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Abstract In this paper, we establish the generalized Bullen type inequalities involving local
fractional integrals on fractal sets R* (0 < o < 1) of real line numbers. Some applications of
these inequalities in numerical integration and for special means are given.

1 Introduction

The classical Hermite-Hadamard inequality which was first published in [7] gives us an estimate
of the mean value of a convex function f : I — R,

An account the history of this inequality can be found in [3]. Surveys on various generalizations
and developments can be found in [11]. Recently in [4], the author established this inequality
for twice differentiable functions. In the case where f is convex then there exists an estimation
better than (1.1). For more information recent developments to above inequalities, please refer
to [3]-[6], [8], [9], [13] and so on.

In [1], Bullen proved the following inequality which is known as Bullen’s inequality for
convex function:

Let f : I C R — R be a convex function on the interval I of real numbers and a,b € I with
a < b. The inequality

(1.1

bia/abf(m)dx<;{f(a_2‘_b> _i_f(a)-zi-f(b)].

2 Preliminaries

Recall the set R* of real line numbers and use the Gao-Yang-Kang’s idea to describe the defini-
tion of the local fractional derivative and local fractional integral, see [19, 20] and so on.
Recently, the theory of Yang’s fractional sets [19] was introduced as follows.
For 0 < o < 1, we have the following a-type set of element sets:
Z* : The a-type set of integer is defined as the set {0%, £1%,+2%, ..., £n*, ...} .

Q“ : The a-type set of the rational numbers is defined as the set {m* = (§ :p,q € Z,
q# 0} .

J* : The a-type set of the irrational numbers is defined as the set {m® #* (% ip,q € Z,
q# 0}

R* : The a-type set of the real line numbers is defined as the set R* = Q% U J<.

If a, b and c* belongs the set R“ of real line numbers, then

(1) a® + b* and a*b™ belongs the set R*;

2)a*+b*=b"+a*=(a+b)"=(b+a)”;
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(3)a®+ (b +c*) = (a +b)"

4) a®b® = b*a® = (ab)” = (ba)”;

(5) a® (b%c®) = (a®b™)

(6) a® (b™ + ¢*) = a®b™ + a“c*;

(7 a*+0%=0%+4+a® = a* and a®1% = 1%a® = a®.

The definition of the local fractional derivative and local fractional integral can be given as
follows.

Definition 2.1. [19] A non-differentiable function f : R — R%, x — f(z) is called to be local
fractional continuous at x, if for any € > 0, there exists § > 0, such that

[f(z) = f(zo)| <&”

holds for |z — x¢| < §, where £,0 € R. If f(x) is local continuous on the interval (a,b), we
denote f(x) € Cy(a,b).

Definition 2.2. [19] The local fractional derivative of f(x) of order a at x = wy is defined by

(@) () — d* f(x) — lim A (f(z) — f(x0))
! ( 0) dx® w0 ﬂEl_WCo (JJ — l‘o)a ’
where A* (f(z) — f(z0)) =I(a+ 1) (f(x) = f(z0)) -

——
If there exists f**De(z) = D2.DYf(x) for any x € I C R, then we denoted f €
D(41)a(I), where k =0,1,2, ...

Definition 2.3. [19] Let f(z) € C, [a, b] . Then the local fractional integral is defined by,

1 .
2@ = Far / PO =y i, 3 181"

with At; =t —t; and At = max {Aty, At,, ...,Aty_;}, where [t;,t;41],j=0,..,N — 1 and
a=ty<t <..<ty_) <ty =bis partition of interval [a, D] .
Here, it follows that ./ f(z) = 0 if a = b and I f(x ) =18 f(z) if a < b. If for any
x € [a,b], there exists ,I2 f(x), then we denoted by f(z) € I [a,b].
1C

Definition 2.4 (Generalized convex function). [19] Let f :
A € [0, 1], if the following inequality

f()\xl + (1 — )\)sz) < )\af(fﬂ]) + (1 - )\)af(xz)

holds, then f is called a generalized convex function on I.

