (1,∞) be conjugates, that is, 1

p +
1
q = 1. Then, we have Hölder’

s inequality for series, that is,

∞∑
n=1

|αnβn| ≤

[ ∞∑
n=1

|αn|p
] 1

p
[ ∞∑
n=1

|βn|p
] 1

p

.

2 Some Inequalities with Euclidean Norm in the Set of Bicomplex Numbers

In this section, we introduce three inequalities with Euclidean norm in the set of bicomplex
numbers which will be required in the subsequent sections.

Theorem 2.1. Let ζ, η ∈ BC. Then, the following inequality holds :

‖ζ + η‖BC
1 + ‖ζ + η‖BC

≤
‖ζ‖BC

1 + ‖ζ‖BC
+

‖η‖BC
1 + ‖η‖BC

.

Proof. Define the function f : R − {−1} → R, f (t) = t
t+1 . Since f ′ (t) = 1

(1+t)2 for all t ∈
R− {−1}, the function is monotone increasing. Thus, since ‖ζ + η‖BC 6= −1 and ‖ζ + η‖BC ≤
‖ζ‖BC + ‖η‖BC for all ζ, η ∈ BC, we have f (‖ζ + η‖BC) ≤ f (‖ζ‖BC + ‖η‖BC) and hence

‖ζ + η‖BC
1 + ‖ζ + η‖BC

≤
‖ζ‖BC + ‖η‖BC

1 + ‖ζ‖BC + ‖η‖BC

=
‖ζ‖BC

1 + ‖ζ‖BC + ‖η‖BC
+

‖η‖BC
1 + ‖ζ‖BC + ‖η‖BC

≤
‖ζ‖BC

1 + ‖ζ‖BC
+

‖η‖BC
1 + ‖η‖BC

holds. This is what we wished to show.

Theorem 2.2 (Bicomplex Hölder’ s Inequality). Let p and q be real numbers with 1 < p < ∞
such that 1

p +
1
q = 1 and ζk, ηk ∈ BC for k ∈ {1, 2, ..., n} . Then

n∑
k=1

‖ζkηk‖BC ≤
√

2

(
n∑
k=1

‖ζk‖pBC

) 1
p
(

n∑
k=1

‖ηk‖qBC

) 1
q

.

Proof. Let us take

α =
‖ζk‖BC(

n∑
k=1
‖ζk‖pBC

) 1
p

, β =
‖ηk‖BC(

n∑
k=1
‖ηk‖qBC

) 1
q

.

By Young’ s inequality, we get

α.β =
‖ζk‖BC ‖ηk‖BC(

n∑
k=1
‖ζk‖pBC

) 1
p
(

n∑
k=1
‖ηk‖qBC

) 1
q

≤ 1
p

‖ζk‖pBC
n∑
k=1
‖ζk‖pBC

+
1
q

‖ηk‖qBC
n∑
k=1
‖ηk‖qBC

.

Termwise summation gives
n∑
k=1
‖ζk‖BC ‖ηk‖BC(

n∑
k=1
‖ζk‖pBC

) 1
p
(

n∑
k=1
‖ηk‖qBC

) 1
q

≤ 1
p
+

1
q
= 1
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and from this
n∑
k=1

‖ζkηk‖BC ≤
n∑
k=1

√
2 ‖ζk‖BC ‖ηk‖BC

=
√

2
n∑
k=1

‖ζk‖BC ‖ηk‖BC

≤
√

2

(
n∑
k=1

‖ζk‖pBC

) 1
p
(

n∑
k=1

‖ηk‖qBC

) 1
q

by the inequality (1.2) in Lemma 1.3. This completes the proof.

