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Abstract In this paper, we establish the generalized Bullen type inequalities involving local 
fractional integrals on fractal sets Rα (0 < α ≤ 1) of real line numbers. Some applications of 
these inequalities in numerical integration and for special means are given.

1 Introduction

The classical Hermite-Hadamard inequality which was first published in [7] gives us an estimate 
of the mean value of a convex function f : I → R,

f

(
a+ b

2

)
≤ 1
b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

An account the history of this inequality can be found in [3]. Surveys on various generalizations
and developments can be found in [11]. Recently in [4], the author established this inequality
for twice differentiable functions. In the case where f is convex then there exists an estimation
better than (1.1). For more information recent developments to above inequalities, please refer
to [3]-[6], [8], [9], [13] and so on.

In [1], Bullen proved the following inequality which is known as Bullen’s inequality for
convex function:

Let f : I ⊂ R → R be a convex function on the interval I of real numbers and a, b ∈ I with
a < b. The inequality

1
b− a

∫ b

a

f(x)dx ≤ 1
2

[
f

(
a+ b

2

)
+
f(a) + f(b)

2

]
.

2 Preliminaries

Recall the set Rα of real line numbers and use the Gao-Yang-Kang’s idea to describe the defini-
tion of the local fractional derivative and local fractional integral, see [19, 20] and so on.

Recently, the theory of Yang’s fractional sets [19] was introduced as follows.
For 0 < α ≤ 1, we have the following α-type set of element sets:
Zα : The α-type set of integer is defined as the set {0α,±1α,±2α, ...,±nα, ...} .
Qα : The α-type set of the rational numbers is defined as the set {mα =

(
p
q

)α
: p, q ∈ Z,

q 6= 0}.
Jα : The α-type set of the irrational numbers is defined as the set {mα 6=

(
p
q

)α
: p, q ∈ Z,

q 6= 0}.
Rα : The α-type set of the real line numbers is defined as the set Rα = Qα ∪ Jα.
If aα, bα and cα belongs the set Rα of real line numbers, then
(1) aα + bα and aαbα belongs the set Rα;
(2) aα + bα = bα + aα = (a+ b)

α
= (b+ a)

α ;
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(3) aα + (bα + cα) = (a+ b)
α
+ cα;

(4) aαbα = bαaα = (ab)
α
= (ba)

α ;
(5) aα (bαcα) = (aαbα) cα;
(6) aα (bα + cα) = aαbα + aαcα;
(7) aα + 0α = 0α + aα = aα and aα1α = 1αaα = aα.
The definition of the local fractional derivative and local fractional integral can be given as

follows.

Definition 2.1. [19] A non-differentiable function f : R → Rα, x → f(x) is called to be local
fractional continuous at x0, if for any ε > 0, there exists δ > 0, such that

|f(x)− f(x0)| < εα

holds for |x− x0| < δ, where ε, δ ∈ R. If f(x) is local continuous on the interval (a, b) , we
denote f(x) ∈ Cα(a, b).

Definition 2.2. [19] The local fractional derivative of f(x) of order α at x = x0 is defined by

f (α)(x0) =
dαf(x)

dxα

∣∣∣∣
x=x0

= lim
x→x0

∆α (f(x)− f(x0))

(x− x0)
α ,

where ∆α (f(x)− f(x0)) =̃Γ(α+ 1) (f(x)− f(x0)) .

If there exists f (k+1)α(x) =

k+1 times︷ ︸︸ ︷
Dα
x ...D

α
xf(x) for any x ∈ I ⊆ R, then we denoted f ∈

D(k+1)α(I), where k = 0, 1, 2, ...

