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Abstract In this paper we obtain the extended genus field of a global field. First we define
the extended genus field of a global function field and we obtain, via class field theory, the
description of the extended genus field of an arbitrary global function field. In the last part of
the paper we use the techniques for function fields to describe the extended genus field of an
arbitrary number field.

1 Introduction

The study of narrow or extended genus fields goes back to C.F. Gauss [8] who introduced the
genus concept in the context of quadratic forms. During the first half of the last century, the
concept was imported to quadratic number fields. H. Hasse [9] studied genus theory of quadratic
number fields by means of class field theory. H.W. Leopoldt [11] generalized the work of Hasse
by introducing the concept of genus field for a finite abelian extension of the rational field.
Leopoldt studied extended genus fields using the arithmetic of abelian fields by means of Dirich-
let characters. The first to introduce the concept of genus field and of extended genus field of
a nonabelian finite extension of the rational field was A. Frölich who defined the concept of
genus field of an arbitrary finite extension of Q [6, 7]. For a number field K, Frölich defined the
genus field K (with respecto to the rational field Q) as Kge := KF where F/Q is the maximum
abelian extension such thatKF/K is unramified everywhere. Similarly, the extended genus field
is Kgex = KL where L/Q is the maximum abelian extension such that KL/K is unramified at
the finite primes. Numerous authors have studied genus fields and extended genus fields for
finite field extensions K/Q over Q.

In the case of number fields, the concepts of Hilbert class field and of extended Hilbert class
field are defined without any ambiguity. The Hilbert class fieldKH and the extended Hilbert class
field KH+ of a number field K/Q are defined as the maximum abelian unramified extension and
the maximum abelian extension unramified at the finite primes of K, respectively. In this way,
the concepts of genus field and of extended genus field are defined depending on the concept
of the Hilbert class field, and of the extended Hilbert class field respectively. Namely, we have
K ⊆ Kge ⊆ KH and the Galois group Gal(KH/K) is isomorphic to the class group ClK of
K. The genus field Kge corresponds to a subgroup GK of ClK and we have Gal(Kge/K) ∼=
ClK/GK . The degree [Kge : K] is called the genus number of K and Gal(Kge/K) is called the
genus group of K. Similarly, K ⊆ Kgex ⊆ KH+ and Kgex corresponds to a subgroup GK+ of
Gal(Kgex/K) ∼= ClK+ .

For global function fields the picture is different due to the fact that there are several concepts
of Hilbert class field and of extended Hilbert class field, depending on which aspect you are
interested in. The direct definition of the Hilbert class field KH of a global function field K over
Fq as the maximum unramified abelian extension of K has the disadvantage of being of infinite
degree over K due to the extensions of constants. In the extensions of constants, every prime is
eventually inert, so, if we are interested in a definition of a Hilbert class field of finite degree over
the base field, we must impose some condition on the extension of constants. It seems that the
first one to consider extended genus fields in the case of function fields was R. Clement in [5],
where she considered the case of a cyclic tame extension K/Fq(T ) of prime degree l different
from the characteristic p of Fq. She developed the theory along the lines of the case studied by
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Hasse in [9]. Later on, S. Bae and J.K. Koo [3] generalized the results of Clement following
the development given by Frölich. They defined the extended genus field for extensions of an
arbitrary global function fieldK defining an analogue to the cyclotomic function field extensions
of Fq(T ) given by the Carlitz module.

M. Rosen defined in [15] the Hilbert class field of a global function field K as the maximum
abelian unramified extension of K such that a fixed nonempty finite set of prime divisors of K
decompose fully. Using this definition of Hilbert class field, G. Peng [14] found the genus field of
a cyclic tame extension of prime degree over the rational function field k = Fq(T ). His method
used the analogue for function fields of the Conner–Hurrelbrink exact hexagon in number fields.
The wild prime case was presented by S. Hu and Y. Li in [10] where they described explicitly
the genus field of an Artin–Schreier extension of the rational function field. In [2, 12, 13] we
developed a theory of genus fields using the same concept of Hilbert class field. In those papers,
the ideas of Leopoldt using Dirichlet characters were strongly used.

In this paper we are interested in describing, using class field theory, the extended genus field
of a finite separable extension of k. B. Anglès and J.-F. Jaulent in [1] established the general
theory of extended genus fields of global fields, either function or numeric. We use a concept
of extended genus field for function fields different from the one defined by Anglès and Jaulent.
With this concept, when we describe the finite abelian extension L where Kgex = KL, we may
write L as the composition of a sort of P–components, where P runs through the finite primes
of k. We consider these P–components LP as the composition of EP , the P–component of the
projection E of L in a cyclotomic function field given by the Carlitz module, and a field S which
codifies the behavior of the infinite prime. More precisely, S codifies the wild ramification
and the inertia of the infinite prime of k. To this end, we need to consider the idèle group
corresponding to an arbitrary cyclotomic function field. Finally, we describe the field S.

It turns out, that the same approach works for number fields. Indeed, in the number field case,
the problem is simpler because, by the Kronecker–Weber theorem, any abelian extension of Q
is cyclotomic, that is, it is contained in a cyclotomic number field. In the function field case, the
maximum abelian extension of k consists of three components: one cyclotomic, one of constants
and one, also cyclotomic, where the infinite prime is totally and wildly ramified and it is the only
ramified prime. In the number field case, the “p–components” can be found explicitly for p ≥ 3
depending only on their degree over Q. The case p = 2 does not depend only on its degree over
Q since, for n ≥ 3, the cyclotomic field Q(ζ2n) is not cyclic. We give a criterion to describe the
2–component of Kgex. Finally, we present some results on the behavior of the genus field of a
composition. For number fields, a similar result was obtained by M. Bhaskaran in [4] and by X.
Zhang [18].

2 Preliminaries and notations

We denote by k = Fq(T ) the global rational function filed with field of constants the finite
field of q elements Fq. Let RT = Fq[T ] be the ring of polynomials, that is, the ring of in-
tegers of k with respect to the pole of T , the infinite prime p∞. Let R+

T := {P ∈ RT |
P is monic and irreducible}. The elements of R+

T are the finite primes of k and p∞ is the in-
finite prime of k. For N ∈ RT , ΛN denotes the N–th torsion of the Carlitz module. A finite
extension F/k will be called cyclotomic if there exists N ∈ RT such that k ⊆ F ⊆ k(ΛN ).

Given a cyclotomic function field E, the group of Dirichlet characters X corresponding to
E is the group X such that X ⊆ ̂(RT /〈N〉)∗ ∼= ̂Gal(k(ΛN )/k) = Hom

(
(RT /〈N〉)∗,C∗

)
and

E = k(ΛN )H where H = ∩χ∈X kerχ. For the basic results on Dirichlet characters, we refer to
[17, §12.6].

For a group of Dirichlet characters X , let Y =
∏
P∈RT XP where XP = {χP | χ ∈ X} and

χP is the P–th component of χ: χ =
∏
P∈R+

T
χP . If E is the field corresponding to X , we define

Egex as the field corresponding to Y . We have that Egex is the maximum unramified extension
at the finite primes of E contained in a cyclotomic function field. The infinite prime p∞ might
be ramified in Egex/k (see [12]).

Let Ln = k(Λ1/Tn+1 )F
∗
q , n ∈ N ∪ {0} where F∗q ⊆

(
R1/T /〈1/Tn+1〉

)∗
, is isomorphic to

the inertia group of the prime corresponding to T in k
(
Λ1/Tn+1

)
/k. The prime p∞ is the only
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ramified prime in Ln/k and it is totally and wildly ramified. For m ∈ N, and for any finite
extension F/k, Fm denotes the extension of constants: Fm = FFqm . In particular km = Fqm(T ).

Given a finite abelian extension K/k, there exist n ∈ N ∪ {0}, m ∈ N and N ∈ RT such that
K ⊆ Lnk(ΛN )km =: nk(ΛN )m (see [17, Theorem 12.8.31]). We define M := Lnkm. In M/k
no finite prime of k is ramified.