Theorem 2.3 (Bicomplex Minkowski’ s Inequality). Let p be a real number with 1 < p < ∞
and ζk, ηk ∈ BC for k ∈ {1, 2, ..., n} . Then(

n∑
k=1

‖ζk + ηk‖pBC

) 1
p

≤

( n∑
k=1

‖ζk‖pBC

) 1
p

+

(
n∑
k=1

‖ηk‖pBC

) 1
p

 .
Proof. We have

n∑
k=1

‖ζk + ηk‖pBC =
n∑
k=1

‖ζk + ηk‖p−1
BC ‖ζk + ηk‖BC

≤
n∑
k=1

‖ζk + ηk‖p−1
BC (‖ζk‖BC + ‖ηk‖BC)

=
n∑
k=1

‖ζk‖BC ‖ζk + ηk‖p−1
BC +

n∑
k=1

‖ηk‖BC ‖ζk + ηk‖p−1
BC .

Set q = p
p−1 . Then 1

p +
1
q = 1, so by Lemma 1.11 we write

n∑
k=1

‖ζk‖C2
‖ζk + ηk‖p−1

BC ≤

(
n∑
k=1

‖ζk‖pBC

) 1
p
(

n∑
k=1

‖ζk + ηk‖(
p−1)q
BC

) 1
q

n∑
k=1

‖ηk‖BC ‖ζk + ηk‖p−1
BC ≤

(
n∑
k=1

‖ηk‖pBC

) 1
p
(

n∑
k=1

‖ζk + ηk‖(
p−1)q
BC

) 1
q

.

Adding these two inequalities, we obtain that

n∑
k=1

‖ζk + ηk‖pBC ≤

( n∑
k=1

‖ζk‖pBC

) 1
p

+

(
n∑
k=1

‖ηk‖pBC

) 1
p

( n∑
k=1

‖ζk + ηk‖(
p−1)q
BC

) 1
q

.

Observing that (p− 1) q = p by definition, we have

n∑
k=1

‖ζk + ηk‖pBC ≤

( n∑
k=1

‖ζk‖pBC

) 1
p

+

(
n∑
k=1

‖ηk‖pBC

) 1
p

( n∑
k=1

‖ζk + ηk‖pBC

) 1
q

and so (
n∑
k=1

‖ζk + ηk‖pBC

)1− 1
q

≤

( n∑
k=1

‖ζk‖pBC

) 1
p

+

(
n∑
k=1

‖ηk‖pBC

) 1
p

 .
Finally, observe that 1

p = 1− 1
q , and the result follows as required.
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3 Some Sequence Spaces over the Set of Bicomplex Numbers

In this section, we define the setsw (BC) , l∞ (BC) , c (BC) , c0 (BC) and lp (BC) of all, bounded,
convergent, null and absolutely p− summable bicomplex sequences, we show that these sets are
metric spaces and we also give completeness property of these metric spaces. Then we say,

w (BC) : = {ζ = (ζk) : ζk ∈ BC for all k ∈ N} ,

l∞ (BC) : =

{
ζ = (ζk) ∈ w (BC) : sup

k∈N
‖ζk‖BC <∞

}
,

c (BC) : =

{
ζ = (ζk) ∈ w (BC) : there exists l∗ ∈ BC such that lim

k→∞
ζk = l∗

}
,

c0 (BC) : =

{
ζ = (ζk) ∈ w (BC) : lim

k→∞
ζk = 0

}
,

lp (BC) : =

{
ζ = (ζk) ∈ w (BC) :

∞∑
k=1

‖ζk‖pBC <∞

}
for 0 < p <∞.

Definition 3.1. The algebraic operations addition ⊕, scalar multiplication � and multiplication
⊗ defined on w (BC) as follows, respectively :

⊕ : w (BC)× w (BC)→ w (BC) , (s, t)→ s⊕ t = (sk + tk) ,

� : R× w (BC)→ w (BC) , (α, s)→ α� s = (αsk) ,

⊗ : w (BC)× w (BC)→ w (BC) , (s, t)→ s⊗ t = (sktk) ,

where s = (sk) , t = (tk) ∈ w (BC) and α ∈ R.