Definition 2.3. [19] Let f(x) ∈ Cα [a, b] . Then the local fractional integral is defined by,

aI
α
b f(x) =

1
Γ(α+ 1)

b∫
a

f(t)(dt)α =
1

Γ(α+ 1)
lim

∆t→0

N−1∑
j=0

f(tj)(∆tj)
α,

with ∆tj = tj+1 − tj and ∆t = max {∆t1,∆t2, ...,∆tN−1} , where [tj , tj+1] , j = 0, ..., N − 1 and
a = t0 < t1 < ... < tN−1 < tN = b is partition of interval [a, b] .

Here, it follows that aIαb f(x) = 0 if a = b and aI
α
b f(x) = −bIαa f(x) if a < b. If for any

x ∈ [a, b] , there exists aIαx f(x), then we denoted by f(x) ∈ Iαx [a, b] .

Definition 2.4 (Generalized convex function). [19] Let f : I ⊆ R→ Rα. For any x1, x2 ∈ I and
λ ∈ [0, 1] , if the following inequality

f(λx1 + (1− λ)x2) ≤ λαf(x1) + (1− λ)αf(x2)

holds, then f is called a generalized convex function on I.

Here are two basic examples of generalized convex functions:
(1) f(x) = xαp, x ≥ 0, p > 1;

(2) f(x) = Eα(xα), x ∈ R where Eα(xα) =
∞∑
k=0

xαk

Γ(1+kα) is the Mittag-Lrffer function.

Theorem 2.5. [12] Let f ∈ Dα(I), then the following conditions are equivalent
a) f is a generalized convex function on I
b) f (α) is an increasing function on I
c) for any x1, x2 ∈ I,

f(x2)− f(x1) ≥
f (α)(x1)

Γ (1 + α)
(x2 − x1)

α
.

Corollary 2.6. [12] Let f ∈ D2α(a, b). Then f is a generalized convex function ( or a general-
ized concave function) if and only if

f (2α)(x) ≥ 0
(

or f (2α)(x) ≤ 0
)

for all x ∈ (a, b) .
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Lemma 2.7. [19]
(1) (Local fractional integration is anti-differentiation) Suppose that f(x) = g(α)(x) ∈

Cα [a, b] , then we have
aI
α
b f(x) = g(b)− g(a).

(2) (Local fractional integration by parts) Suppose that f(x), g(x) ∈ Dα [a, b] and f (α)(x),
g(α)(x) ∈ Cα [a, b] , then we have

aI
α
b f(x)g

(α)(x) = f(x)g(x)|ba −a I
α
b f

(α)(x)g(x).

Lemma 2.8. [19] We have

i)
dαxkα

dxα
=

Γ(1 + kα)

Γ(1 + (k − 1)α)
x(k−1)α;

ii)
1

Γ(α+ 1)

b∫
a

xkα(dx)α =
Γ(1 + kα)

Γ(1 + (k + 1)α)
(
b(k+1)α − a(k+1)α

)
, k ∈ R.

Lemma 2.9 (Generalized Hölder’s inequality). [19] Let f, g ∈ Cα [a, b] , p, q > 1 with 1
p+

1
q = 1,

then

1
Γ(α+ 1)

b∫
a

|f(x)g(x)| (dx)α ≤

 1
Γ(α+ 1)

b∫
a

|f(x)|p (dx)α


1
p
 1

Γ(α+ 1)

b∫
a

|g(x)|q (dx)α


1
q

.

In [12], Mo et al. proved the following generalized Hermite-Hadamard inequality for gener-
alized convex function:

Theorem 2.10 (Generalized Hermite-Hadamard inequality). Let f(x) ∈ I(α)x [a, b] be a general-
ized convex function on [a, b] with a < b. Then

f

(
a+ b

2

)
≤ Γ (1 + α)

(b− a)α aI
α
b f(x) ≤

f (a) + f (b)

2α
. (2.1)

In [17], Sarikaya et al. proved the following generalized Bullen inequality for generalized
convex function and they also established a equality involving local fractional integral with re-
gard to generalized Bullen inequality.