C R — R*. Forany x|,z € I and

Here are two basic examples of generalized convex functions:
(D) f(z) =a°P,2=0,p>1;

(2) f(z) = E,(2%), x € R where E, (z%) = i

1_(1 = ka) is the Mittag-Lrffer function.

Theorem 2.5. [12] Let f € D (I), then the following conditions are equivalent
a) f is a generalized convex function on 1
b) f%) is an increasing function on I
c)forany x,xy € 1,

Fle(zy)
I'l+a)

Corollary 2.6. [12] Let f € Dy, (a,b). Then f is a generalized convex function ( or a general-
ized concave function) if and only if

729(2) 2 0 (or f2)(z) < 0)

fla2) = f(z1) =

(22 —21)"

forall z € (a,b).
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Lemma 2.7. [19]
(1) (Local fractional integration is anti-differentiation) Suppose that f(z) = ¢\®(z) €
C, [a,b], then we have
oI f(z) = g(b) - g(a).
(2) (Local fractional integration by parts) Suppose that f(z),g(x) € Dy [a,b] and f(¥)(z),
9\ (z) € Cy [a,b], then we have

o5 f(2)g ) (2) = f(2)g(x)l; —a I /) (2)g(@).

Lemma 2.8. [19] We have
o ko
) d*z I'(1+ ka) o=
dz® '+ (k-1)a)
I['(1+ ka)

N T B
Uy PG T T+ (k+ 1a)

(b(k+l)a _ a(k+1)a) .k €R.

Lemma 2.9 (Generalized Holder’s inequality). [19] Let f, g € Cy, [a,b], p,q > 1 with %—I—% =1,
then

1 ) R ' R
F(oz+1)/|f(x)g(x)|(dl) < (W/V(l) (dz) ) (w/|g(x)| (dz) )

In [12], Mo et al. proved the following generalized Hermite-Hadamard inequality for gener-
alized convex function:

a

Theorem 2.10 (Generalized Hermite-Hadamard inequality). Let f(z) € 11 [a, b] be a general-
ized convex function on [a, b] with a < 'b. Then

atb) _T(+a) f(a)+ f(b)
f( > )S b0 oIy fla) < =5 2.1

In [17], Sarikaya et al. proved the following generalized Bullen inequality for generalized
convex function and they also established a equality involving local fractional integral with re-
gard to generalized Bullen inequality.

Theorem 2.11 (Generalized Bullen inequality). Let f(x) € Ig(ra) [a,b] be a generalized convex
function on [a,b] with a < b. Then we have the inequality

oo < g [ (450) + T

Theorem 2.12. Let I C R be an interval, f : I° C R — R (I° is the interior of I) such that
f € Dy (I%) and f2) € Cy, [a,b] for a,b € I° with a < b. Then, for all x € [a,b] , we have the
identity

b

1 x_a—i—b * 2709 (2 (d)®
2a<b_a)a(r(1+a>)za/( ) s @@ e

B 2% [f (a;—b) N f(a);f(b)} _ F(b(l_z)o;) 0 F(2)

where

(b—z)",  [420].

The interested reader is able to look over the references [2], [12], [14]-[23] for local freac-
tional theory.

In this study, firstly the generalized Bullen type inequalities are established. Then, some
applications of these inequalities in numerical integration and for special means are given.
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3 Main Results

In this section, we prove some inequalities which are generalized Bullen type inequalities in-
volving local fractional integral.

Theorem 3.1. Let f(z) € il [a,b] be a generalized convex function on |a,b] with a < b. Then
the following inequality holds

L[ () s L] T

(b—a)”

< gperqaay 1 ® - 79 @]

Proof. Since f is a generalized convex function, it follows that f?® > 0, for every = € [a,b].

