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Abstract In this paper we obtain the extended genus field of a global field. First we define
the extended genus field of a global function field and we obtain, via class field theory, the
description of the extended genus field of an arbitrary global function field. In the last part of
the paper we use the techniques for function fields to describe the extended genus field of an
arbitrary number field.

1 Introduction

The study of narrow or extended genus fields goes back to C.F. Gauss [8] who introduced the
genus concept in the context of quadratic forms. During the first half of the last century, the
concept was imported to quadratic number fields. H. Hasse [9] studied genus theory of quadratic
number fields by means of class field theory. H.-W. Leopoldt [11] generalized the work of Hasse
by introducing the concept of genus field for a finite abelian extension of the rational field.
Leopoldt studied extended genus fields using the arithmetic of abelian fields by means of Dirich-
let characters. The first to introduce the concept of genus field and of extended genus field of
a nonabelian finite extension of the rational field was A. Frolich who defined the concept of
genus field of an arbitrary finite extension of Q [6, 7]. For a number field K, Frolich defined the
genus field K (with respecto to the rational field Q) as Ky, := KF where F'/Q is the maximum
abelian extension such that K F'// K is unramified everywhere. Similarly, the extended genus field
is Kge; = KL where L/Q is the maximum abelian extension such that K'L/K is unramified at
the finite primes. Numerous authors have studied genus fields and extended genus fields for
finite field extensions K /Q over Q.

In the case of number fields, the concepts of Hilbert class field and of extended Hilbert class
field are defined without any ambiguity. The Hilbert class field Ky and the extended Hilbert class
field K+ of a number field X /Q are defined as the maximum abelian unramified extension and
the maximum abelian extension unramified at the finite primes of K, respectively. In this way,
the concepts of genus field and of extended genus field are defined depending on the concept
of the Hilbert class field, and of the extended Hilbert class field respectively. Namely, we have
K C Ky C Ky and the Galois group Gal(Ky/K) is isomorphic to the class group Clg of
K. The genus field Ky, corresponds to a subgroup Gk of Clx and we have Gal(Ky/K) =
Clk /Gk. The degree [K . : K] is called the genus number of K and Gal(K . /K) is called the
genus group of K. Similarly, K C Kg.; € Kp+ and K., corresponds to a subgroup G g+ of
Gal(Kge;/K) = Clg+.

For global function fields the picture is different due to the fact that there are several concepts
of Hilbert class field and of extended Hilbert class field, depending on which aspect you are
interested in. The direct definition of the Hilbert class field Ky of a global function field K over
[, as the maximum unramified abelian extension of K has the disadvantage of being of infinite
degree over K due to the extensions of constants. In the extensions of constants, every prime is
eventually inert, so, if we are interested in a definition of a Hilbert class field of finite degree over
the base field, we must impose some condition on the extension of constants. It seems that the
first one to consider extended genus fields in the case of function fields was R. Clement in [5],
where she considered the case of a cyclic tame extension K/F,(T) of prime degree ! different
from the characteristic p of F,. She developed the theory along the lines of the case studied by
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Hasse in [9]. Later on, S. Bae and J.K. Koo [3] generalized the results of Clement following
the development given by Frolich. They defined the extended genus field for extensions of an
arbitrary global function field K defining an analogue to the cyclotomic function field extensions
of F,(T') given by the Carlitz module.

M. Rosen defined in [15] the Hilbert class field of a global function field K as the maximum
abelian unramified extension of K such that a fixed nonempty finite set of prime divisors of K
decompose fully. Using this definition of Hilbert class field, G. Peng [14] found the genus field of
a cyclic tame extension of prime degree over the rational function field k¥ = F,(7"). His method
used the analogue for function fields of the Conner—Hurrelbrink exact hexagon in number fields.
The wild prime case was presented by S. Hu and Y. Li in [10] where they described explicitly
the genus field of an Artin—Schreier extension of the rational function field. In [2, 12, 13] we
developed a theory of genus fields using the same concept of Hilbert class field. In those papers,
the ideas of Leopoldt using Dirichlet characters were strongly used.