For any extension E/F of global fields and for any place P of E and p = P ∩ F , the
ramification index is denoted by eE/F (P|p) = e(P|p) and the inertia degree is denoted by
fE/F (P|p) = f(P|p). When the extension is Galois we denote ep(E|F ) = eE/F (P|p) and
fp(E|F ) = fE/F (P|p). In particular for any abelian extension E/k, eP (E|k) and fP (E|k)
denote the ramification index and the inertia degree of P ∈ R+

T in E/k respectively, and we
denote by e∞(E|k) and f∞(E|k) the ramification index and the inertia degree of p∞ inE/k. The
symbol ewild

∞ (E|F ) denotes the wild ramification part of the infinite primes in E/F . Similarly,
IE/F (P|p) denotes the inertia group and DE/F (P|p) the decomposition group.

For any finite separable extensionK/k the finite primes ofK are the primes over the primes P
inR+

T and the infinite primes ofK are the primes over p∞. The Hilbert class fieldKH ofK is the
maximum abelian extension of K unramified at every finite prime of K and where all the infinite
primes of K are fully decomposed. The genus field Kge of K/k is the maximum extension of K
contained in KH and such that it is the composite Kge = KF where F/k is abelian. We choose
F the maximum possible. In other words, F is the maximum abelian extension of k contained
in KH .

Let K/k be a finite abelian extension. We know that Kge = KEHge is the genus field of K
where H is the decomposition group of the infinite primes in KE/K and E := KM ∩ k(ΛN )
(see [2]). We also know that KEge/Kge and KE/K are extensions of constants.

For a local field F with prime p, we denote by F (p) ∼= Fq the residue field of F , U (n)
p = 1+pn

the n–th units of F , n ∈ N ∪ {0}.
Let π = πF = πp be a uniformizing element for p, that is, vp(π) = 1. Then the multiplicative

group of F satisfies F ∗ ∼= 〈π〉 × Up
∼= 〈π〉 × F∗q × U

(1)
p as groups.

3 Extended genus field of a global function field

Let K/k be a finite abelian extension. Let n ∈ N ∪ {0}, m ∈ N and N ∈ RT be such that
K ⊆ nk(ΛN )m. Let E = KM ∩ k(ΛN ). Define the extended genus field of K as

Kgex := KEgex.

Note that Kgex/K is unramified at the finite primes since Egex/E is unramified at the finite
primes, so that KEgex/KE is unramified at the finite primes and we also know that KE/K is
unramified at the finite primes ([2]).

E KE KM = EM

K

k M

Now KM = EM/E is ramified at most at the infinite prime p∞ and the inertia of p∞ in the
extension EM = KM/E is contained in M . Hence EM/E is unramified at the finite primes.
The same holds for KM/K and we have K ⊆ KE ⊆ KM = EM . In short, Kgex/K is
unramified at the finite primes. We also have that Kgex/K is tamely ramified at p∞ since Egex/k
is tamely ramified at p∞ so that KEgex/K is tamely ramified at p∞ and Kgex = KEgex.

We also have [Egex : EHge]|q− 1 since e∞(Egex|E)|q− 1 where in general, for a finite abelian
extension L/F , e∞(L|F ) denotes the ramification index of the infinite primes of F in L, and
H ⊆ I∞(Egex|k), where in general I∞(L|F ) denotes the inertia group of the infinite primes in
the Galois extension L/F . In other words, the infinite primes of EHge are fully ramified in the
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extension Egex/E
H
ge. Thus we have

[Egex : EHge] = e∞(Egex|EHge)|e∞(k(ΛN )|k) = q − 1.

Therefore we have that Kgex = KEgex/KE
H
ge = Kge is unramified at the finite primes, the

infinite primes are tamely ramified, and [Kgex : Kge]|q − 1.
Now letK/k be a finite and separable extension. We defineKgex asKFgex whereKge = KF ,

that is, F is the maximum abelian extension of k contained in the Hilbert class field KH of K
(see [2]). Observe that Fge = F .

Note that [Kgex : Kge]|[Fgex : Fge]|q − 1 and the only possible ramified primes in Kgex/Kge

are the infinite primes and they are tamely ramified.

Definition 3.1. For a finite separable extension K/k, we define the extended genus field of K as
Kgex = KFgex = KL where L = Fgex. We stress that we choose F to be the maximum abelian
extension of k such that Kge = KF .

Remark 3.2. For a finite prime P ∈ R+
T , the tame part of the ramification of P in Kgex/k can

be obtained in the following way. Let dP = degP and let eP (L|k) = e
(0)
P e

(w)
P = etame(P )e

(w)
P

where gcd(p, e(0)P ) = 1 and e(w)
P = pαP for some integer αP ≥ 0. Since L/k is abelian, we have

e(0)|qdP − 1 (see [16, Proposición 10.4.8]).
Consider the extension k

(0)
P /k where P is the only finite prime ramified, k(0)P ⊆ L and

e
(0)
P |[k

(0)
P : k]. Note that [k(ΛP ) : k] = qdP − 1. Then Kk

(0)
P ⊆ Kgex and Kk

(0)
P /K is un-

ramfied at the finite primes. Thus, by Abhyankar Lemma,

eP (K|k) = eP (Kk
(0)
P |k) = lcm[eP (K|k), eP (k(0)P |k)] = lcm[eP (K|k), e(0)P ]

Therefore e(0)P |eP (K|k). Since e(0)P is the maximum with this property, it follows that

etame(P ) = e
(0)
P = gcd(qdP − 1, eP (K|k)).

We now obtain Kgex = KL where L satisfies Lgex = L, L/k abelian and L is the maximum
with respect to this property. Let L ⊆ nk(ΛN )m. If necessary, we may assume n,m,N are
minimum, where m ∈ N is the conductor of constants (see [2]), N ∈ RT and n ∈ N ∪ {0}. In
this situation we define the conductor of L as (m,N, n).

Let E := LM ∩ k(ΛN ). Then EM = LM and Lgex = L = EgexL so that Egex ⊆ L
and E = Egex. In fact, Egex ⊆ L ⊆ LM = EM , hence EgexM ⊆ EM and from the Galois
correspondence, Egex ⊆ E. Thus Egex = E.

E = Egex L LM = EM

k S M

Let S := L ∩M . We have S ⊆M = Lnkm.
Let X = Y =

∏
P∈R+

T
XP be the group of Dirichlet characters associated to Egex = E.

Then if EP is the field associated to XP , with P ∈ R+
T , E =

∏
P∈R+

T
EP where EP = k for

almost all P and if P1, . . . , Pr are the finite primes ramified in E/k, XPi 6= {1}, EPi 6= k,
EPi ∩

∏
j 6=iEPj = k, 1 ≤ i ≤ r and E = EP1 · · ·EPr , ̂Gal(E/k) ∼= X = Y =

∏
P∈R+

T
XP =∏

P∈R+
T

̂Gal(EP /k) ∼=
∏r
i=1

̂Gal(EPi/k). Thus

Gal(E/k) ∼=
r∏
i=1

Gal(EPi/k).
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For any nonempty finite subset A ⊆ R+
T , we define EA :=

∏
P∈AEP . We may consider EP

as the “P–th primary component” of E.

E =
∏
P∈R+

T
EP = Egex L = ES LM = EM

EP LP = EPS LPM = EPM

k S = L ∩M M

We define LP := EPM ∩ L. We have that EP ⊆ E ⊆ L and EP ⊆ EPM . Therefore
EP ⊆ LP . From the Galois correspondence, we have

LP = EPS.

For any nonempty finite subset A ⊆ R+
T , we let LA := EAM ∩ k(ΛN ). From the Galois

correspondence we obtain LA = EAS and in particular

LA =
( ∏
P∈A

EP

)
S =

∏
P∈A

(EPS) =
∏
P∈A

LP .

We have

Proposition 3.3. For any A,B ∈ RT \ {0}, let LA := EAM ∩ L, where EA :=
∏
P |A
P∈R+

T

EP , that

is, EA = EA and LA = LA, where A = {P ∈ R+
T | P |A}. Then we have

LAB = LALB .

Furthermore, if gcd(A,B) = 1 we have LA ∩ LB = S = L ∩M .

Proof. It remains to consider the case gcd(A,B) = 1. We have EA =
∏
P |AEP , EB =∏

P |B EP and {P ∈ R+
T | P |A} ∩ {P ∈ R+

T | P |B} = ∅. Therefore EA ∩ EB = k and
kL ∩M = L ∩M = S. The result follows from the Galois correspondence.

Now, for P ∈ R+
T , LP = EPM ∩ L ⊇M ∩ L = S and LP 6= S ⇐⇒ P ∈ {P1, . . . , Pr}. In

fact, LP = EPM ∩ L 6= S ⇐⇒ EPM 6=M ⇐⇒ EP 6= k ⇐⇒ P ∈ {P1, . . . , Pr}.
Finally, E =

∏
P∈R+

T
EP =

∏r
i=1 EPi . Therefore, since EM = LM , in particular L ⊆ EM .