Theorem 3.2. The set w (BC) forms a linear space over R with respect to addition ⊕ and scalar
multiplication �.

Proof. The proof of this theorem is direct applications of definitions.

Theorem 3.3. Define the function dw(BC) on the space w (BC) of all bicomplex sequences by

dw(BC) : w (BC)× w (BC)→ [0,∞) , (s, t)→ dw(BC) (s, t) =
∞∑
k=1

µk.
‖sk − tk‖BC

1 + ‖sk − tk‖BC
,

where s = (sk) , t = (tk) ∈ w (BC) and (µk) ⊂ [0,∞) such that
∞∑
k=1

µk is convergent with

µk > 0 for all k ∈ N. Then,
(
w (BC) , dw(BC)

)
is a metric space.

Proof. We show that dw(BC) satisfies the metric axioms on the space w (BC) of all bicomplex
sequences. We have ‖sk − tk‖BC ≥ 0 and hence µk.

‖sk−tk‖BC
1+‖sk−tk‖BC

≥ 0 for all sk, tk ∈ BC and

µk ∈ [0,∞) . This means that dw(BC) (s, t) =
∞∑
k=1

µk.
‖sk−tk‖BC

1+‖sk−tk‖BC
≥ 0 for all s, t ∈ w (BC) . It is

easy to see that

dw(BC) (s, t) =
∞∑
k=1

µk.
‖sk − tk‖BC

1 + ‖sk − tk‖BC
= 0⇐⇒ µk.

‖sk − tk‖BC
1 + ‖sk − tk‖BC

= 0,∀k ∈ N

⇐⇒
‖sk − tk‖BC

1 + ‖sk − tk‖BC
= 0,∀k ∈ N

⇐⇒ ‖sk − tk‖BC = 0,∀k ∈ N
⇐⇒ sk = tk,∀k ∈ N
⇐⇒ s = t,
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and also

dw(BC) (s, t) =
∞∑
k=1

µk.
‖sk − tk‖BC

1 + ‖sk − tk‖BC
=
∞∑
k=1

µk.
‖tk − sk‖BC

1 + ‖tk − sk‖BC
= dw(BC) (t, s)

for all s = (sk) , t = (tk) ∈ w (BC) .
Now, we show that dw(BC) (s, u) ≤ dw(BC) (s, t)+dw(BC) (t, u) for all s = (sk) , t = (tk) , u =

(uk) ∈ w (BC) .We know that by Theorem 2.1

n∑
k=1

µk.
‖sk − uk‖BC

1 + ‖sk − uk‖BC
=

n∑
k=1

µk.
‖(sk − tk) + (tk − uk)‖BC

1 + ‖(sk − tk) + (tk − uk)‖BC
(3.1)

≤
n∑
k=1

µk.

(
‖sk − tk‖BC

1 + ‖sk − tk‖BC
+

‖tk − uk‖BC
1 + ‖tk − uk‖BC

)

=
n∑
k=1

µk.
‖sk − tk‖BC

1 + ‖sk − tk‖BC
+

n∑
k=1

µk.
‖tk − uk‖BC

1 + ‖tk − uk‖BC

holds for all n ∈ N and inequalities

µk.
‖sk − uk‖BC

1 + ‖sk − uk‖BC
≤ µk

µk.
‖sk − tk‖BC

1 + ‖sk − tk‖BC
≤ µk

µk.
‖tk − uk‖BC

1 + ‖tk − uk‖BC
≤ µk

hold for all k ∈ N. Then, the comparison test implies the convergence of the series

∞∑
k=1

µk.
‖sk − uk‖BC

1 + ‖sk − uk‖BC
,

∞∑
k=1

µk.
‖sk − tk‖BC

1 + ‖sk − tk‖BC
,

∞∑
k=1

µk.
‖tk − uk‖BC

1 + ‖tk − uk‖BC
.

Therefore, by letting n → ∞ in (3.1) , dw(BC) (s, u) ≤ dw(BC) (s, t) + dw(BC) (t, u) , as required.