In this paper we are interested in describing, using class field theory, the extended genus field
of a finite separable extension of k. B. Angles and J.-F. Jaulent in [1] established the general
theory of extended genus fields of global fields, either function or numeric. We use a concept
of extended genus field for function fields different from the one defined by Anglés and Jaulent.
With this concept, when we describe the finite abelian extension L where Ky, = KL, we may
write L as the composition of a sort of P—components, where P runs through the finite primes
of k. We consider these P—components L p as the composition of Ep, the P—component of the
projection E of L in a cyclotomic function field given by the Carlitz module, and a field .S which
codifies the behavior of the infinite prime. More precisely, S codifies the wild ramification
and the inertia of the infinite prime of k. To this end, we need to consider the idele group
corresponding to an arbitrary cyclotomic function field. Finally, we describe the field S.

It turns out, that the same approach works for number fields. Indeed, in the number field case,
the problem is simpler because, by the Kronecker—Weber theorem, any abelian extension of Q
is cyclotomic, that is, it is contained in a cyclotomic number field. In the function field case, the
maximum abelian extension of k consists of three components: one cyclotomic, one of constants
and one, also cyclotomic, where the infinite prime is totally and wildly ramified and it is the only
ramified prime. In the number field case, the “p—components” can be found explicitly for p > 3
depending only on their degree over Q. The case p = 2 does not depend only on its degree over
Q since, for n > 3, the cyclotomic field Q(( ) is not cyclic. We give a criterion to describe the
2—component of Kg,,. Finally, we present some results on the behavior of the genus field of a
composition. For number fields, a similar result was obtained by M. Bhaskaran in [4] and by X.
Zhang [18].

2 Preliminaries and notations

We denote by k = F,(T') the global rational function filed with field of constants the finite
field of ¢ elements F,. Let Ry = [ [T] be the ring of polynomials, that is, the ring of in-
tegers of k with respect to the pole of 7', the infinite prime po. Let RY. := {P € Ry |
P is monic and irreducible}. The elements of R are the finite primes of k and p is the in-
finite prime of k. For N € Rp, Ay denotes the N—th torsion of the Carlitz module. A finite
extension F'/k will be called cyclotomic if there exists N € Ry suchthat k C F C k(Ay ).

Given a cyclotomic function ﬁeld/Eihe group ofD/ir\ichlet characters X corresponding to
E is the group X such that X C (Rp/(N))* = Gal(k(Ay)/k) = Hom ((Rr/(N))*,C*) and
E = k(AN)H where H = N,cx ker x. For the basic results on Dirichlet characters, we refer to
[17, §12.6].

For a group of Dirichlet characters X, let Y = [[pcp, Xp where Xp = {xp | x € X'} and
xp is the P—th component of x: x =[], RS XP- If E is the field corresponding to X, we define
Eg.; as the field corresponding to Y. We have that Fy,, is the maximum unramified extension
at the finite primes of E contained in a cyclotomic function field. The infinite prime p., might
be ramified in Eg./k (see [12]).

Let L,, = k‘(Al/TnH)F;, n € NU {0} where F; C (RI/T/<1/T"+1>) , is isomorphic to

the inertia group of the prime corresponding to 7" in k(A /pn+1)/k. The prime p. is the only
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ramified prime in L,,/k and it is totally and wildly ramified. For m € N, and for any finite
extension F'/k, F,, denotes the extension of constants: F},, = FFm. In particular k,,, = Fm (T).

Given a finite abelian extension K /k, there exist n € NU {0}, m € Nand N € Ry such that
K C Lyk(AN)km =: nk(AN)m (see [17, Theorem 12.8.31]). We define M := L, k,,. In M/k
no finite prime of k is ramified.

For any extension E/F of global fields and for any place 3 of £ and p = P N F, the
ramification index is denoted by e, (B|p) = e(B|p) and the inertia degree is denoted by
fe/p(Blp) = f(Blp). When the extension is Galois we denote e, (E|F) = eg,r(B[p) and
Jo(EIF) = fg;r(Blp). In particular for any abelian extension E/k, ep(E|k) and fp(E|k)
denote the ramification index and the inertia degree of P € Ri. in E/k respectively, and we
denote by e (E|k) and fo. (E|k) the ramification index and the inertia degree of p in £ /k. The
symbol e*(E|F) denotes the wild ramification part of the infinite primes in F/F. Similarly,
Iz r(Blp) denotes the inertia group and D, (*B|p) the decomposition group.

For any finite separable extension K /k the finite primes of K are the primes over the primes P
in R and the infinite primes of K are the primes over . The Hilbert class field K i of K is the
maximum abelian extension of K unramified at every finite prime of K and where all the infinite
primes of K are fully decomposed. The genus field K. of K/k is the maximum extension of &
contained in Kz and such that it is the composite Ky, = KF where F'/k is abelian. We choose
F' the maximum possible. In other words, F' is the maximum abelian extension of & contained
in KH.