We have

L = EM ∩ L =
( r∏
i=1

EPi
)
M ∩ L =

r∏
i=1

(EPiM ∩ L) =
r∏
i=1

LPi

=
r∏
i=1

LPi ·
∏

P /∈{P1,...,Pr}

S =
∏
P∈R+

T

LP .

Thus

L =
r∏
i=1

LPi =
∏
P∈R+

T

LP .

We have proved

Theorem 3.4. For A ∈ RT , we define LA = EAM ∩ L. Let S = L ∩M . We have

(1) For all A,B ∈ RT , LAB = LALB .
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(2) LA ⊇ S for all A ∈ RT and LA = S ⇐⇒ Pi - A for all 1 ≤ i ≤ r.

(3) LA ∩ LB = S for all A,B ∈ RT such that gcd(A,B) = 1.

(4) L =
∏
P∈R+

T
LP =

∏r
i=1 LPi .

In order to compute L we need to know S, that is, the behavior of p∞, and also each EP for
P ∈ R+

T . First, we have that if P ∈ R+
T is unramified in K/k, then P is unramified in E/k and

therefore in L/k. Indeed, if P were ramified in L/k, then we would have

eP (KL|K) = eP (KL|K)eP (K|k) = eP (KL|k) = eP (KL|L)eP (L|k) > 1

so that eP (KL|K) > 1 contrary to the definition of L.

K KL

k L

Thus, it suffices to know EPi , 1 ≤ i ≤ r where P1, . . . , Pr are the finite primes ramified in
K/k and therefore these are the only possible finite primes ramified in E/k and in L/k. Now,
in EP /k the only finite prime ramified is P and p∞ is tamely ramified. Note that the tame
ramification index of p∞ in E/k and in L/k is the same. This is a consequence of L = ES.

In general we consider an arbitrary global function field F . Let JF be the idèle group of F
and let CF = JF /F

∗ be the idèle class group of F . To find EP for P ∈ {P1, . . . , Pr}, we must
find the idèle subgroup of Jk corresponding to EP . Now, since EP is cyclotomic and P is the
only finite prime ramified, there exists t ∈ N such that EP ⊆ k(ΛP t). Therefore, the idèle group
corresponding to EP contains the idèle group corresponding to k(ΛP t).

Theorem 3.5. Let N ∈ RT , N = Pα1
1 · · ·Pαrr with P1, . . . , Pr ∈ R+

T distinct. Set R′T :=
R+
T \ {P1, . . . , Pr}. Then, the idèle group corresponding to k(ΛN ) is

XN =
r∏
i=1

U
(αi)
Pi
×
∏
P∈R′T

UP × [(π)× U (1)
∞ ],

where π = 1/T is a uniformizing element for p∞.

Proof. Let U ′ :=
∏
Q∈R+

T
UQ × [(π)× U (1)

∞ ]. We will give an epimorphism

ψN : U ′ −→ Gal(k(ΛN )/k) =: GN

such that kerψN = XN and hence, U ′/XN ∼= GN .
Let ~ξ ∈ U ′. Then ξPi ∈ UPi = {

∑∞
j=0 ajP

j
i | aj ∈ RT /〈Pi〉}, 1 ≤ i ≤ r. Since k is dense in

the local field kPi , there exists Qi ∈ RT such that Qi ≡ ξPi mod Pαii . By the Chinese Residue
Theorem, we have that there exists C ∈ RT such that C ≡ Qi mod Pαii , 1 ≤ i ≤ r and so
C ≡ ξPi mod Pαii , 1 ≤ i ≤ r

Now, if C1 ∈ RT satisfies C1 ≡ ξPi mod Pαii , 1 ≤ i ≤ r, we have that Pαii |C − C1 for
1 ≤ i ≤ r. It follows that N |C − C1 and thus C ∈ RT is unique modulo N . On the other hand,
vPi(ξPi) = 0, so that Pi - ξPi and so we obtain that gcd(C,N) = 1. In this way we have that
C mod N defines an element of GN = Gal(k(ΛN )/k).

Given σ ∈ GN , there exists C ∈ RT such that σλN = λCN where λN is a generator de ΛN .
Let ~ξ ∈ U ′ with ξPi = C, 1 ≤ i ≤ r and ξP = 1 = ξ∞ for all P ∈ R′T . Therefore ~ξ 7→ C mod N
and ψN is onto. Finally, kerψN = {~ξ ∈ U ′ | ξPi ≡ 1 mod Pαii , 1 ≤ i ≤ r} = XN . So we have
that ψN is an epimorphism and kerψN = XN .

We will show that U ′/XN ∼= Jk/XNk∗. We have the composition

U ′ �
� //

µ

33
Jk // // Jk/XNk∗,
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with imµ = U ′XNk∗/XNk∗ and kerµ = U ′ ∩ XNk∗.
Now, XN ⊆ U ′ so that XN ⊆ U ′ ∩ XNk∗. Conversely, if ~ξ ∈ U ′ ∩ XNk∗, the components of

~ξ are given as

ξP = a · βP , P ∈ RT , ~β ∈ XN , a ∈ k∗,

ξ∞ = a · β∞, β∞ ∈ (π)× U (1)
∞ .

Since ξP , βP ∈ UP we have vP (ξP ) = vP (βP ) = 0 for all P ∈ RT . It follows that vP (a) = 0
for all P ∈ RT . Furthermore, since deg a = 0 we have v∞(a) = 0 and so a ∈ F∗q .

Now ξ∞, β∞ ∈ (π) × U
(1)
∞ = kerφ∞, where φ∞ : k∗∞ −→ F∗q is the sign function of k∗∞

defined as φ∞(λπnu) = λ where λ ∈ F∗q , n ∈ N and u ∈ U
(1)
∞ . Thus 1 = φ∞(ξ∞) =

φ∞(a)φ∞(β∞) = φ∞(a) and so a = 1. It follows that ~ξ ∈ XN . Therefore kerµ = XN
and we obtain a monomorphism U ′/XN

θ
↪−→ Jk/XNk∗.

It remains to prove that θ is surjective. So, we must prove that Jk = U ′XNk∗ = U ′k∗.
We have that U ′ corresponds to the maximum unramified extension at every finite prime. Let
L/k be this extension. Since U (1)

∞ corresponds to the first ramification group, and in this way
it corresponds to the wild ramification of p∞, it follows that in L/k there is at most a ramified
prime (p∞), being tamely ramified and of degree 1. From [16, Proposición 10.4.11], we obtain
that L/k is an extension of constants.

Finally, since 1 = min{n ∈ N | deg ~α = n, ~α ∈ U ′}, the field of constants of L is Fq (see
[16, Teorema 17.8.6]) and therefore L = k. It follows that Ck ∼= U ′, that is, Jk/k∗ ∼= U ′ and
thus Jk = U ′k∗.

Corollary 3.6. With the above notations, we have that for a cyclotomic field k ⊆ F ⊆ k(ΛN ),
the idèle group corresponding to F is of the form RF ×

∏
Q∈R′T

UQ × [(π) × U (1)
∞ ] with RF a

group satisfying
∏r
i=1 U

(αi)
Pi
⊆ RF ⊆

∏r
i=1 UPi .

Proof. Let ∆ be the idèle group corresponding to F . Thus ∆ ⊇ XN . Now∏r
i=1 UPi∏r
i=1 U

(αi)
Pi

∼=
(
RT /〈N〉

)∗ ∼= Gal(k(ΛN )/k).

Therefore Gal(k(ΛN )/F ) ∼= Θ∏r
i=1 U

(αi)
Pi

< Gal(k(ΛN )/k) for a group Θ ⊆
∏r
i=1 UPi . The group

Θ corresponds to RF . The result follows.

Corollary 3.7. Let P ∈ R+
T . Then the idèle group corresponding to EP is of the form

∆P = HP ×
∏
Q 6=P
Q∈R+

T

UQ × [(π)× U (1)
∞ ],

where U (t)
P ⊆ HP ⊆ UP for some t ∈ N.

Proof. Since EP is cyclotomic and the only finite prime ramified is P , there exists t ∈ N such
that EP ⊆ k(ΛP t). The result follows from Corollary 3.6

For each P ∈ R+
T , kP denotes the completion of k at P and k∞ denotes the completion of k

at p∞. We recall the following result of class field theory.