Theorem 2.11 (Generalized Bullen inequality). Let f(x) ∈ I
(α)
x [a, b] be a generalized convex

function on [a, b] with a < b. Then we have the inequality

Γ (1 + α)

(b− a)α aI
α
b f(x) ≤

1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
.

Theorem 2.12. Let I ⊆ R be an interval, f : I0 ⊆ R → Rα (I0 is the interior of I) such that
f ∈ D2α(I0) and f (2α) ∈ C2α [a, b] for a, b ∈ I0 with a < b. Then, for all x ∈ [a, b] , we have the
identity

1

2α (b− a)α (Γ (1 + α))
2

b∫
a

(
x− a+ b

2

)α
p(x)f (2α) (x) (dx)

α (2.2)

=
1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

where

p(x) =


(a− x)α ,

[
a, a+b2

)
(b− x)α ,

[
a+b

2 , b
]
.

The interested reader is able to look over the references [2], [12], [14]-[23] for local freac-
tional theory.

In this study, firstly the generalized Bullen type inequalities are established. Then, some
applications of these inequalities in numerical integration and for special means are given.
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3 Main Results

In this section, we prove some inequalities which are generalized Bullen type inequalities in-
volving local fractional integral.

Theorem 3.1. Let f(x) ∈ I(α)x [a, b] be a generalized convex function on [a, b] with a < b. Then
the following inequality holds

1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

≤ (b− a)α

32αΓ (1 + α)

[
f (α) (b)− f (α) (a)

]
.

Proof. Since f is a generalized convex function, it follows that f (2α) ≥ 0, for every x ∈ [a, b] .
Because

0 ≤
(
x− a+ b

2

)α
(a− x)α ≤ (b− a)2α

16α

for any x ∈
[
a, a+b2

]
and

0 ≤
(
x− a+ b

2

)α
(b− x)α ≤ (b− a)2α

16α

for any x ∈
[
a+b

2 , b
]
, we deduce the inequality(

x− a+ b

2

)α
p(x)f (2α) (x) ≤ (b− a)2α

16α
f (2α) (x) . (3.1)

Integrating both sides of (3.1) with respect to x from a to b and using Lemma 2.7, we have

1
Γ (1 + α)

b∫
a

(
x− a+ b

2

)α
p(x)f (2α) (x) (dx)

α

≤ (b− a)2α

16α
1

Γ (1 + α)

b∫
a

f (2α) (x) (dx)
α

=
(b− a)2α

16α
[
f (α) (b)− f (α) (a)

]
.

Using equality (3.1) in the previous inequality, we easily find required inequality.

Remark 3.2. If we choose α = 1 in Theorem 3.1, then we have the following inequality

1
2

[
f

(
a+ b

2

)
+
f (a) + f (b)

2

]
− 1
b− a

b∫
a

f(x)dx

≤ b− a
32

[
f
′
(b)− f ′ (a)

]
which is proved by Minculate et all. in [10].

Theorem 3.3. We suppose again that the assumptions of Theorem 2.12 are satisfied. If f (2α) is
bounded on (a, b), then we have the inequality∣∣∣∣ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣ (3.2)

≤ (b− a)2α

8αΓ (1 + α)

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

] ∥∥∥f (2α)∥∥∥
∞
.
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Proof. Taking madulus in (2.2) and using bounded of f (2α), we find that

∣∣∣∣ 1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣ (3.3)

≤ 1

2α (b− a)α (Γ (1 + α))
2

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣α |p(x)| ∣∣∣f (2α) (x)∣∣∣ (dx)α

≤
∥∥f (2α)∥∥∞

2α (b− a)α Γ (1 + α)

1
Γ (1 + α)

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣α |p(x)| (dx)α

=

∥∥f (2α)∥∥∞
2α (b− a)α Γ (1 + α)

K.