Because 5
a+b\" o« (b—a)™
< — — <~ 7
0< (m 3 ) (a—2)" < 6o

for any = € [a, “t%] and

a+b\” o (b—a)2a
< — — <~ 7
0< (m 3 ) b—2)" < 6o

for any z € [%f2,b] , we deduce the inequality

a 2c0
<x_ a—20—b> p() £ (2) < (bITaa)f(m (2). G.1)

Integrating both sides of (3.1) with respect to « from a to b and using Lemma 2.7, we have

b

(b-a)* 1 / (2a) a
<
S e rtaw ) @)
_ =0 (a)
= [0 - 1 )]
Using equality (3.1) in the previous inequality, we easily find required inequality. O

Remark 3.2. If we choose o = 1 in Theorem 3.1, then we have the following inequality

L (55) 20520 L s

< - @)

which is proved by Minculate et all. in [10].

’

Theorem 3.3. We suppose again that the assumptions of Theorem 2.12 are satisfied. If f?*) is
bounded on (a,b), then we have the inequality

BU(F) S o] o

(b—a)* [T(1+a) T(l+20a)

S r(ita) [F(l—i—Za) (1+3Q}Hfm
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Proof. Taking madulus in (2.2) and using bounded of %), we find that

1 {f <a+b) +f(a)+f(b)] T(l+a)

20 2 20 (b—a)* *

2a Iﬁf(x)‘ (3.3)

[e3

2 (@) 709 @) ()

20 (b—a)al(r(l+a))2a/‘x 2

IN

[e3

()| (dz)®

£ 1 / a-+b
o /x_

22(b—a)*T(14+a) T (1 + ) 2

a

1729
20(b—a)°T (1 +a)

Now, we calculate the integral K by using the Lemma 2.8, we have

a+b
2

K = M/G;bz)aua)“(d;@)a

+r<11+a>j (¢ "37) 0o @

Q

Applying the change of the variables * — a = v and b — x = v, we write

b—a b—a
2

K = F(ll—i-a) /2(b;a—u)aua(du)aJrO/(b;a—v>ava(dv)a

_ (b—a)3a[1"(1+a) F(1+2a)]

4 C(1+2a) T(1+3a)

If we substitute the integral K in (3.3), then we obtain desired result. O

Theorem 3.4. We suppose again that the assumptions of Theorem 2.12 are satisfied. If | f Qa)’ is
generalized convex, then we have the inequality

e I

_a2a (0% Q 2a 20
= 16(fr(1)+a) [rr((lljza))_ggiia;] 76 @]+ |76 @]
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Proof. Taking madulus in (2.2), we find that

zla[f<a;rb)+f(a)2tf(b)] _F(b(l_J;)fJ;) O F () (3.5)
= (b—a)* (T (1+a)) /‘ a+b |’f2°‘ ’(dx)

- 2a(b—a)°1‘r(1+a) r(11+a)/<aJ2rb_”“°>a(x_a)a

T(1+a) /b( a+b) S

atb
2

1
= B o Tara TR

Since | f(>*)| is generalized convex on [a, b], we have

o] = [ oz

< (i) ol (5=) el

Now, we calculate the integrals I; and I, by using of the inequality (3.6), we obtain

(3.6)

a+tb

(1 ‘—{(:;)((:)_‘ a)” /2 <a2+b — x>a (z — a)Za (dar)®

I <

£ (a)] a+b “ o o o
+F(1+a)(ba)aa/( > —x) (x —a)” (b—x)" (dx)

If we write (b—a — (z —a))” instead of (b — x)” and also we use the change of the variable

x — a = u, then we get
(b 4 ) u? (du)®

i j (52 ) oo
za<b2“ _u>au2a (du)” .

I

< a
- (b—a F

(b—a)*T(1+a)
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7
Using Lemma 2.8, we have
(2@) b - %Y
L < |f (2] b—a F(1+2a) T(1+3a) 37
(b—a) 2 I'(14+3a) TI'(1+4a)

ol @l (U3) [F o - )

el (b2 ey [0 T

Similarly, writing (b — a — (b — z))® instead of (x — a)” and also using the change of the vari-
able b — z = v, we obtain

T(l+2a) L(1+3a)

L < ‘f(ZQ)(b)‘<b;a>3a{F(l+a) 1—‘(1—}—2(1)}

(3.8)

1729 (a)| (b—a\* [T(142a) T(1+3a)
+ (2) [F(l+3a) I(1+4a)

—_

If we substitute the inequalities (3.7) and (3.8) in (3.5) and also we use elementary analysis, then
we easily deduce desired inequality.