Theorem 3.8. Let F be a global field and let R/F be the class field extension corresponding to
H , that is, H is the open subgroup of CF such that H = NR/F CR and Gal(R/F ) ∼= CF /H . Let
E/F be a finite separable extension. Then ER/E is the class field extension corresponding to
the subgroup N−1

E/F (H) of CE .

E
N−1
E/F

(H)

ER

F
H

R.
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Proof. We have that if E/F and E′/F ′ are two finite abelian extensions of global fields with
F ⊆ F ′ and E ⊆ E′ of global fields, and if ψE/F denotes the Artin map of the extension E/F
then we have the following commutative diagram

CF ′
ψE′/F ′

//

NF ′/F
��

Gal(E′/F ′)

rest
��

CF
ψE/F

// Gal(E/F )

where rest denotes the restriction map (see [16, Proposición 17.6.39]).
We apply this result to our situation, that is, we have the commutative diagram

CE
ψER/E

//

NE/F
��

Gal(ER/E)

rest
��

CF
ψR/F

// Gal(R/F )

Let ψER/E : CE −→ Gal(ER/E) be the Artin map. The norm group corresponding to
ER/E is kerψER/E , that is, CE/ kerψER/E ∼= Gal(ER/E). Now the restriction map is injec-
tive and we have

rest ◦ψER/E = ψR/F ◦NE/F .

Therefore

~x ∈ kerψER/E ⇐⇒ ψER/E(~x) = 1 ⇐⇒
⇐⇒ rest ◦ψER/E(~x) = 1 = ψR/F ◦NE/F (~x) ⇐⇒

⇐⇒ NE/F (~x) ∈ kerψR/F = H ⇐⇒ ~x ∈ N−1
E/F (H).

We apply Theorem 3.8 to the diagram

K KEP

k EP

that is, KEP is the class field of N−1
K/k(∆P ). Since EP is maximum in the sense that P is the

only finite prime ramified in EP /k and KEP /K unramified at every finite prime, we have that
∆P satisfies

N−1
K/k(∆P ) ⊆

∏
Q∈R+

T

∏
p|Q

Up ×
∏

P∞|p∞

K∗P∞ ⊆ JK ,

or, equivalently,

∆P ⊆ NK/k

( ∏
Q∈R+

T

∏
p|Q

Up ×
∏

P∞|p∞

K∗P∞
)
.
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Let ~α ∈
∏
Q∈R+

T

∏
p|Q Up ×

∏
P∞|p∞ K

∗
P∞

, ~α = (αp)p. Then

NK/k ~α =
∏
Q∈R+

T

(∏
p|Q

NKp/kQ αp

)
·
∏

P∞|p∞

NKP∞/k∞
αP∞ .

For Q 6= P , Q is unramified in LP /k, therefore, for Q|Q, KQ/kQ is unramified and in
particular it is a cyclic extension. Then NKQ/kQ UQ = UQ (see [16, Teorema 17.2.17]).

For Q = P , we have ∏
p|P

NKp/kP αp =
mP∏
j=1

NKpj
/kP αpj ,

where conk/K P = pe1
1 · · · p

emP
mP .

It follows that
∏mP
j=1 NKpj

/kP αpj ∈ HP . In other words, if

Sj := NKpj
/kP Upj ×

∏
Q∈R+

T
Q6=P

UQ × [(π)× U (1)
∞ ] ⊆ UP ×

∏
Q∈R+

T
Q 6=P

UQ × [(π)× U (1)
∞ ],

we have

∆P =
mP∏
j=1

Sj and HP =
mP∏
j=1

NKpj
/kP Upj .

Now, if Sj is the norm group of the field Rj ⊆ nk(ΛP cj )m for some n ∈ N∪{0},m ∈ N and
cj ∈ N, then

∏mP
j=1 Sj is the norm group of ∩mPj=1Rj .

It follows that [Ck : k∗Sj ] = [UP : NKpj
/kP Upj ] and Gal(Rj/k) ∼= Ck/k

∗Sj . Therefore
[Rj : k] = [Ck : k∗Sj ] = [UP : NKpj

/kP Upj ]. Finally, we have

EP =
mP⋂
j=1

Rj , [EP : k] =
[mP⋂
j=1

Rj : k
]
=
[
UP :

mP∏
j=1

NKpj
/kP Upj

]
.

We have proved our main result.

Theorem 3.9. LetK/k be a finite and separable extension, where k = Fq(T ). With the notations
as above, let Kgex = KL. Then L =

∏
P∈R+

T
LP where LP = EPS, S = L ∩M and k ⊆ EP ⊆

k(ΛP cP ) corresponds to
∏mP
j=1 NKpj

/kP Upj . In particular

[EP : k] =
[
UP :

mP∏
j=1

NKpj
/kP Upj

]
,

where conk/K P = pe1
1 · · · p

emP
mP .

The tamely ramified part of LP /k is given by

etame(P ) = gcd(e1, . . . , emP , q
dP − 1),

with dP = degk P .

3.1 The field S

To study S, recall that for a finite extension K/k, the genus field is Kge = KF where F/k is the
maximum abelian extension contained in the Hilbert class field and the extended genus field is
Kgex = KL, where L satisfies Lgex = L, L/k is abelian and L is the maximum with respecto to
this property. We have Fge = F , L = Fgex and Lgex = L. Let L ⊆ nk(ΛN )m with (m,N, n) the
conductor of L. Then M = Lnkm and S = L ∩M .

Proposition 3.10. We have that L/F is totally ramified at the infinite primes, unramified at the
finite primes and [L : F ]|q − 1. In particular, L/F is tamely ramified.
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Proof. We have that F/k is abelian. Let F ⊆ nk(ΛN )m and E = FM ∩ k(ΛN ). Then EgeM =
FgeM = FM = EM (see [2]) and therefore Ege = E.

Since e∞(Egex|Ege)|q − 1 and e∞(M |k) = qn, it follows that

e∞(EgexM |EgeM) = e∞(Egex|Ege) = [Egex : Ege].

Egex
e∞=qn

e∞=d|q−1

EgexM = FgexM

e∞=d|q−1

Ege
e∞=qn

EgeM = FgeM = FM = EM

k
e∞=qn

M

Hence,

e∞(Fgex|Fge) = e∞(FgexM |FgeM) = e∞(EgexM |EgeM)

= [Egex : Ege] = [EgexF : EgeF ] = [Fgex : Fge].

So, the infinite primes are total and tamely ramified in L = Fgex/Fge = F .
On the other hand, Egex/Ege is unramified at the finite primes, thus EgexF = Fgex = L/F =

Fge = EgeF is unramified at the finite primes.

Proposition 3.11. We have

ewild
∞ (L|k) = ewild

∞ (F |k) = ewild
∞ (S|k) = e∞(S|k).

Furthermore, S = L ∩M = F ∩M .

Proof. We have ewild
∞ (L|k) = ewild

∞ (L|K) = ewild
∞ (L|F )ewild

∞ (F |k) = ewild
∞ (F |k).

By the definition of S, we have ewild
∞ (S|k) = e∞(S|k) since e∞(S|k)|qn. Now, L = EgexS,

Egex ∩ S = k and ewild
∞ (Egex|k) = 1. Therefore

ewild
∞ (L|k) = ewild

∞ (EgexS|S)ewild
∞ (S|k) = ewild

∞ (S|k)

since ewild
∞ (EgexS|S)|ewild

∞ (Egex|k) = 1.
We have F ∩M ⊆ L ∩M = S and F ∩ (L ∩M) = F ∩M .

S = L ∩M F (L ∩M) L

F ∩M F

It follows that [L ∩M : F ∩M ] = [F (L ∩M) : F ]|[L : F ]|q − 1. We have that L/F is totally
ramified at the infinite primes and therefore F (L ∩M)/F is also fully ramified at the infinite
primes. It follows that S = L ∩ M/F ∩ M is fully ramified at the infinite primes (see [16,
Corolario 10.4.15]). Thus, [S : F ∩M ]|qn and [S : F ∩M ]|q − 1 so that [S : F ∩M ] = 1 and
F ∩M = L ∩M .

Proposition 3.12. The field of constants of S, of L and of F is the same.