Now, we calculate the integral K by using the Lemma 2.8, we have

K =
1

Γ (1 + α)

a+b
2∫

a

(
a+ b

2
− x
)α

(x− a)α (dx)α

+
1

Γ (1 + α)

b∫
a+b

2

(
x− a+ b

2

)α
(b− x)α (dx)α .

Applying the change of the variables x− a = u and b− x = v, we write

K =
1

Γ (1 + α)


b−a

2∫
0

(
b− a

2
− u
)α

uα (du)
α
+

b−a
2∫

0

(
b− a

2
− v
)α

vα (dv)
α



=
2α

Γ (1 + α)

b−a
2∫

0

(
b− a

2
− u
)α

uα (du)
α

=
(b− a)3α

4α

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

]
.

If we substitute the integral K in (3.3), then we obtain desired result.

Theorem 3.4. We suppose again that the assumptions of Theorem 2.12 are satisfied. If
∣∣f (2α)∣∣ is

generalized convex, then we have the inequality

∣∣∣∣ 1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣ (3.4)

≤ (b− a)2α

16αΓ (1 + α)

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

] [∣∣∣f (2α) (a)∣∣∣+ ∣∣∣f (2α) (b)∣∣∣] .
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Proof. Taking madulus in (2.2), we find that∣∣∣∣ 1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣ (3.5)

≤ 1

2α (b− a)α (Γ (1 + α))
2

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣α |p(x)| ∣∣∣f (2α) (x)∣∣∣ (dx)α

=
1

2α (b− a)α Γ (1 + α)

 1
Γ (1 + α)

a+b
2∫

a

(
a+ b

2
− x
)α

(x− a)α
∣∣∣f (2α) (x)∣∣∣ (dx)α

+
1

Γ (1 + α)

b∫
a+b

2

(
x− a+ b

2

)α
(b− x)α

∣∣∣f (2α) (x)∣∣∣ (dx)α


=
1

2α (b− a)α Γ (1 + α)
[I1 + I2] .

Since
∣∣f (2α)∣∣ is generalized convex on [a, b], we have

∣∣∣f (2α) (x)∣∣∣ =

∣∣∣∣f (2α)(x− ab− a
b+

b− x
b− a

a

)∣∣∣∣ (3.6)

≤
(
x− a
b− a

)α ∣∣∣f (2α) (b)∣∣∣+ (b− x
b− a

)α ∣∣∣f (2α) (a)∣∣∣ .
Now, we calculate the integrals I1 and I2 by using of the inequality (3.6), we obtain

I1 ≤
∣∣f (2α) (b)∣∣

Γ (1 + α) (b− a)α

a+b
2∫

a

(
a+ b

2
− x
)α

(x− a)2α
(dx)

α

+

∣∣f (2α) (a)∣∣
Γ (1 + α) (b− a)α

a+b
2∫

a

(
a+ b

2
− x
)α

(x− a)α (b− x)α (dx)α .

If we write (b− a− (x− a))α instead of (b− x)α and also we use the change of the variable
x− a = u, then we get

I1 ≤
∣∣f (2α) (b)∣∣

(b− a)α Γ (1 + α)

b−a
2∫

0

(
b− a

2
− u
)α

u2α (du)
α

+

∣∣f (2α) (a)∣∣
Γ (1 + α)

b−a
2∫

0

(
b− a

2
− u
)α

uα (du)
α

−
∣∣f (2α) (a)∣∣

(b− a)α Γ (1 + α)

b−a
2∫

0

(
b− a

2
− u
)α

u2α (du)
α
.
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Using Lemma 2.8, we have

I1 ≤
∣∣f (2α) (b)∣∣
(b− a)α

(
b− a

2

)4α [
Γ (1 + 2α)
Γ (1 + 3α)

− Γ (1 + 3α)
Γ (1 + 4α)

]
(3.7)

+
∣∣∣f (2α) (a)∣∣∣ (b− a

2

)3α [
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

]

−
∣∣f (2α) (a)∣∣
(b− a)α

(
b− a

2

)4α [
Γ (1 + 2α)
Γ (1 + 3α)

− Γ (1 + 3α)
Γ (1 + 4α)

]
.