O

Theorem 3.5. We suppose again that the assumptions of Theorem 2.12 are satisfied. If ] f@e) |q
is generalized convex, then we have the inequality

2% {f (a—é—b)_'_f(a);;f(b)} _rb(lfao;) o5 f()
(b—a)

- (b N a)Zoc

8o (C(1+ )7 (T (1 +2a))7

Q=

< (|2 (a)‘q ]t (b)m [B(p+1,p+1)]7

where, p,q > 1, % + é =1, and B is defined by

1
1 _
- - (z—1)ex _ (y— 1o a
B (z.y) r(1+a>/t (1) (ar)
0
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Proof. Taking madulus in (2.2) and using generalized Holder’s inequality, we find that

5 |1 (550) + D] - T i)
b
- %w—w%ra+wffh‘a§b N
<

1 1 b o q o
22 (b—a) T(1+a) (r(1+a)/‘f(2 (OINCD )
1 b|o” ;)
X (1"(1—0—04)/‘x_ a—2+- p(z)|” (dt)a)

1 1 ; o q o
= 2a(b_a)ar(1+a) (r(1+a)/‘f(2 )(t)’ (dt) )

Now, we calculate the integral L by using the Lemma 2.8, we get

at+b

’ (dz)®

1
q

1

(L)7 .

I -

7b
2

= L1+ L,

For calculating integral L, using changing variable with = (1 —¢)a + ¢

atb
2

L = M/(a;b—x>pa(x—a)m(dx)a

a

+b
2

_ (b_za><2p+1>a M /1(1 e (dr)°

0
b 2p+1)a
= (2a> Blp+1,p+1).

Similarliy, using changing variable with z = (1 — ¢) 22 + tb, we have

! <g: “erb)m (b— 2)" (dz)

I'(1 —|—a)

b 2p+1)a
- (%3%)  Be+ieen.

L, =

N‘;\o

3.9)

, we obtain

(3.10)

(3.11)
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Since | f(>*)| is generalized convex on [a, b], we have

a
2 —a\"| La) g | b— 2\ oa) (1|
= (b—a) ’f () +<b—a> ’f (e)
Using the inequality (3.12), we obtain
. b
o) (1) (a)®
F(Ha)/‘f 0" (a) (3.13)
_ ‘f(Za)(b)‘q b v —a\® e ’f(Za)(a)|q b b— a2\ e
- I'(l+4a) /(ba) (dt)” + '(l+a) /(ba> (%)

I'l+a)

o R e ]+ s o]

If we substitute (3.10), (3.11) and (3.13) in (3.9) and also we use elementary analysis, then we
easily deduce desired inequality. O

4 Applications to Numerical Integration

We now consider applications of the integral inequalities involving local fractional integral de-
veloped in the previous section, to obtain estimates of composite quadrature rules which, it turns
out have a markedly smaller error than that which may be obtained by the classical results.

Theorem 4.1. Let f : [a,b] — R be f € Dyo(a,b) and f** is bounded on (a,b). If I, : a =
20 < 21 < oo < Tp_y < Ty, = bis a partition of [a,b] and h; = (x;x1 —2;),1 =0, ..., n — 1,
then we have: ,
1
/1 1 _\ = B ITL7 I’na
Frra [ @) = Bl ) + B, 5)

where

1

Bl d) = v (i Ta)

2 mitain o = f @) + f(ziv1) , o
Zf (2) hi +22—ahi

i=0 =0

and the remainder term satisfies the astimation:

17| [F(l +a) T(1+20) ] \
I, = - h;<. 4.1
B, /)] < ga(r(1+a))2 I'14+2a) T(1+43a Z .1

Proof. Applying Theorem 3.3 on the interval [z;, z;11],7 =0, ..., n — 1, we obtain