Let K/k be a finite abelian extension. We know that Kz = K Eéﬁ is the genus field of K
where H is the decomposition group of the infinite primes in KE/K and E := KM N k(Ay)
(see [2]). We also know that K E. /K4 and K E/K are extensions of constants.

For a local field F' with prime p, we denote by F'(p) = [, the residue field of F, Ué") =1+p"
the n—th units of F, n € NU {0}.
Let m = mp = m, be a uniformizing element for p, that is, v, (7) = 1. Then the multiplicative

group of F' satisfies F* = (m) x Up = () x Fy x Ué” as groups.
3 Extended genus field of a global function field

Let K/k be a finite abelian extension. Let n € NU {0}, m € Nand N € Rp be such that
K C ,k(AN)m- Let E = KM N k(Ay). Define the extended genus field of K as

Kgep = KEge.
Note that Ky, /K is unramified at the finite primes since Eg.;/E is unramified at the finite

primes, so that K Eg../KE is unramified at the finite primes and we also know that K E/K is
unramified at the finite primes ([2]).

EK/K/{MEM
/

k M

Now KM = EM/FE is ramified at most at the infinite prime p., and the inertia of p. in the
extension EM = KM/FE is contained in M. Hence EM/FE is unramified at the finite primes.
The same holds for KM /K and we have K C KE C KM = EM. In short, ngp/K is
unramified at the finite primes. We also have that K., /K is tamely ramified at p, since Fqe/k
is tamely ramified at po, so that K Eg., /K is tamely ramified at po and Ky = K Ege,.

We also have [Eqe, : Egt]|q — 1 since e (Egeg|E)|q — 1 where in general, for a finite abelian
extension L/F, e (L|F) denotes the ramification index of the infinite primes of F in L, and
H C I(Ege|k), where in general I (L|F) denotes the inertia group of the infinite primes in
the Galois extension L/F. In other words, the infinite primes of Eéﬁ are fully ramified in the
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EQQI ‘E €0 Ege; E €x 4 ‘N Q 1

Therefore we have that Koy = KEge; /K Eéﬂ = K. is unramified at the finite primes, the
infinite primes are tamely ramified, and [Kge; : Kgellg — 1.

Now let K/ k be a finite and separable extension. We define Ky, as K Fy., where Kq = KF,
that is, F' is the maximum abelian extension of & contained in the Hilbert class field Ky of K
(see [2]). Observe that Fy, = F'.

Note that [Kgep : Kge]|[Fger : Fgellg — 1 and the only possible ramified primes in Kger /K ge
are the infinite primes and they are tamely ramified.

Definition 3.1. For a finite separable extension K /k, we define the extended genus field of K as
Kyey = KFyey = KL where L = Fy.,. We stress that we choose I’ to be the maximum abelian
extension of k£ such that K;, = KF.

Remark 3.2. For a finite prime P € R, the tame part of the ramification of P in Ky /k can
be obtained in the following way. Let dp = deg P and let ep(L|k) = eVel?) = etame(p)e)
where ged(p, eﬁg)) =1and e(;”) = p®P for some integer «p > 0. Since L/k is abelian, we have
e0]g?» — 1 (see [16, Proposicién 10.4.8]).

Consider the extension 14;59 /k where P is the only finite prime ramified, k;Eg) C L and
DNEY ¢ k). Note that [k(Ap) : k] = ¢% — 1. Then Kk\Y C Kgep and Kk /K is un-
ramfied at the finite primes. Thus, by Abhyankar Lemma,

ep(K|k) = ep(KEW|k) = lem[ep(K|k), ep (k' |k)] = lem(ep (K |k), ']
Therefore 6(1(3)) lep(K|k). Since egg) is the maximum with this property, it follows that

emme(P) = ) = ged (¢ — 1, ep(K|k)).

We now obtain Ky, = KL where L satisfies Ly, = L, L/k abelian and L is the maximum
with respect to this property. Let L C ,k(An)m. If necessary, we may assume n,m, N are
minimum, where m € N is the conductor of constants (see [2]), N € Rr and n € NU {0}. In
this situation we define the conductor of L as (m, N, n).

Let E := LM Nk(Ay). Then EM = LM and Lgy = L = Ege L so that Egey C L
and £ = Eg¢. Infact, Ege; € L C LM = EM, hence Eg; M C EM and from the Galois
correspondence, Eg.y C E. Thus Ege; = E.