Proof. If Fqt0 is the field of constants of L then Fqt0 ⊆ S = L ∩M and since S ⊆ F ⊆ L, the
result follows.

Proposition 3.13. Let conk/K p∞ = Pe1
1 · · · Perr and let ti = degK(Pi). Then the field of con-

stants of Kge is Fqt0 , where t0 = gcd(t1, . . . , tr).

Proof. See [13].
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Corollary 3.14. The field of constants of S,L and F is Fqt0 .

Now we consider a finite abelian extension J/k such thatKJ/K is unramified and the infinite
primes decompose fully. Let P|p∞ be a prime divisor of KJ , P ∩K = Pi for some 1 ≤ i ≤ r
and P ∩ J = Q. Taking the completions we have

KPi
=1

(KJ)P

k∞
Hi

JQ

Let Hi := NJQ/k∞ J
∗
Q, that is, Hi is the norm group of JQ. Therefore, the norm group corre-

sponding to (KJ)P = KPi is N−1
KPi/k∞

(Hi) (see Theorem 3.8). Hence N−1
KPi/k∞

(Hi) = K∗Pi .
That is, Hi = NKPi/k∞

(K∗Pi). The maximum global abelian extension J/k satisfying that
KJ/K is unramified and the infinite primes decompose fully, satisfies, locally at ∞, that its
norm gorup is

r∏
i=1

Hi =
r∏
i=1

NKPi/k∞
(K∗Pi).

In this way, if R/k∞ is the maximum abelian extension with (KR)P = KPi for some i.
Thus R corresponds to

∏r
i=1 Hi, that is, Gal(R/k∞) = k∗∞/(

∏r
i=1 Hi) and [R : k∞] = [k∗∞ :∏r

i=1 Hi].
Let [R : k∞] = pαawith α ∈ N∪{0} and p - a. Since S is the maximum abelian extension of

k such that the only ramified prime is p∞, it is fully ramified and S ⊆ L, and since f∞(L|S) = 1,
it follows that if P∞ is the only prime in S dividing p∞ (recall that the number of primes in S
that lie above p∞ is h∞(S|k) = 1), then [SP∞ : k∞] = [S : k] = pα. In particular, the norm
group corresponding to S∞ = SP∞ in k∞ is the group S ⊇

∏r
i=1 Hi, which is the minimum

such that [k∗∞ : S] = pα is a p–group.
The conductor pn0

∞ of S∞ is such that n0 is the minimum nonnegative integer such that
U

(n0)
∞ ⊆ S. The conductor of constants m0 of S, that is, m0 is the minimum natural number

such that S ⊆ km0Ln0 is given as follows (see [2]). Let t = f∞(S|k), d∗ = f∞(R′S|S) where
R′ = Sm0 ∩ Ln0 and d∗ = e∞(S|F ′) where F ′ = S ∩ n0k(Λ1) = S ∩ Ln0 . Therefore

m0 = f∞(S|k)e∞(S|S ∩ Ln0).

Proposition 3.15. Let f∞(S|k) = t. Then Fqt is the field of constants of S. That is, t = t0.

Proof. We have Fqt0 (T ) = kt0 ⊆ S. Let m0, n0 be minimum such that S ⊆ km0Ln0 . Then
S ∩ km0 = kt0 .

km0 km0S km0Ln0

km′ km′Ln0

S

kt0 kt0Ln0

We have Skt0Ln0 = SLn0 , kt0Ln0 ⊆ SLn0 ⊆ km0Ln0 . Let SLn0 ∩ km0 = km′ . From the Galois
correspondence we obtain that km′kt0Ln0 = km′Ln0 = SLn0 ⊇ S. It follows that m′ ≥ m0.
Hence m′ = m0 and SLn0 = km0Ln0 .
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Now e∞(km0Ln0 |kt0) = qn and km0 ⊆ km0S ⊆ km0Ln0 . Then

e∞(km0Ln0 |S) = e∞(km0Ln0 |km0S) =
qn0

[km0S : km0 ]
=

qn0

[S : S ∩ km0 ]
=

qn0

[S : kt0 ]
.

Thus

e∞(S|kt0) =
e∞(km0Ln0 |kt0)

e∞(km0Ln0 |S)
=

qn0

qn0/[S : kt0 ]
= [S : kt0 ].

It follows that S/kt0 is fully ramified at the infinite prime. In particular f∞(S|kt0) = 1 so that
f∞(S|k) = f∞(S|kt0)f∞(kt0 |k) = f∞(kt0 |k) = t0.

We collect the above discussion in the following theorem.

Theorem 3.16. Let S = L ∩M . Let conk/K p∞ = Pe1
1 · · · Perr , let ti = degK(Pi), 1 ≤ i ≤ r

and let t0 = gcd(t1, . . . , tr). Then the field of constants of S is Fqt0 .
Let n0 be the minimum nonnegative integer with U (n0)

∞ ⊆ S, where S is a group that satisfies
that S ⊇

∏r
i=1 Hi =

∏r
i=1 NKPi/k∞

(K∗Pi) and that S is the minimum such that [k∗∞ : S] =

pα is a p–group. Then the conductor of constants of S is m0 = f∞(S|k)e∞(S|S ∩ Ln0) =
t0e∞(S|S ∩ Ln0) and S is the local norm group corresponding to S. In particular Fqt0 ⊆ S ⊆
km0Ln0 .

4 Number fields

The results of Section 3 can be developed in the number field case. In fact, for a number field,
the extended genus field is more transparent than in the function field case.

Definition 4.1. Let K be an arbitrary number field, that is, a finite extension of the rational field
Q. Let KH+ be the extended or narrow Hilbert class field of K, that is, KH+ is the maximum
abelian extension of K unramified at every finite prime of K. We define the extended genus field
Kgex of K as the maximum extension of K contained in KH+ such that it is of the form KL with
L/Q abelian.

Equivalently, if L is the maximum abelian extension of Q contained in KH+ , the extended
genus field of K is Kgex = KL.

Again, we stress that we choose L maximum.
As in the function field case, we have

Proposition 4.2. Let K/Q be a finite abelian extension and let X be the group of Dirichlet
characters corresponding to K. Then Y :=

∏
p prime Xp is the group of Dirichlet characters

corresponding to Kgex.

In particular, if K/Q is any finite extension and Kgex = KL, then L = Lgex. We want to
describe Kgex for a general number field K. Let K/Q be a finite extension. Let p be a prime in
Q and let

conQ/K p = pe1
1 · · · p

er
r ,

that is, ei = eK|Q(pi|p), 1 ≤ i ≤ r. Let Kp1 , . . . ,Kpr be the completions of K at the primes
above p. LetKgex = KLwithL/Q the maximum abelian extension such thatK ⊆ Kgex ⊆ KH+ .

K Kgex = KL KH+

Q L
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Since L = Lgex, we let Lp be the field corresponding to Xp. We have that L =
∏
p prime Lp

and Lp ∩ Lq = Q for any primes p, q such that p 6= q. We have that Lp is the maximum abelian
extension of Q with p the only possible finite prime ramified and such thatKLp/K is unramified
at every finite prime.

Let p be a fixed prime and let Lp ⊆ Q(ζpmp ). For any n ∈ N, the idèle group corresponding
to Q(ζn) is

Xn =
t∏
i=1

U (αi)
pi ×

∏
q prime

q/∈{p1,...,pt}

Uq ×R+,

where n =
∏t
i=1 p

αi
i . As in the case of function fields, it follows that the idèle group correspond-

ing to Lp is of the form
∆p = Hp ×

∏
q prime
q 6=p

Uq ×R+,

where U (mp)
p ⊆ Hp ⊆ Up.

We have eKpi
/Qp = eK/Q(pi|p) = ei. The extension Lp/Q is totally ramified at p and even

we could mix up Lp with the completion of L at p. We have, with both meanings of Lp, that
[Lp : Q] = [Lp : Qp] = ep(Lp|Q).

By Theorem 3.8 we have that the norm group of the abelian extension KLp/K is N−1
K/Q(∆p).

Since Lp is maximum, we want ∆p to be such that (see [16, Corolario 17.6.47])

N−1
K/Q(∆p) ⊆

∏
p finite

Up ×
∏
p real

K∗p =
∏

p finite

Up ×
∏
p real

R∗ ⊆ JK ,

or

∆p ⊆ NK/Q

( ∏
p finite

Up ×
∏
p real

R∗
)
.