1 Ti+ T\ o0 f(@)+ f(@ig1),, N
2T (1 +a) [f< 2 )hi +2ahi:| —ai Loy, f(2)

<

£ [ F'(1+a) T(1+ 204)]

8 (C'(1+a)) LT (1+2a) S T(1+30)

forall : = 0,...,n — 1. Summing over 4 from 0O to n — 1 and using the triangle inequality we
obtain the estimation (4.1). O
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Theorem 4.2. Let B(I,,, f) and R(I,,, f) be as defined in Theorem 4.1. If | f >*)|" is a generalized
convex function on [a,b] and also I, : a = xg < x1 < ... < Tp—1 < T, = b is a partition of [a, b]
and h; = (xi41 — x;),1 =0, ..., n — 1, then we have:

|R(Ly, f)] (4.2)
(B( lp+1 1 n—1 1
y D p « 2c « Na
< T Zh3 [ ) +‘f(2 ) (%i11) }
8> (I'(1+ a)) ”(F( +2a i=0
where, p,q > 1, %—i—%—l B (z,y) is defined by
1
(—l)a @
B
@)= ray 7 (at)

0

Proof. Applying Theorem 3.5 on the interval [z;, z;11],7 =0, ..., n — 1, we obtain

1+a) [f<xi+$i+1)h?+f($i)_"f($”l)h?} —, 1% f(2)

29T (1 2 20 @i Lo
(Blp+1L,p+1)) hh{ L]:|
8o (U(1+a))*7 (D(1+2a))7

forall i = 0,...,n — 1. Summing over 4 from 0O to n — 1 and using the triangle inequality we
obtain the estimation (4.2) which completes the proof. O

o=
Q=

<

1o (@

q
+ ‘f(za) (@it1)

5 Applications to Some Special Means

Let us recall some generalized means:
aa + b()t )
200’

A(a,b) =

L,(a,b) =

F(l+na) b(n+1)a (n+1)a "
Z\{—-1,0 b b.
F(l+(n+1)a)[ b—a)y nEAZL0), abeR aF

Now, let us reconsider the inequality (3.2):

L[ (220) LOE 0] Tve) )

(b—a)2“) [r(1+a) L(1+2a) } Hfm

8T (1 +a) [T (14+2a) T (1+3a)

forall z € [a,b].
Consider the mapping f : (0,00) — R*, f(z) = 2", n € Z\{—1,0}.Then, 0 < a < b, we

have
(5 =y, L g
and |
W oIy f(t) = [Ln(a, b)}n .

Using Lemma 2.8, we obtain

I'(l1+na) n—2)a
‘m (n—2) , n>1
=
‘ Mling | (n-2a ¢ (—o0, 1]\ {~1,0}

I(1+(n—2)a)
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and then we deduce that

’zla [[A@b)]" + A@@, 5] ~T (1 + a) (Lo (a, )"

(b—a)*™ {F(1+a) [(142a)

= 8T (1+a) [T(1+2a) TI(l —|—3o¢)} On(a;0)

where
I'(1+na)

n—2)a
‘F(1+(n72)a) e > 1

on(a,b) =

a2 e (o0, 1]\ {~1,0}

T(14+na)
‘ I'(1+(n—2)a)

forall z € [a,b].
Also, let n. > 3 for the function f(z) = 2", f : (0,00) — R, then | f?®)| is a generalized
convex function. Now, let us reconsider the inequality (3.4):

2% [f <a—2|—b) N f(a);;f(b)] B F(b(lt)o;) 0 F ()

< e [ L0 2 (e @] + s )]

Then, 0 < a < b, we have

’zla [[A(a,b)]" + A(a”,b™)] =T (1 4 @) [Ln(a,b)]"

(b—a)*™ [m +a) F(1+2a)]

S T6T(1+a) |[T(1+2a) L(1+3a)
I (1 + na) (n—2)a (n—2)x
“T(+ (n=2)a) a7 bl

forall z € [a,b].
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