Similarly, writing (b− a− (b− x))α instead of (x− a)α and also using the change of the vari-
able b− x = v, we obtain

I2 ≤
∣∣∣f (2α) (b)∣∣∣ (b− a

2

)3α [
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

]
(3.8)

−
∣∣f (2α) (b)∣∣
(b− a)α

(
b− a

2

)4α [
Γ (1 + 2α)
Γ (1 + 3α)

− Γ (1 + 3α)
Γ (1 + 4α)

]

+

∣∣f (2α) (a)∣∣
(b− a)α

(
b− a

2

)4α [
Γ (1 + 2α)
Γ (1 + 3α)

− Γ (1 + 3α)
Γ (1 + 4α)

]
.

If we substitute the inequalities (3.7) and (3.8) in (3.5) and also we use elementary analysis, then
we easily deduce desired inequality.

Theorem 3.5. We suppose again that the assumptions of Theorem 2.12 are satisfied. If
∣∣f (2α)∣∣q

is generalized convex, then we have the inequality

∣∣∣∣ 1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣
≤ (b− a)2α

8α (Γ (1 + α))
1
p (Γ (1 + 2α))

1
q

×
[∣∣∣f (2α) (a)∣∣∣q + ∣∣∣f (2α) (b)∣∣∣q] 1

q

[B(p+ 1, p+ 1)]
1
p

where, p, q > 1, 1
p +

1
q = 1, and B is defined by

B (x, y) =
1

Γ (1 + α)

1∫
0

t(x−1)α (1− t)(y−1)α
(dt)

α
.
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Proof. Taking madulus in (2.2) and using generalized Hölder’s inequality, we find that∣∣∣∣ 1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣ (3.9)

≤ 1

2α (b− a)α (Γ (1 + α))
2

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣α |p(x)| ∣∣∣f (2α) (x)∣∣∣ (dx)α

≤ 1
2α (b− a)α Γ (1 + α)

 1
Γ (1 + α)

b∫
a

∣∣∣f (2α)(t)∣∣∣q (dt)α


1
q

×

 1
Γ (1 + α)

b∫
a

∣∣∣∣x− a+ b

2

∣∣∣∣αp |p(x)|p (dt)α


1
p

=
1

2α (b− a)α Γ (1 + α)

 1
Γ (1 + α)

b∫
a

∣∣∣f (2α)(t)∣∣∣q (dt)α


1
q

(L)
1
p .

Now, we calculate the integral L by using the Lemma 2.8, we get

L =
1

Γ (1 + α)

a+b
2∫

a

(
a+ b

2
− x
)αp

(x− a)αp (dx)α

+
1

Γ (1 + α)

b∫
a+b

2

(
x− a+ b

2

)αp
(b− x)αp (dx)α

= L1 + L2.

For calculating integral L1, using changing variable with  x = (1 − t)a + t a +b
2 , we obtain

L1 =
1

Γ (1 + α)

a+b
2∫

a

(
a+ b

2
− x
)pα

(x− a)pα (dx)α (3.10)

=

(
b− a

2

)(2p+1)α 1
Γ (1 + α)

1∫
0

(1− t)pαtpα (dt)α

=

(
b− a

2

)(2p+1)α

B(p+ 1, p+ 1).