Theorem 3.4. The set of l∞ (BC) is a sequence space.

Proof. It is obvious that the inclusion l∞ (BC) ⊂ w (BC) holds.
(i) Let s = (sk) , t = (tk) ∈ l∞ (BC) . In this situation, combining the hypothesis sup

k∈N
‖sk‖BC <

∞, sup
k∈N
‖tk‖BC <∞ with the fact ‖sk + tk‖BC ≤ ‖sk‖BC + ‖tk‖BC , we can see that

sup
k∈N
‖sk + tk‖BC ≤ sup

k∈N
‖sk‖BC + sup

k∈N
‖tk‖BC <∞

which means that s⊕ t ∈ l∞ (BC) .
(ii) Let α ∈ R and s = (sk) ∈ l∞ (BC) . Since ‖αsk‖BC = |α| . ‖sk‖BC and sup

k∈N
‖sk‖BC <∞,

we can easily derive that

sup
k∈N
‖αsk‖BC = |α| .sup

k∈N
‖sk‖BC <∞.

Hence, α� s ∈ l∞ (BC) . That is to say that l∞ (BC) is a subspace of the space w (BC) .

Theorem 3.5. The norm function ‖‖BC defined by (1.3) is continuous.

Proof. The proof depends on the inequality (1.1) in Lemma 1.3.
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Theorem 3.6. Define the function dl∞(BC) by

dl∞(BC) : l∞ (BC)× l∞ (BC)→ [0,∞) , (s, t)→ dl∞(BC) (s, t) = sup
k∈N
‖sk − tk‖BC ,

where s = (sk) , t = (tk) ∈ w (BC) . Then
(
l∞ (BC) , dl∞(BC)

)
is a complete metric space.

Proof. It is not hard to show that dl∞(BC) satisfies the metric axioms on the space l∞ (BC) . So,
we omit the details.

Now, we show that l∞ (BC) is complete. Let (sm) be an arbitrary Cauchy sequence in
l∞ (BC) , where sm = (smk )k∈N . Then, there exists an n0 (ε) ∈ N such that dl∞(BC) (sm, sr) =
sup
k∈N
‖smk − srk‖BC < ε for all m, r ≥ n0 (ε) . Then, for any fixed k,

‖smk − srk‖BC < ε (3.2)

for all m, r ≥ n0 (ε) . In this case, for any fixed k,
(
s1
k, s

2
k, ..., s

m
k , ...

)
is a bicomplex Cauchy

sequence and so, it converges to a point say s∗k ∈ BC by Definition 1.4. Define the sequence
s∗ = (s∗k) = (s∗1 , s

∗
2 , ...) with infinitely many limits s∗1 , s

∗
2 , ... and show s∗ ∈ l∞ (BC) and

sm → s∗, as m→∞.
Indeed, in (3.2), by letting r →∞ for any fixed k and using the continuity of Euclidean norm

function ‖‖BC by Theorem 3.5, for all m ≥ n0 (ε) we obtain that

‖smk − s∗k‖BC ≤ ε (3.3)

and so, dl∞(BC) (sm, s
∗) = sup

k∈N
‖smk − s∗k‖BC ≤ ε. This shows that the sequence (sm) ⊂ l∞ (BC)

converges to s∗ = (s∗k) ∈ w (BC) .
On the other hand, since sm = (smk )k∈N ∈ l∞ (BC) for each n ∈ N, there exists tm ∈ (0,∞)

such that ‖smk ‖BC ≤ tm for all k ∈ N. Therefore, by (3.3) , the inequality

‖s∗k‖BC ≤ ‖s
∗
k − smk ‖BC + ‖smk ‖BC ≤ ε+ tm

holds for all k ∈ N and for all m ≥ n0 (ε) , which is independent of k. Hence s∗ = (s∗k) ∈
l∞ (BC) which means that l∞ (BC) is complete. The proof is completed.