Let ~α ∈
∏

p finite Up ×
∏

p real R∗ ⊆ JK , ~α = (αp)p. Then

NK/Q ~α =
∏
q finite

(∏
p|q

NKp/Qp αp

)( ∏
p real

NR/R αp

)
.

As in the case of function fields we obtain that

Hp =
∏
p|p

NKp/Qp Up and ∆p =
∏
p|p

NKp/Qp Up ×
∏
q prime
q 6=p

Uq ×R+.

In other words, let

Si = NKpi
/Qp Upi ×

∏
q prime
q 6=p

Uq ×R+ ⊆ Up ×
∏
q prime
q 6=p

Uq ×R+.

We have

∆p =
r∏
i=1

Si.

Now Si corresponds to a field Ri ⊆ Q(ζpnp ) and from [16, Teorema 17.6.49] it follows that∏r
i=1 Si corresponds to

⋂r
i=1 Ri. Thus Lp =

⋂r
i=1 Ri. Furthermore, since Ri corresponds to Si,

we have

[CQ : Q∗Si] = [Ri : Q] and Gal(Ri/Q) ∼= CQ/Q∗Si.
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Since in each field Ri/Q, 1 ≤ i ≤ r, the only finite prime ramified is p and it is totally ramified,
the global and the local degrees are equal so that [Ri : Q] = [(Ri)pi : Qp]. On the other hand,
since (Ri)pi/Qp is fully ramified we have

[(Ri)pi : Qp] = [Up : NKpi
/Qp Upi ]

(see [16, Proposición 17.2.15]). Thus

[Ri : Q] = [CQ : Q∗Si] = [Up : NKpi
/Qp Upi ],

[Lp : Q] =
[ r⋂
i=1

Ri : Q
]
=
[
Up :

r∏
i=1

NKpi
/Qp Upi

]
.

When p ≥ 3, we have that Q(ζpm) is cyclic for every m ∈ N, however, when p = 2, Q(ζ2m)
is not cyclic for m ≥ 3. We study the two cases.

Let G = 〈σ〉 ∼= Cn be a finite cyclic group of order n ∈ N and let Hi = 〈σji〉 < G where
ji|n, i = 1, 2. Let H1 ∩H2 = 〈σt〉 and H1H2 = 〈σs〉 with s, t|n.

We have σt ∈ Hi, i = 1, 2 so that there exist ai ∈ Z such that σt = σjiai , i = 1, 2. Therefore
t ≡ jiai mod n, i = 1, 2, that is, t = jiai+ lin, i = 1, 2. Hence ji|t, i = 1, 2 so that lcm[j1, j2]|t.

Let u = lcm[j1, j2], ji|u. Set u = jibi. Then σu = σjibi ∈ Hi, i = 1, 2. Thus σu ∈ H1∩H2 =
〈σt〉 and σu = σtc for some c and u = tc+ ln. It follows that t|u = lcm[j1, j2]. Therefore t = u.

In other words, H1 ∩H2 = 〈σlcm[j1,j2]〉.
Now, H1H2 = 〈σs〉, n

s = |H1H2| = |H1||H2|
|H1∩H2| =

n
j1
n
j2
n
t

= nt
j1j2

. Therefore st = j1j2 and
j1j2 = gcd(j1, j2) lcm[j1, j2] = gcd(j1, j2)t = st. Hence s = gcd(j1, j2).

In short, we have

Proposition 4.3. Let G = 〈σ〉 be a cyclic group of order n and let Hi = 〈σji〉 with ji|n, i = 1, 2
be two subgroups of G. Then

H1 ∩H2 = 〈σlcm[j1,j2]〉, H1H2 = 〈σgcd(j1,j2)〉.

Corollary 4.4. With the conditions of Proposition 4.3, we have

|H1 ∩H2| =
|G|

lcm[j1, j2]
, [G : H1 ∩H2] = lcm[j1, j2] = lcm

[ |G|
|H1|

,
|G|
|H2|

]
,

|H1H2| =
|G|

gcd(j1, j2)
,

[G : H1H2] =
|G|
|H1H2|

= gcd(j1, j2) = gcd
(
[G : H1], [G : H2]

)
.

Corollary 4.5. If p > 2 is a prime number and Hi < Z∗p, i = 1, 2 are two subgroups of finite
index, then [Z∗p : H1H2] = gcd

([
Z∗p : H1

]
,
[
Z∗p : H2]

)
.

Proof. We have that Z∗p ∼= Cp−1 × Zp where Cp−1 is the cyclic group of order p − 1. Let
Hi = H ′i × pniZp where H ′i is the torsion of Hi, i = 1, 2. Then H1H2 = H ′1H

′
2 × pmin{n1,n2}Zp.

Therefore

[Z∗p : H1H2] = [Cp−1 : H ′1H
′
2]p

min{n1,n2}

= gcd
(
[Cp−1 : H ′1], [Cp−1 : H ′2]

)
pmin{n1,n2}

= gcd
([
Z∗p : H1

]
,
[
Z∗p : H2

])
.

We apply the previous discussion to the case p > 2.

Proposition 4.6. If p > 2, Q(ζpmp )/Q is a cyclic extension and Lp/Q is a cyclic extension. For
F1, F2 contained in Q(ζpmp ), we have

[F1 ∩ F2 : Q] = gcd
(
[F1 : Q], [F2 : Q]

)
.
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Proof. We consider F1F2/Q which is cyclic since Q(ζpmp )/Q is a cyclic extension. We have

F1 F1F2

F1 ∩ F2 F2

Q

Let a = [F1 ∩ F2 : Q], b = [F1 : Q] and c = [F2 : Q]. We have that a|b and a|c so that
a| gcd(b, c). Now, since gcd(b, c)|b and gcd(b, c)|c, there exists a unique field F0 satisfying [F0 :
Q] = gcd(b, c), F0 ⊆ F1 and F0 ⊆ F2. Hence F0 ⊆ F1 ∩ F2. This implies gcd(b, c) = [F0 :
Q]|[F1 ∩ F2 : Q] = a. Thus a = gcd(b, c).

Corollary 4.7. With the conditions of Proposition 4.6, if p > 2 and F1, . . . , Ft ⊆ Q(ζpmp ), we
have [ t⋂

i=1

Fi : Q
]
= gcd

1≤i≤t

(
[Fi : Q]

)
.

Proof. Use induction.

Remark 4.8. If p = 2, Proposition 4.6 is no longer true. For instance, if F1 = Q(
√

2), F2 =
Q(i), then [F1 : Q] = [F2 : Q] = 2 and since F1 ∩ F2 = Q, we have [F1 ∩ F2 : Q] = 1.

Remark 4.9. Since[ r⋂
i=1

Ri : Q
]
= [Lp : Q] =

[
Q∗p :

r∏
i=1

N(Ri)pi/Qp(Ri)
∗
pi

]
=
[
Up :

r∏
i=1

N(Ri)pi/Qp Upi

]
,

for p > 2, we have

[Lp : Q] = gcd
1≤i≤r

(
[Ri : Q]

)
= gcd

1≤i≤r

(
[Upi :

r∏
i=1

N(Ri)pi/Qp Upi ]
)
.

The main result on number fields is the following.

Theorem 4.10. Let K/Q be a finite extension. With the above notations, we have Kgex = KL
where L =

∏
p finite Lp and Lp is a subfield of Q(ζpmp ) satisfying

[Lp : Q] =
[
Up :

r∏
i=1

NKpi
/Qp Upi

]
,

where conQ/K p = pe1
1 · · · perr .

Furthermore, if p > 2,

[Lp : Q] = gcd
1≤i≤r

[Up : NKpi
/Qp Upi ],

Lp is determined by its degree [Lp : Q] and Lp is the class field of

r∏
i=1

NKpi
/Qp Upi ×

∏
q prime
q 6=p

Uq ×R+.

The tame ramification degree of the extension [Lp : Q] is

etame = gcd(e1, . . . , er, p− 1).
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Proof. It remains to find etame. Note that necessarily, p ≥ 3. Let L′p be the subfield of Lp of
degree bp where [Lp : Q] = papbp and gcd(p, bp) = 1.

For any F ⊆ Q(ζpmp ) with [F : Q] = d and gcd(p, d) = 1, F/Q is tamely ramified. Assume
that KF/K is unramified at p.

K KF

Q F

By Abhyankar Lemma, if P is a prime in KF with P ∩Q = (p), P ∩K = pi, Q = P ∩ F ,
then

e(P|p) = lcm[e(pi|p), e(Q|p)] = lcm[ei, d].