Similarliy, using changing variable with x = (1− t)a+b2 + tb, we have

L2 =
1

Γ (1 + α)

b∫
a+b

2

(
x− a+ b

2

)pα
(b− x)pα (dx)α (3.11)

=

(
b− a

2

)(2p+1)α

B(p+ 1, p+ 1).
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Since
∣∣f (2α)∣∣ is generalized convex on [a, b], we have∣∣∣f (2α) (x)∣∣∣q =

∣∣∣∣f (2α)(x− ab− a
b+

b− x
b− a

a

)∣∣∣∣q (3.12)

≤
(
x− a
b− a

)α ∣∣∣f (2α) (b)∣∣∣q + (b− x
b− a

)α ∣∣∣f (2α) (a)∣∣∣q .
Using the inequality (3.12), we obtain

1
Γ (1 + α)

b∫
a

∣∣∣f (2α)(t)∣∣∣q (dt)α (3.13)

≤
∣∣f (2α) (b)∣∣q
Γ (1 + α)

b∫
a

(
x− a
b− a

)α
(dt)

α
+

∣∣f (2α) (a)∣∣q
Γ (1 + α)

b∫
a

(
b− x
b− a

)α
(dt)

α

=
Γ (1 + α)

Γ (1 + 2α)
(b− a)α

[∣∣∣f (2α) (a)∣∣∣q + ∣∣∣f (2α) (b)∣∣∣q] .
If we substitute (3.10), (3.11) and (3.13) in (3.9) and also we use elementary analysis, then we
easily deduce desired inequality.

4 Applications to Numerical Integration

We now consider applications of the integral inequalities involving local fractional integral de-
veloped in the previous section, to obtain estimates of composite quadrature rules which, it turns
out have a markedly smaller error than that which may be obtained by the classical results.

Theorem 4.1. Let f : [a, b] → Rα be f ∈ D2α(a, b) and f (2α) is bounded on (a, b). If In : a =
x0 < x1 < ... < xn−1 < xn = b is a partition of [a, b] and hi = (xi+1 − xi), i = 0, ..., n − 1,
then we have:

1
Γ (1 + α)

b∫
a

f(x)(dx)α = B(In, f) +R(In, f)

where

B(In, f) =
1

2αΓ (1 + α)

[
n−1∑
i=0

f

(
xi + xi+1

2

)
hαi +

n−1∑
i=0

f (xi) + f (xi+1)

2α
hαi

]

and the remainder term satisfies the astimation:

|R(In, f)| ≤
∥∥f (2α)∥∥∞

8α (Γ (1 + α))
2

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

] n−1∑
i=0

h3α
i . (4.1)

Proof. Applying Theorem 3.3 on the interval [xi, xi+1] , i = 0, ..., n− 1, we obtain∣∣∣∣ 1
2αΓ (1 + α)

[
f

(
xi + xi+1

2

)
hαi +

f (xi) + f (xi+1)

2α
hαi

]
−xi Iαxi+1

f(x)

∣∣∣∣
≤

∥∥f (2α)∥∥∞
8α (Γ (1 + α))

2

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

]
h3α
i

for all i = 0, ..., n − 1. Summing over i from 0 to n − 1 and using the triangle inequality we
obtain the estimation (4.1).
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Theorem 4.2. LetB(In, f) andR(In, f) be as defined in Theorem 4.1. If
∣∣f (2α)∣∣q is a generalized

convex function on [a, b] and also In : a = x0 < x1 < ... < xn−1 < xn = b is a partition of [a, b]
and hi = (xi+1 − xi), i = 0, ..., n− 1, then we have:

|R(In, f)| (4.2)

≤ (B(p+ 1, p+ 1))
1
p

8α (Γ (1 + α))
1+ 1

p (Γ (1 + 2α))
1
q

n−1∑
i=0

h3α
i

[∣∣∣f (2α) (xi)∣∣∣q + ∣∣∣f (2α) (xi+1)
∣∣∣q] 1

q

where, p, q > 1, 1
p +

1
q = 1, B (x, y) is defined by

B (x, y) =
1

Γ (1 + α)

1∫
0

t(x−1)α (1− t)(y−1)α
(dt)

α
.