E=Egq —— L —— LM =EM
S M

k

Let S:=LNM.Wehave S C M = L, k,,.
Let X =Y = []pc r; Xp be the group of Dirichlet characters associated to Egey = E.

Then if Ep is the field associated to Xp, with P € R}, E = HPGR; Ep where Ep = k for
almost all P and if P,..., P, are the finite primes ramified in E/k, Xp, # {1}, Ep, # k,
Epi ﬂHj;éiEPj =k 1<i<rand F = Epl Epr,Gal(E/k) 2X=Y = HPER}XP =

— o —

[Iper; Gal(Ep/k) = ]I;_, Gal(Ep, /k). Thus

Gal(E/k) = H Gal(Ep, /k).

i=1
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For any nonempty finite subset A C R, we define E4 := [[p ca Ep. We may consider Ep
as the “P—th primary component” of F.

E=lpeps Bp=Bgy ——————— L=ES ——————— LM = EM
Ep Lp=FEpS ————— LpM = EpM
k S=LNM M

We define Lp := EpM N L. We have that Ep C E C L and Ep C EpM. Therefore
Ep C Lp. From the Galois correspondence, we have

Lp = EpS.

For any nonempty finite subset A C R}, we let Ly := EAM N k(Ay). From the Galois
correspondence we obtain L 4 = E 4.5 and in particular

LA:(HEP)S: I (Ees) =[] Le.

PcA PecA PcA
We have
Proposition 3.3. For any A, B € R \ {0}, let L := E4M N L, where E4 := ][] Ep, that
P@lg;

is, EA = Eqand Ly = L 4, where A= {P € R;. | P|A}. Then we have
Ligp =LALpg.
Furthermore, if gcd(A, B) = 1 we have Ly N L =S = LN M.

Proof. Tt remains to consider the case ged(A,B) = 1. We have F4 = HP|A Ep, Ep =
[lpp Ep and {P € Ry | P|[A} N {P € Ry | P|B} = 0. Therefore E4 N Ep = k and
kLN M = LN M =S. The result follows from the Galois correspondence. O

Now, for P € R, Lp = EpMNLOMNL=SandLp #S < Pe{P,...,P}. In
fact, Lp = EpMNL#S < EpM # M < Ep #k <— PE{Pl,...,PT}.

Finally, £ = ] 5 R} Ep = H::l Ep,. Therefore, since EM = LM, in particular L C EM.
‘We have

L=EMNL= (ﬁEpi)MﬂL:ﬁ(EpiMﬂL) :ﬁLpi
i=1

i=1 i=1

=IIzr- I Ss= ]I L~
=1

Thus

We have proved

Theorem 3.4. For A € Ry, we define Ly = ExM N L. Let S = LN M. We have
(1) For all A,B € Ry, LaAp = LasLp.



1004 Elizabeth Ramirez, Martha Rzedowski and Gabriel Villa

(2) La2>Sforal Ac RrandLa =S < P, {Aforalll <i<r.

(3) LanLp=Sforall A,B € Ry such that gcd(A, B) = 1.

4 L= HPGR; Lp= H::1 Lp,. .
In order to compute L we need to know S, that is, the behavior of p,, and also each Ep for

P € Rj. First, we have that if P € R7. is unramified in K/k, then P is unramified in E/k and
therefore in L/k. Indeed, if P were ramified in L/k, then we would have

ep(KLIK) = ep(KL|K)ep(K|k) = ep(KL|k) = ep(KL|L)ep(L|k) > 1

so that ep(K L|K) > 1 contrary to the definition of L.

K — KL
k L
Thus, it suffices to know Ep,, 1 < i < r where Py, ..., P, are the finite primes ramified in

K /k and therefore these are the only possible finite primes ramified in E/k and in L/k. Now,
in Ep/k the only finite prime ramified is P and p, is tamely ramified. Note that the tame
ramification index of p, in E//k and in L/k is the same. This is a consequence of L = ES.

In general we consider an arbitrary global function field F'. Let Jr be the idele group of F
and let Cr = Jpr/F* be the idele class group of F'. To find Ep for P € {Py,..., P.}, we must
find the idele subgroup of Jj, corresponding to Fp. Now, since Ep is cyclotomic and P is the
only finite prime ramified, there exists ¢ € N such that Ep C k(Ap:). Therefore, the idele group
corresponding to Ep contains the idele group corresponding to k(Ap:).