Therefore e(P|pi) = e(P|p)
e(pi|p) = e(P|p)

ei
, that is, P is unramified in KF/K if and only if

e(P|pi) = 1 if and only if e(P|p) = ei if and only if d|ei. Hence, KF/K is unramifed at every
finite prime, if and only if d|ei for 1 ≤ i ≤ r if and only if d| gcd(e1, . . . , er). Since d|p− 1, this
is equivalent to d| gcd(e1, . . . , er, p− 1). It follows that bp = gcd(e1, . . . , er, p− 1).

Remark 4.11. Theorem 4.10 was proved by M. Bhaskaran in [4] and by X. Zhang in [18].

4.1 Remarks on L2

For any finite extension K/Q, we have that if Kgex = KL with L/Q the maximum abelian
extension contained in KH+ , we have proved that if L =

∏
q prime Lq, then for p ≥ 3, Lp is

completely determined by

[Lp : Q] =
[
Up :

∏
p|p

NKp/Qp Up

]
= gcd

p|p
[Up : NKp/Qp Up].

This is not so for p = 2. We want to study L2.
Let [L2 : Q] = 2a, a ≥ 1. For a ≥ 2, there are three possible L2, namely

Q(ζ2a+1), Q(ζ2a+2)+ = Q(ζ2a+2 + ζ−1
2a+2) and Q(ζ2a+2)− := Q(ζ2a+2 − ζ−1

2a+2),

see [16, §5.3.1].
If L2 is real, then L2 = Q(ζ2a+2)+. If L2 has conductor 2a+1 then L2 = Q(ζ2a+1). In other

words, L2 can be determined by means of its conductor and whether it is real or not.
If K(ζ2a+1)/K is unramified, we have L2 = Q(ζ2a+1). In any case Q(ζ2a+1)+ ⊆ L2, and

therefore KQ(ζ2a+1)+/K is unramified.

Q(ζ2a+2)+
J

Q(ζ2a+2)

Q(ζ2a+2)−

Q(ζ2a+1)+ Q(ζ2a+1)
Gal

(
Q(ζ2a+2)/Q(ζ2a+1)+

)
∼= C2 × C2

Q Q(ζ4)
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We need to determine the group of idèles corresponding to each extension L2, where L2 ∈{
Q(ζ2a+1),Q(ζ2a+2)+,Q(ζ2a+2)−

}
.

Recall that for a local field K we have K∗ ∼= F∗q × U
(1)
p × (π), where π is a uniformizing

element, vp(π) = 1, Up are the units of K∗, U (1)
p are the units modulo 1, that is, U (1)

p = {ξ ∈
Up | ξ − 1 ∈ (π)} = 1 + πOK = 1 + p, and U (1)

p × F∗q = Up where Fq is the residue field.

In the particular case of K = Q∗p, q = p, F∗p ∼= Cp−1 = Z/(p− 1)Z and Up =
{∑∞

i=0 aip
i |

a0 6= 0, ai ∈ {0, 1, . . . , p− 1} for all i
}
∼= Z∗p, where Zp denotes the ring of p–adic integers and

Z∗p is the multiplicative group of Zp.
We have

Proposition 4.12. (1) If p > 2, Z∗p ∼= Cp−1 × Zp as groups.

(2) If p = 2, 1 + 2Z2 ∼= {±1} × (1 + 4Z2) and 1 + 4Z2 ∼= Z2. In particular,

U2 = U
(1)
2 = Z∗2 ∼= 1 + 2Z ∼= {±1} × (1 + 4Z2) ∼= {±1} × Z2.

We are going to identify complex conjugation J with −1 since J(ζ2n) = ζ−1
2n for all n.

The non–zero closed subgroups of U2 = Z∗2 ∼= {±1} × Z2 are: {±1} × 2nZ2, 2nZ2 and
{±1} · 2nZ2 with n ∈ N ∪ {0}.

The quotient groups are respectively

• {±1}×Z2
{±1}×2nZ2

∼= Z2
2nZ2

∼= C2n ,

• {±1}×Z2
2nZ2

∼= {±1} × Z2
2nZ2

∼= {±1} × C2n ,

• {±1}×Z2
{±1}·2nZ2

∼= H.

Let us study H. Consider b := 1 ∈ Z2. Then b is a topological generator of Z2. Let a := −1
be the unique torsion element of Z∗2 of order 2. Let H be the procyclic group with topological
generator ab2n : H = 〈ab2n〉 (topological closure). Denote by ã and b̃ the classes of a and b
modulo H respectively: ã = a mod H; b̃ = b mod H.

We have G/H = 〈ã, b̃〉 where G = {±1} ×Z2 ∼= Z∗2 . Since ab2n ∈ H, b̃2n = ã−1 mod H and
ã−1 = ã mod H (indeed, a−1 = a = −1). Therefore G/H = 〈b̃〉 since ã = b̃2n ∈ 〈b̃〉 so that
G/H is a cyclic group.

Note that b2n /∈ H since otherwise a ∈ H but a is a torsion element and H is torsion free.
Therefore b2n /∈ H. On the other hand b2n+1

= b2nb2n ≡ ab2n mod H so that b2n+1 ∈ H. It
follows that o(b̃) = 2n+1. Thus G/H is a cyclic group of order 2n+1.

Uniformizing the indexes, we have

• {±1}×Z2
{±1}×2mZ2

= 〈a,b〉
〈a,b2m 〉

= 〈b mod b2m〉 ∼= C2m ,

• {±1}×Z2
2m−1Z2

= 〈a,b〉
〈b2m−1 〉

= 〈ã, b̃〉 mod b2m−1 ∼= C2 × C2m−1 ,

• {±1}×Z2
{±1}·2mZ2

= 〈a,b〉
〈ab2m 〉

= 〈b̃〉 mod H ∼= C2m .

Define Am := {±1} × 2mZ2; Bm := 2m−1Z2; Cm := {±1}2m−1Z2.
We have

• Rm := G/Am ∼= Gal(Q(ζ2m+2)+/Q) ∼= C2m since −1 ∈ Am,

• Sm := G/Bm ∼= Gal(Q(ζ2m+1)/Q) ∼= C2×C2m−1 since G/Bm is noncyclic and−1 /∈ Bm,

• Tm := G/Cm ∼= Gal(Q(ζ2m+2)−/Q) ∼= C2m since it is cyclic and −1 /∈ Cm.
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Q(ζ2m+2)+
2

2

Q(ζ2m+2)

2Q(ζ2m+2)−

2

2

Q(ζ2m+1)+
2

2m−1

Q(ζ2m+1)

2m−1

Q
2

2m

Q(ζ4)

Q(ζ2∞)

Am

Bm

Cm

Q(ζ2m+2)+ Q(ζ2m+1)

Q(ζ2m+2)−

Since [L2 : Q] = 2m and
[
U2 :

∏
p|2 NKp/Q2 Up

]
= 2m, it follows the following theorem.

Theorem 4.13. If [L2 : Q] = 2m, then

(1) L2 = Q(ζ2m+2)+ ⇐⇒ for every place p of K with p|2 we have −1 ∈ NKp/Q2 Up, that is,
−1 ∈

⋂
p|2 NKp/Q2 Up.

(2) L2 = Q(ζ2m+1) ⇐⇒
⋂

p|2 NKp/Q2 Up is not cyclic (automatically we have that −1 /∈⋂
p|2 NKp/Q2 Up).

(3) L2 = Q(ζ2m+2)− ⇐⇒
⋂

p|2 NKp/Q2 Up is cyclic and −1 /∈
⋂

p|2 NKp/Q2 Up.

5 Some remarks on genus fields of number fields

Let L/Q be a finite Galois extension. Since L/Q is normal, L is either totally real or totally
imaginary. Let J : C −→ C be the complex conjugation. Since J |Q = IdQ and L/Q is normal,
we have J(L) = L = L̄. Hence J |L ∈ G := Gal(L/Q). Furthermore J |L has order o(J |L) = 1
or 2. Let LJ be the fixed field of L under the action of J . We have Gal(L|LJ) = 〈J |L〉 ∼= {1} or
C2, the cyclic group of order 2 and [L : LJ ]|2. Furthermore, LJ ⊆ R.

Note that LJ is neither necessarily normal over Q nor totally real. For instance, if L =
Q(ζ3,

3
√

2).