Corollary 3.7. l∞ (BC) is a Banach space with the norm ‖‖l∞(BC) defined by

‖s‖l∞(BC) = sup
k∈N
‖sk‖BC ; s = (sk) ∈ l∞ (BC) . (3.4)

Proof. Since it is known by Theorem 3.6 that l∞ (BC) is a complete metric space with the metric
dl∞(BC) induced by the norm ‖‖l∞(BC) defined by (3.4). Then, the proof is clear.

Theorem 3.8. The sets c (BC) , c0 (BC) and lp (BC) for 0 < p <∞ are sequence spaces.

Proof. It is trivial that the inclusions c (BC) ⊂ w (BC) , c0 (BC) ⊂ w (BC) and lp (BC) ⊂
w (BC) for 0 < p <∞ hold. Firstly, we consider the set c (BC) .

(i) Let s = (sk) , t = (tk) ∈ c (BC) . Then, there exist l∗1 , l
∗
2 ∈ BC such that lim

k→∞
sk = l∗1 and

lim
k→∞

tk = l∗2 , and so for every ε > 0 there exist k1 (ε) , k2 (ε) ∈ N such that ‖sk − l∗1‖BC <
ε
2 for all k ≥ k1 (ε) and ‖tk − l∗2‖BC < ε

2 for all k ≥ k2 (ε) . Therefore, taking k0 (ε) =
max {k1 (ε) , k2 (ε)} , we obtain that

‖(sk + tk)− (l∗1 + l∗2)‖BC = ‖(sk − l∗1) + (tk − l∗2)‖BC
≤ ‖sk − l∗1‖BC + ‖tk − l∗2‖BC
≤ ε

2
+
ε

2
= ε

for all k ≥ k0 (ε) which means that

lim
k→∞

(sk + tk) = l∗1 + l∗2 = lim
k→∞

sk + lim
k→∞

tk
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and from this s⊕ t ∈ c (BC) .
(ii) Let s = (sk) ∈ c (BC) and α ∈ R− {0} . Since s ∈ c (BC) , there exists an l∗ ∈ BC such

that lim
k→∞

sk = l∗ and so for every ε > 0 there exists an k0 (ε) ∈ N such that ‖sk − l∗‖BC <
ε
|α|

for all k ≥ k0 (ε). Thus, we obtain for all k ≥ k0 (ε) that

‖(αsk)− (αl∗)‖BC = ‖α (sk − l∗)‖BC = |α| ‖sk − l∗‖BC ≤ |α|
ε

|α|
= ε

which implies that
lim
k→∞

(αsk) = αl∗ = α lim
k→∞

sk,

and so α� s ∈ c (BC) .
The proof is clear for α = 0. Therefore, we have proved that c (BC) is a subspace of the

space w (BC) . Also, taking l∗1 = l∗2 = l∗ = 0 above, by a routine verification, we can easily
show that c0 (BC) is the sequence space.

Now, we show that lp (BC) is sequence space, where 0 < p <∞.

(i) Let s = (sk) , t = (tk) ∈ lp (BC) . Then
∞∑
k=1
‖sk‖pBC <∞ and

∞∑
k=1
‖tk‖pBC <∞. We know

by bicomplex Minkowski’ s inequality for 1 < p <∞ that

n∑
k=1

‖sk + tk‖pBC ≤

( n∑
k=1

‖sk‖pBC

) 1
p

+

(
n∑
k=1

‖tk‖pBC

) 1
p

p

holds for all n ∈ N and the comparison test implies the convergence of the series
∞∑
k=1
‖sk + tk‖pBC .

Therefore, s⊕ t ∈ lp (BC) for 1 < p <∞, as required.
For 0 < p ≤ 1, by Lemma 1.10,

n∑
k=1

‖sk + tk‖pBC ≤
n∑
k=1

(‖sk‖BC + ‖tk‖BC)
p

≤
n∑
k=1

(‖sk‖pBC + ‖tk‖pBC)

=
n∑
k=1

‖sk‖pBC +
n∑
k=1

‖tk‖pBC

holds for all n ∈ N and the comparison test implies the convergence of the series
∞∑
k=1
‖sk + tk‖pBC .