Proof. Applying Theorem 3.5 on the interval [xi, xi+1] , i = 0, ..., n− 1, we obtain∣∣∣∣ 1
2αΓ (1 + α)

[
f

(
xi + xi+1

2

)
hαi +

f (xi) + f (xi+1)

2α
hαi

]
−xi Iαxi+1

f(x)

∣∣∣∣
≤ (B(p+ 1, p+ 1))

1
p

8α (Γ (1 + α))
1+ 1

p (Γ (1 + 2α))
1
q

h3α
i

[∣∣∣f (2α) (xi)∣∣∣q + ∣∣∣f (2α) (xi+1)
∣∣∣q] 1

q

for all i = 0, ..., n − 1. Summing over i from 0 to n − 1 and using the triangle inequality we
obtain the estimation (4.2) which completes the proof.

5 Applications to Some Special Means

Let us recall some generalized means:

A(a, b) =
aα + bα

2α
;

Ln(a, b) =

[
Γ (1 + nα)

Γ (1 + (n+ 1)α)

[
b(n+1)α − a(n+1)α

(b− a)α

]] 1
n

, n ∈ Z\ {−1, 0} , a, b ∈ R, a 6= b.

Now, let us reconsider the inequality (3.2):∣∣∣∣ 1
2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣
≤ (b− a)2α

8αΓ (1 + α)

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

] ∥∥∥f (2α)∥∥∥
∞

for all x ∈ [a, b] .
Consider the mapping f : (0,∞)→ Rα, f(x) = xnα, n ∈ Z\ {−1, 0} . Then, 0 < a < b, we

have

f

(
a+ b

2

)
= [A(a, b)]

n ,
f(a) + f(b)

2α
= A(an, bn)

and
1

(b− a)α aI
α
b f(t) = [Ln(a, b)]

n
.

Using Lemma 2.8, we obtain

∥∥∥f (2α)∥∥∥
∞

=


∣∣∣ Γ(1+nα)

Γ(1+(n−2)α)

∣∣∣ b(n−2)α, n > 1

∣∣∣ Γ(1+nα)
Γ(1+(n−2)α)

∣∣∣ a(n−2)α, n ∈ (−∞, 1]\ {−1, 0}
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and then we deduce that∣∣∣∣ 1
2α
[
[A(a, b)]

n
+A(an, bn)

]
− Γ (1 + α) [Ln(a, b)]

n

∣∣∣∣
≤ (b− a)2α

8αΓ (1 + α)

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

]
δn(a, b)

where

δn(a, b) =


∣∣∣ Γ(1+nα)

Γ(1+(n−2)α)

∣∣∣ b(n−2)α, n > 1

∣∣∣ Γ(1+nα)
Γ(1+(n−2)α)

∣∣∣ a(n−2)α, n ∈ (−∞, 1]\ {−1, 0}

for all x ∈ [a, b] .
Also, let n > 3 for the function f(x) = xnα, f : (0,∞) → Rα, then

∣∣f (2α)∣∣ is a generalized
convex function. Now, let us reconsider the inequality (3.4):∣∣∣∣ 1

2α

[
f

(
a+ b

2

)
+
f (a) + f (b)

2α

]
− Γ (1 + α)

(b− a)α aI
α
b f(x)

∣∣∣∣
≤ (b− a)2α

16αΓ (1 + α)

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

] [∣∣∣f (2α) (a)∣∣∣+ ∣∣∣f (2α) (b)∣∣∣] .
Then, 0 < a < b, we have∣∣∣∣ 1

2α
[
[A(a, b)]

n
+A(an, bn)

]
− Γ (1 + α) [Ln(a, b)]

n

∣∣∣∣
≤ (b− a)2α

16αΓ (1 + α)

[
Γ (1 + α)

Γ (1 + 2α)
− Γ (1 + 2α)

Γ (1 + 3α)

]

× Γ (1 + nα)

Γ (1 + (n− 2)α)

[
a(n−2)α + b(n−2)α

]
for all x ∈ [a, b] .
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