Theorem 3.5.Let N € Ry, N = P{"'---P® with Py,...,P, € R} distinct. Set R :=

T

Ri\A{P,...,P.}. Then, the idéle group corresponding to k(Ay) is

T
Xy =Jus < I] Up x [(x) x UV,
i=1 PERY,

where T = 1/T is a uniformizing element for p ..
Proof. LetU" := [[qgep: Ug % [(7) x U&l;)}. We will give an epimorphism
”(/JNC U/ — Gal(k(AN)/k) = GN

such that ker ¢y = Xy and hence, U’ /Xy = G .

Letge U'. Then ép, € Up, = {Z;io ajPZ.j | a; € Rr/(P;)}, 1 <i <r. Since k is dense in
the local field kp,, there exists Q; € Ry such that Q; = ¢p, mod Pi. By the Chinese Residue
Theorem, we have that there exists C' € Ry such that C' = @, mod P, 1 < i < r and so
C=¢p,mod P, 1 <i<r

Now, if C; € Ry satisfies C; = £p, mod P, 1 < i < r, we have that P/**|C' — C; for
1 < i <. It follows that N|C — C} and thus C' € Ry is unique modulo N. On the other hand,
vp,(€p,) = 0, so that P; 1 £p, and so we obtain that gcd(C, N) = 1. In this way we have that
C mod N defines an element of Gy = Gal(k(Ay)/k).

Given o € Gy, there exists C' € Ry such that oAy = A% where Ay is a generator de Ay .
Letge U'withép, =C,1 <i<rand{p =1=E forall P € R/.. Therefore 5% C mod N
and 1 is onto. Finally, keryyy = {€ € U’ | ép, = 1 mod P, 1 < i < r} = Xy. So we have
that ¢y is an epimorphism and ker )y = X .

We will show that U’/ X = Ji, /X nk*. We have the composition

UC——s J, —> Jk/XN/f*,
\%

m



GENUS FIELDS OF GLOBAL FIELDS 1005

with im p = U' Xy k™ /Xnk* and ker p = U’ N Xy k*.
Now, Xy C U’ so that Xy C U’ N Xyk*. Conversely, ifge U’ N Xnk*, the components of
£ are given as

¢p=a-Bp, PRy, feXy, ack’

goo:a’ﬁooa ﬂooe(ﬂ)XUéé)

Since p, Sp € Up we have vp(€p) = vp(Bp) = Oforall P € Ry. It follows that vp(a) =0
for all P € Ry. Furthermore, since dega = 0 we have vo(a) = 0 and so a € F5.

Now oo, e € () X UL = ker ¢oo, Where oo : k%, — Ty is the sign function of k3,
defined as ¢oo(M"u) = A where A € Fi, n € Nand u € UL, Thus 1 = ¢uo(én) =
Go0(a)Poo(Boo) = hoo(a) and so a = 1. It follows that £ € Xy. Therefore kerp = Xy
and we obtain a monomorphism U’/ Xy <i> Ji/XNEK*.

It remains to prove that 6 is surjective. So, we must prove that J, = U'Xyk* = U'k*.
We have that U’ corresponds to the maximum unramified extension at every finite prime. Let

L/k be this extension. Since Ué})) corresponds to the first ramification group, and in this way
it corresponds to the wild ramification of p., it follows that in L/k there is at most a ramified
prime (P ), being tamely ramified and of degree 1. From [16, Proposicién 10.4.11], we obtain
that L/k is an extension of constants.

Finally, since 1 = min{n € N | degd&@ = n,a& € U'}, the field of constants of L is F, (see
[16, Teorema 17.8.6]) and therefore L = k. It follows that Cy = U’, that is, Ji/k* = U’ and
thus J;, = U’k*. O
Corollary 3.6. With the above notations, we have that for a cyclotomic field k C F C k(Ay),
the idele group corresponding to F is of the form R X HQER’T Ug x [(m) x Uéé)] with Rr a
group sarisfying T1[_, U € R € 1L, Ur,.

Proof. Let A be the idele group corresponding to F'. Thus A O X. Now

Ler U o (g /vy = Gal(k(Aw) /8).

[T Ug
Therefore Gal(k(Ay )/ F) = # < Gal(k(An)/k) for a group ® C [];_, Up,. The group
i=1 Y P;
O corresponds to Rr. The result follows. O

Corollary 3.7. Let P € R;.. Then the idéle group corresponding to Ep is of the form

Ap=Hpx [] Uq xI(m) x U],
Q#P
QERY.

where U}(,t) C Hp C Up for somet € N.