Therefore, s⊕ t ∈ lp (BC) for 0 < p ≤ 1, as required.

(ii) Let s = (sk) ∈ lp (BC) and α ∈ R−{0} . Since s ∈ lp (BC) , we can write
∞∑
k=1
‖sk‖pBC <

∞. Thus, we have
∞∑
k=1

‖αsk‖pBC =
∞∑
k=1

|α|p ‖sk‖pBC = |α|p
∞∑
k=1

‖sk‖pBC <∞

which implies that α � s ∈ lp (BC) . The proof is clear for α = 0. That is to say lp (BC) is a
subspace of w (BC) .

Theorem 3.9.
(
c (BC) , dl∞(BC)

)
and

(
c0 (BC) , dl∞(BC)

)
are complete metric spaces.

Proof. We show that the metric space
(
c (BC) , dl∞(BC)

)
is complete. Let (sm) be an arbitrary

Cauchy sequence in the space c (BC) , where sm = (smk )k∈N . Then, for every ε > 0 there exists
an n0 (ε) ∈ N such that dl∞(BC) (sm, sr) = sup

k∈N
‖smk − srk‖BC <

ε
3 for all m, r ≥ n0 (ε) . Hence,

for any fixed k,
‖smk − srk‖BC <

ε

3
(3.5)
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for all m, r ≥ n0 (ε) . In this case, for any fixed k,
(
s1
k, s

2
k, ..., s

m
k , ...

)
is a bicomplex Cauchy se-

quence and so, it converges to a point say s∗k ∈ BC. Define the sequence s∗ = (s∗k) = (s∗1 , s
∗
2 , ...)

with these limits and show that s∗ ∈ c (BC) and sm → s∗, as m → ∞. Indeed, by (3.5), by
letting r → ∞, we obtain dl∞(BC) (sm, s

∗) = sup
k∈N
‖smk − s∗k‖BC ≤

ε
3 for all m ≥ n0 (ε) . There-

fore, the sequence (sm) ⊂ c (BC) converges to s∗ = (s∗k) ∈ w (BC) . On the other hand, since
(sn0
k ) ∈ c (BC) is a bicomplex Cauchy sequence, for every ε > 0 there exists an k0 (ε) ∈ N such

that ‖sn0
k − s

n0
l ‖BC <

ε
3 for all k, l ≥ k0 (ε) . In this situation, for every ε > 0

‖s∗k − s∗l ‖BC = ‖s∗k − s
n0
k + sn0

k − s
n0
l + sn0

l − s
∗
l ‖BC

≤ ‖s∗k − s
n0
k ‖BC + ‖sn0

k − s
n0
l ‖BC + ‖sn0

l − s
∗
l ‖BC

<
ε

3
+
ε

3
+
ε

3
= ε

for all k, l ≥ k0 (ε) , and so the sequence s∗ = (s∗k) is a bicomplex Cauchy sequence. Since BC
is complete, s∗ = (s∗k) is convergent in BC. Finally, obtain that s∗ = (s∗k) ∈ c (BC) and the
result follows as required.

Also, we can similarly show completeness of c0 (BC) with completeness of c (BC) .
Corollary 3.10. c (BC) and c0 (BC) are Banach spaces with the norm ‖‖l∞(BC) defined by (3.4) .

Proof. The proof depends on Theorem 3.9.