Q( 3
√

2)
C2

α
L = Q(ζ3,

3
√

2)

β C3

Q Q(ζ3)
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Then Gal(L/Q) = 〈α, β〉 = C2 n C3 ∼= S3, the symmetric group in 3 elements. L is totally
imaginary and LJ = Q( 3

√
2), the extension Q( 3

√
2)/Q is not normal and the 3 embeddings are

3
√

2 −→


3
√

2
ζ3

3
√

2
ζ2

3
3
√

2
. In other words, with the usual meaning, r1 = 1 and r2 = 1.

When L/Q is abelian, then 〈J |L〉�G, LJ/Q is a Galois extension and LJ is totally real.
In the case of genus fields, we consider K/Q a finite extension and let KH and KH+ be

the Hilbert class field and the Hilbert extended (narrow) class field of K respectively. Then
the genus field Kge is the maximum extension such that K ⊆ Kge ⊆ KH with Kge = KF ,
F/Q abelian. In particular, F = Fge. The extended or narrow genus field Kgex of K is the
maximum extension such that K ⊆ Kgex ⊆ KH+ with Kgex = KL and L/Q is abelian. In
particular, Lgex = L. Recall that Lgex is the maximum abelian extension of Q such that Lgex/L
is unramfied at every finite prime and Fge is the maximum abelian extension of Q with Fge/K
unramified at every prime.

From the remarks above, it follows that [Kgex : Kge] = 1 or 2 for every finite abelian
extension K/Q. Now, we have KH ⊆ KH+ and in fact Gal(KH+/KH) ∼= Cr2 for some r ∈
N ∪ {0}. In our notation, we have that F ⊆ L since KF/K is unramified and F/Q is abelian.
On the other hand, LJ is totally real, LJ/Q is abelian and KLJ/K is unramified at every prime.
It follows that

LJ ⊆ F ⊆ L.

Since F = Fge it follows that [L : F ]|2 and therefore

[Kgex : Kge] = [KL : KF ]|[L : F ] = 1 or 2.

In short, we have

Proposition 5.1. For a finite extension K/Q, we have [Kgex : Kge]|2.

Now consider Ki/Q, i = 1, 2, two finite extensions and let K = K1K2. We have Ki ⊆ K
for i = 1, 2. On the other hand the extension (K1)ge/K1 is unramified and abelian, it follows
that K(K1)ge/KK1 = K is unramified and abelian. Hence K(K1)ge ⊆ Kge. It follows that
(K1)ge ⊆ Kge. Similarly (K2)ge ⊆ Kge. Therefore (K1)ge(K2)ge ⊆ Kge.

Remark 5.2. Not necessarily (K1)ge(K2)ge = Kge.

Example 5.3. Let p, q, p1, q1 be four odd distinct primes. Let K1 = Q(ζpq )+, K2 = Q(ζp1q1 )
+.

Then, using Dirichlet characters, we have that (K1)ge ⊆ Q(ζpq ) and Q(ζpq )/Q(ζpq )+ is ramified
at∞, it follows that (K1)ge = K1. Similarly (K2)ge = K2.

Furthermore, since p 6= q (respectively p1 6= q1), Q(ζpq )/Q(ζpq )+ is ramified only at∞, that
is, Q(ζpq )/Q(ζpq )+ is unramified at every finite prime ([16, Teorema 5.3.2]).

Now K1K2 = K = Q(ζpq )+Q(ζp1q1 )
+ ⊆ Q(ζpqp1q1 ).

Q(ζpq )

2

Q(ζpqp1q1 )

Q(ζpqp1q1 )
+

2

2

K1 = Q(ζpq )+ K1K2 = K

Q K2 = Q(ζp1q1 )
+

2
Q(ζp1q1 )
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We have that Q(ζpqp1q1 )
+/K is unramified since p is unramified in Q(ζpq )/Q(ζpq )+ and thus

ep(Q(ζpqp1q1 )|Q) = p− 1 = ep(Q(ζpq )
+|Q) = ep(K|Q).

The same holds for q, p1 and q1. Now, ∞ is ramified in Q(ζpqp1q1 )/Q(ζpqp1q1 )
+. It follows

that Kge = Q(ζpqp1q1 )
+ and that [Kge : (K1)ge(K2)ge] = 2 > 1.

Remark 5.4. For extended genus fields, we have that for any two finite abelian extensionsKi/Q,
i = 1, 2 we have Kgex = (K1)gex(K2)gex where K = K1K2 (see [2]).

Theorem 5.5. Let Ki/Q, i = 1, 2 be two finite abelian extensions and let K = K1K2. Then

[Kge : (K1)ge(K2)ge]|2.

Proof. In general we consider a finite abelian extension K/Q. Let L = Kgex. We have Kge =
L+K (see [2]). Let K = K1K2. Then Kgex = (K1)gex(K2)gex. Therefore L = L1L2 and
Kge = L+K, (K1)ge(K2)ge = L+

1 K1L
+
2 K2 = L+

1 L
+
2 K. Hence

[Kge : (K1)ge(K2)ge] = [L+K : L+
1 L

+
2 K]|[L+ : L+

1 L
+
2 ].

To prove the result, it suffices to show that for two finite abelian extensions Li/Q, i = 1, 2,
and for L = L1L2, we have [L+ : L+

1 L
+
2 ]|2.

In general, we have L+ = L ∩ Q(ζn)+ = L ∩ Q(ζn)J for L ⊆ Q(ζn). In particular, if
S := Gal(Q(ζn)/L), L+ = L ∩ Q(ζn)+ = Q(ζn)S ∩ Q(ζn)I = Q(ζn)SI where I = 〈J〉 and
thus Gal(Q(ζn)/L+) = SI .

Let Si := Gal(Q(ζn)/Li), i = 1, 2. Since L = L1L2, we have S = S1 ∩ S2. We also have

L+
1 L

+
2 = Q(ζn)

S1IQ(ζn)
S2I = Q(ζn)

S1I∩S2I ⊆ L+ = Q(ζn)
SI .

Therefore

Gal(L+/L+
1 L

+
2 )
∼=

Gal(Q(ζn)/L
+
1 L

+
2 )

Gal(Q(ζn)/L+)
∼=
S1I ∩ S2I

SI
=

S1I ∩ S2I

(S1 ∩ S2)I
. (5.1)

Now

|S1I ∩ S2I| =
|S1I||S2I|
|S1S2I|

=

|S1||I|
|S1∩I|

|S2||I|
|S2∩I|

|S1S2||I|
|S1S2∩I|

=

|S1||S2||I|2
|Si∩I||S2∩I|
|S1||S2|
|S1∩S2|

|I|
|S1S2∩I|

=
|S1 ∩ S2||S1S2 ∩ I|
|S1 ∩ I||S2 ∩ I|

|I|.

On the other hand |(S1 ∩ S2)I| = |SI| = |S||I|
|S∩I| . It follows that

[S1I ∩ S2I : (S1 ∩ S2)I] =
|S1 ∩ S2||S1S2 ∩ I|
|S1 ∩ I||S2 ∩ I|

|S ∩ I|
|S||I|

|I| = |S1S2 ∩ I||S ∩ I|
|S1 ∩ I||S2 ∩ I|

.

Now S ∩ I ⊆ S2 ∩ I . Let α = [S2 ∩ I : S ∩ I] ∈ N. Then

[S1I ∩ S2I : (S1 ∩ S2)I] =
1
α

|S1S2 ∩ I|
|S1 ∩ I|

=
1
α

|S1S2||I|
|S1S2I|
|S1||I|
|S1I|

=
1
α

|S1S2||S1I|
|S1S2I||S1|

.

We have S1S2 ⊆ S1S2I . Let β = [S1S2I : S1S2] ∈ N. It follows that

[S1I ∩ S2I : (S1 ∩ S2)I] =
1
αβ

|S1I|
|S1|

=
1
αβ

|S1||I|
|S1||S1 ∩ I|

=
1
αβ

|I|
|S1 ∩ I|

=
γ

αβ
,

with γ = [I : S1 ∩ I]||I|. Therefore [S1I ∩ S2I : (S1 ∩ S2)I] =
γ
αβ ∈ N and [S1I ∩ S2I :

(S1 ∩ S2)I]||I| = 1 or 2. It follows that

[L+ : L+
1 L

+
2 ]|2 and [Kge : (K1)ge(K2)ge]|2.
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