Proof. Since Ep is cyclotomic and the only finite prime ramified is P, there exists ¢ € N such
that Ep C k(Ap¢). The result follows from Corollary 3.6 ]

For each P € R, kp denotes the completion of k at P and k., denotes the completion of k
at po.. We recall the following result of class field theory.

Theorem 3.8. Let F' be a global field and let R/ F be the class field extension corresponding to
H, that is, H is the open subgroup of Cr such that H = Np,p Cr and Gal(R/F) = Cp/H. Let
E/F be a finite separable extension. Then ER/FE is the class field extension corresponding to
the subgroup NE}F(H) of Cg.

—1
Nph ()

ER
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Proof. We have that if E/F and E’'/F’ are two finite abelian extensions of global fields with
F C F'and F C FE’ of global fields, and if ¢x /F denotes the Artin map of the extension E/F
then we have the following commutative diagram

Yl pr

Cpr Gal(E'/F")

NF’/F l l rest

Cp ———— Gal(E/F)
’¢E/F

where rest denotes the restriction map (see [16, Proposicién 17.6.39]).
We apply this result to our situation, that is, we have the commutative diagram

YER/E
Cp —— > Gal(ER/E)

Ng/r \L l rest

Cp Gal(R/F)

YR/F
Let Ypr/p: Cr — Gal(ER/E) be the Artin map. The norm group corresponding to
ER/E is kergr/p, thatis, Cg/ker¢pr/p = Gal(ER/E). Now the restriction map is injec-

tive and we have

restotpr/p = Yr/F ©Ng/F .
Therefore

rekerypr/p < Yprp(@) =1
> restotpr/p(T) =1 =vYg/poNg/p(Z) <

= Np/p(7) €kerppyp = H <= &€ Np p(H).

We apply Theorem 3.8 to the diagram

K — KEp

k——— Ep

that is, K E'p is the class field of Nl}l/k,(Ap). Since Ep is maximum in the sense that P is the
only finite prime ramified in Ep/k and K Ep/K unramified at every finite prime, we have that
Ap satisfies

1 *
Nee@p) S I] 110 x TI Eio € Jx,
QERL pIQ PoolPoo

or, equivalently,

Ap SNk (IT TIUw < JT Kio):

QERL pIQ PoolPoo
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Letad € HQeR; [0 Up x Iy jp. K> @ = (ap)p. Then

Ny a = H (HNKP/kQap)' H Nrg ko O -
QeRL »lQ PooPoo

For Q # P, Q is unramified in Lp/k, therefore, for Q|Q, Kq/kqg is unramified and in
particular it is a cyclic extension. Then Ny, /i, Uq = Uq (see [16, Teorema 17.2.17]).
For Q = P, we have

mp
HNKn/kP Qp = HNKpj/kP Qp;
p|P Jj=1

emp

where cony /g P = pi' -+ pmy .
It follows that [/} N Ky, /kp Op; € Hp. In other words, if

S; = Nk, /kp Up; % H Ug x [(m) x U] € Up x H Ug x [(n) x UY)],
QERY QERY
Q#P Q#P

we have
mp

mp
Ap=1I8; and Hp=][Nk, sk U,
j=1 j=1
Now, if S; is the norm group of the field R; C ,k(Ape; )., for some n € NU{0}, m € N and
cj € N, then [[7"] S; is the norm group of N/ R;.
It follows that [C}, : k*S;] = [Up : N, k. Up,] and Gal(R;/k) = C/k*S;. Therefore
[Rj : k] = [Ck : k*Sj] = [Up : Nk, sk Up, ] Finally, we have

Bp= (R B = [ﬁ Ry h] = |Up: ﬁNKpj/kp Up, |-
j=1 j=1 J=l1

We have proved our main result.
Theorem 3.9. Let K /k be a finite and separable extension, where k = F (T'). With the notations
as above, let Kgop = KL. Then L = HPeR; Lpwhere Lp = EpS,S=LNMandk C Ep C
k(Aper) corresponds to ] Ny, i, Up,. In particular

mp

(Ep: k] = [Up TNk, e Upj],
j=1

€m
where cony /g P = pi' - pmy .

The tamely ramified part of Lp /k is given by
etame(P) = ng(elv SRR empqup - 1),

with dp = deg,, P. ]

3.1 The field S

To study S, recall that for a finite extension K'/k, the genus field is K. = KF where F'/k is the
maximum abelian extension contained in the Hilbert class field and the extended genus field is
Kgep = KL, where L satisfies Lqey = L, L/k is abelian and L is the maximum with respecto to
this property. We have Fy. = F, L = Fy¢p and Ly = L. Let L C ,,k(An )y, With (m, N, n) the
conductor of L. Then M = L,,k,, and S = L N M.