Theorem 3.11.
(
lp (BC) , dlp(BC)

)
is a complete metric space for 0 < p < ∞, where dlp(BC) is

defined as follows :

dlp(BC) (s, t) : lp (BC)× lp (BC)→ [0,∞) ,

(s, t) → dlp(BC) (s, t) =



∞∑
k=1
‖sk − tk‖pBC , 0 < p ≤ 1

( ∞∑
k=1
‖sk − tk‖pBC

) 1
p

, 1 < p <∞

,

where s = (sk) , t = (tk) ∈ lp (BC) .
Proof. Firstly, we consider the space lp (BC) with 1 < p < ∞. We know that dlp(BC) (s, t) ≥ 0
for all s, t ∈ lp (BC) since ‖sk − tk‖BC ≥ 0 for all sk, tk ∈ BC. Also,

dlp(BC) (s, t) =

( ∞∑
k=1

‖sk − tk‖pBC

) 1
p

= 0⇐⇒
∞∑
k=1

‖sk − tk‖pBC = 0

⇐⇒ ‖sk − tk‖pBC = 0,∀k ∈ N
⇐⇒ ‖sk − tk‖BC = 0,∀k ∈ N
⇐⇒ sk = tk,∀k ∈ N
⇐⇒ s = t

and

dlp(BC) (s, t) =

( ∞∑
k=1

‖sk − tk‖pBC

) 1
p

=

( ∞∑
k=1

‖tk − sk‖pBC

) 1
p

= dlp(BC) (t, s)

for all s, t ∈ lp (BC) . On the other hand, by bicomplex Minkowski’ s inequality we have for
s = (sk) , t = (tk) , u = (uk) ∈ lp (BC) that

dlp(BC) (s, t) =

( ∞∑
k=1

‖sk − tk‖pBC

) 1
p

=

[ ∞∑
k=1

‖(sk − uk) + (uk − tk)‖pBC

] 1
p

≤

( ∞∑
k=1

‖sk − uk‖pBC

) 1
p

+

( ∞∑
k=1

‖uk − tk‖pBC

) 1
p


= dlp(BC) (s, u) + dlp(BC) (u, t) .
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Therefore, the function dlp(BC) is a metric over the space lp (BC) with 1 < p <∞.
Now, we show that the metric space

(
lp (BC) , dlp(BC)

)
with 1 < p < ∞ is complete. Let

(sm) be an arbitrary Cauchy sequence in the space lp (BC) , where sm = (smk )k∈N . Then, for
every ε > 0 there exists an n0 (ε) ∈ N such that

dlp(BC) (sm, sr) =

( ∞∑
k=1

‖smk − srk‖
p
BC

) 1
p

< ε (3.6)

for all m, r ≥ n0 (ε) . Then, for any fixed k,

‖smk − srk‖BC < ε (3.7)

for all m, r ≥ n0 (ε) . In this case, for any fixed k,
(
s1
k, s

2
k, ..., s

m
k , ...

)
is a bicomplex Cauchy se-

quence and so, it converges to a point say s∗k. Let us define the sequence s∗ = (s∗k) = (s∗1 , s
∗
2 , ...)

with infinitely many limits s∗1 , s
∗
2 , ... and show s∗ = (s∗k) ∈ lp (BC) and sm → s∗, as m → ∞.

By (3.7) , we can write ‖smk − s∗k‖BC ≤ ε for all m ≥ n0 (ε) which means that smk → s∗k as

m → ∞. Also, from (3.6) , we know that
(

n∑
k=1
‖smk − srk‖

p
BC

) 1
p

< ε for all m, r ≥ n0 (ε) , and

by letting r →∞,we have
(

n∑
k=1
‖smk − s∗k‖

p
BC

) 1
p

< ε for all n ∈ N. Then, by letting n→∞,we

obtain that dlp(BC) (sm, s
∗) =

( ∞∑
k=1
‖smk − s∗k‖

p
BC

) 1
p

≤ ε for all m ≥ n0 (ε) . Thus, the sequence

(sm) ⊂ lp (BC) converges to s∗ = (s∗k) ∈ w (BC) .
On the other hand, since sm = (smk ) ∈ lp (BC) , by bicomplex Minkowski’ s inequality and

convergence of the series
∞∑
k=1
‖s∗k − smk ‖

p
BC ,

( ∞∑
k=1

‖s∗k‖
p
BC

) 1
p

=

( ∞∑
k=1

‖smk + (s∗k − smk )‖
p
BC

) 1
p

≤

( ∞∑
k=1

‖smk ‖
p
BC

) 1
p

+

( ∞∑
k=1

‖s∗k − smk ‖
p
BC

) 1
p

< ∞

which means that s∗ = (s∗k) ∈ lp (BC) . Therefore, lp (BC) with 1 < p < ∞ is complete. This
completes the proof.