Proposition 3.10. We have that L/F is totally ramified at the infinite primes, unramified at the
finite primes and [L : F||q — 1. In particular, L/ F is tamely ramified.
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Proof. We have that F'/k is abelian. Let F' C k(AN ), and E = FM Nk(An ). Then Egc M =
FyeM = FM = EM (see [2]) and therefore Fg = E.
Since exo (Eger|Ege)|q — 1 and e (M |k) = ¢™, it follows that

€oo(Egey M|Ege M) = eco(Eger|Ege) = [Eger * Egel-

Eger P EgerM = Fyer M
eoo=d|q—1 eoo=d|q—1
Ege - EgeM = FyeM = FM = EM
€oo=( ‘
k M
coo=q"

Hence,
eoo(FgeﬂFge) = eoo(Fge;M|FgeM> = eoo(Ege;M|EgeM)
= [Egey : Bge] = [Egex F : EgeF'] = [Fep @ Fyel-

So, the infinite primes are total and tamely ramified in L = Fy,/Fge = F.
On the other hand, Fy./Eq. is unramified at the finite primes, thus Fye; F' = Fyger = L/F =
Fye = EyF is unramified at the finite primes. ]

Proposition 3.11. We have
ess!(LIk) = ebl(Fk) = exl!(S|k) = ex(S]k).

Furthermore, S = LNM = FnN M.
Proof. We have e¥4(L|k) = e‘g’éld(L|K) = eX4(L|F)eY(F|k) = eX4(F|k).

By the definition of S, we have e3¢ (S|k) = e (S|k) since e (S]k)|q". Now, L = Ege, S,
Ege; NS =k and e¥14(Eye,|k) = 1. Therefore

ese (LIk) = e (EgerS|S)ess ! (S|k) = exg(S]k)

Since €4 By 1) e (yeel ) = 1.

Wehave FNM CLNM=Sand FN(LNM)=FnNM.

S=LNM —— F(LNM) — L

FOM —— F

It follows that [LN M : FN M| = [F(LN M) : F]|[L : F]lg — 1. We have that L/F is totally
ramified at the infinite primes and therefore F(L N M)/F is also fully ramified at the infinite
primes. It follows that S = L N M/F N M is fully ramified at the infinite primes (see [16,
Corolario 10.4.15]). Thus, [S : F N M]|¢™ and [S : F N M]|qg — 1sothat [S: FNM]=1and
FNnM=LnNM. O

Proposition 3.12. The field of constants of S, of L and of F is the same.

Proof. If tho is the field of constants of L then tho CS=LNMandsince S C F C L, the
result follows. |

Proposition 3.13. Let cony, /i 9o = Py -+ Pf7 and let t; = degy (P;). Then the field of con-
stants of K. is F 1y, where tg = ged(ty, ..., t,).

Proof. See [13]. O
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Corollary 3.14. The field of constants of S, L and F is ¥ +,. O

Now we consider a finite abelian extension J/k such that K J/K is unramified and the infinite
primes decompose fully. Let B|p.. be a prime divisor of KJ, BN K = P, forsome 1 <i < r
and B N J = 9. Taking the completions we have

Kp.

Let H; := Ny, k. J§, thatis, H; is the norm group of Jo. Therefore, the norm group corre-
sponding to (KJ)p = Kp, is N;(Li/koo (H;) (see Theorem 3.8). Hence N;(Li/km (H;) = K5
That is, H; = Ng, /i, (Kp,). The maximum global abelian extension .J/k satisfying that
K J/K is unramified and the infinite primes decompose fully, satisfies, locally at oo, that its
norm gorup is

HHi = HNKpi/koo (K%,)-
i=1 i=1

In this way, if R/k is the maximum abelian extension with (KR)y = Kp, for some 1.
Thus R corresponds to [[;_, H;, that is, Gal(R/ks) = ki /(I H;) and [R : koo) = [kX :
[T, Hi]-

Let [R : k] = p®a with a € NU{0} and p t a. Since S is the maximum abelian extension of
k such that the only ramified prime is P, it is fully ramified and S C L, and since fo(L|S) = 1,
it follows that if P, is the only prime in .S dividing p., (recall that the number of primes in .S
that lie above poo i8S heo(S]k) = 1), then [Sp__ : koo = [S @ k] = p®. In particular, the norm
group corresponding to Soc = Sp__ in ks is the group & D [];_, H;, which is the minimum
such that [k% : &] = p® is a p—group.