Now, we consider the space lp (BC) with 0 < p ≤ 1. It can be shown that the function dlp(BC)
is a metric over the space lp (BC) with 0 < p ≤ 1 in the similar way to 1 < p < ∞ by using
Lemma 1.10.

Now, we show that lp (BC) with 0 < p ≤ 1 is complete. Let (sm) be an arbitrary Cauchy
sequence in the space lp (BC), where sm = (smk )k∈N . Then, for every ε > 0 there exists an
n0 (ε) ∈ N such that

dlp(BC) (sm, sr) =
∞∑
k=1

‖smk − srk‖
p
BC < εp (3.8)

for all m, r ≥ n0 (ε) . Therefore, ‖smk − srk‖BC < ε for any fixed k ∈ N and for all m, r ≥ n0 (ε) .
Thus, for any fixed k ∈ N, (smk ) =

(
s1
k, s

2
k, ..., s

n
k , ...

)
is a bicomplex Cauchy sequence and from

this, it converges, say smk → s∗k as m → ∞. Define the sequence s∗ = (s∗k) = (s∗1 , s
∗
2 , ...) and

show that sm → s∗, asm→∞ and s∗ = (s∗k) ∈ lp (BC) . From (3.8) , we obtain the inequalities

for all m, r ≥ n0 (ε) that
n∑
k=1
‖smk − srk‖

p
BC < εp and so, by letting r → ∞, for all m ≥ n0 (ε)

that
n∑
k=1
‖smk − s∗k‖

p
BC < εp for all n ∈ N which means that as n → ∞ and for all m ≥ n0 (ε) ,

dlp(BC) (sm, s
∗) =

∞∑
k=1
‖smk − s∗k‖

p
BC < εp. Thus, the sequence (sm) ⊂ lp (BC) converges to



BICOMPLEX SEQUENCE SPACES 11

s∗ = (s∗k) ∈ w (BC) . Since sm = (smk ) ∈ lp (BC) , by Lemma 1.10 and convergence of the

series
∞∑
k=1
‖s∗k − smk ‖

p
BC ,

∞∑
k=1

‖s∗k‖
p
BC =

∞∑
k=1

‖smk + (s∗k − smk )‖
p
BC

≤
∞∑
k=1

(‖smk ‖BC + ‖s∗k − smk ‖BC)
p

≤
∞∑
k=1

‖smk ‖
p
BC +

∞∑
k=1

‖s∗k − smk ‖
p
BC

< ∞

which implies that s∗ = (s∗k) ∈ lp (BC) . That is to say that lp (BC) with 0 < p ≤ 1 is a complete
metric space.

Corollary 3.12. The space lp (BC) is a Banach space with the norm ‖‖lp(BC) defined by

‖s‖lp(BC) =



∞∑
k=1
‖sk‖pBC , 0 < p ≤ 1

( ∞∑
k=1
‖sk‖pBC

) 1
p

, 1 < p <∞

; s = (sk) ∈ lp (BC) .

Proof. The proof is clear from Theorem 3.11.

4 Concluding Remarks

In this paper, we have studied bicomplex sequence spaces with Euclidean norm in the set of
bicomplex numbers. For the future, we will construct bicomplex sequence spaces with hyper-
bolic valued moduli of bicomplex numbers and we will investigate α−, β− and γ− duals and
multiplier spaces of them.
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