The conductor p2 of S is such that ng is the minimum nonnegative integer such that
Uég") C 6. The conductor of constants mg of .S, that is, mg is the minimum natural number
such that S C ky, Ly, is given as follows (see [2]). Let t = foo(S|k), d* = foo(R'S|S) where
R' = S,,, N Ly, and d* = e (S|F") where I’ = SN, k(A1) = SN Ly,. Therefore

mo = foo(S|k)eco(S|S N Ly,).
Proposition 3.15. Let f.(S|k) = t. Then F . is the field of constants of S. That is, t = t.

Proof. We have F, (T) = k;, C S. Let mg,no be minimum such that S C k,,,Ly,. Then
S N kmo = kto'

k’"b() k mo S k mo L ]
km/ / km’ Ln()

kto kto Lnu

We have Sky Ly, = SLng, ktgLng € SLpy C KmgLn,. Let SLy, N Ky = kpyy. From the Galois
correspondence we obtain that &, ki Ly, = kL, = SL,, 2 S. It follows that m’ > my.
Hence m’ = mg and SL,, = kpyLn,.
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NOW €og (kg Lng |kt,) = ¢™ and kg C kS C Kiny Ly, Then

ko Lo |S Ko Ly ke S g g ¢
oo Ll ) = oo (himy Lol S) = g gy = 678 A o] ~ 18 o]

Thus

€oo (kmoLmJ |kt0) _ qno

oo (S|kt,) = e kmoLna]S) @[S : kug]

=[S : ky, ).

It follows that S/ky, is fully ramified at the infinite prime. In particular fo.(S|ks,) = 1 so that
foo(SIF) = foo(Skity) foo (ty k) = foo (Kiy|k) = to- O

We collect the above discussion in the following theorem.

Theorem 3.16. Let S = L N M. Let conyx Poo = Py -+ Pfr, let t; = degy (P;), 1 < i <r
and let tg = gcd(ty, . .., t,). Then the field of constants of S is IF .

Let ny be the minimum nonnegative integer with Uég‘)) C &, where G is a group that satisfies
that & 2 [[i_, Hi = [[;_ Nkp, sk (Kp,) and that & is the minimum such that [k%, : &) =
p® is a p—group. Then the conductor of constants of S is my = foo(S|k)es(S|S N Ly,)
to€oo (SS N Ly,) and & is the local norm group corresponding to S. In particular F , C S
kg Ling-

o Nl

4 Number fields

The results of Section 3 can be developed in the number field case. In fact, for a number field,
the extended genus field is more transparent than in the function field case.

Definition 4.1. Let K be an arbitrary number field, that is, a finite extension of the rational field
Q. Let K+ be the extended or narrow Hilbert class field of K, that is, K+ is the maximum
abelian extension of K unramified at every finite prime of K. We define the extended genus field
Ky of K as the maximum extension of K contained in K g+ such that it is of the form K L with
L/Q abelian.

Equivalently, if L is the maximum abelian extension of Q contained in K+, the extended
genus field of K is Kgep = K L.

Again, we stress that we choose L maximum.
As in the function field case, we have

Proposition 4.2. Ler K/Q be a finite abelian extension and let X be the group of Dirichlet
characters corresponding to K. Then'Y = Hp prime Xp 18 the group of Dirichlet characters
corresponding to Kge;. O

In particular, if K/Q is any finite extension and Ky, = KL, then L = Lg.,. We want to
describe Ky, for a general number field K. Let K/Q be a finite extension. Let p be a prime in
Q and let

cong/ g p =Py - pyTs
that is, e; = exg(pilp), 1 < i < r. Let K ,..., K, be the completions of K at the primes
above p. Let K., = KL with L/Q the maximum abelian extension such that X' C Ky € Kp+.

K —— Kgep = KL —— Kpi

Q— I
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Since L = Lge, we let Ly, be the field corresponding to X;,. We have that L = [[, e Lp
and L, N L, = Q for any primes p, g such that p # ¢. We have that L,, is the maximum abelian
extension of Q with p the only possible finite prime ramified and such that K'L,,/ K is unramified
at every finite prime.

Let p be a fixed prime and let L, € Q({,m»). For any n € N, the idéle group corresponding
to Q(¢n) is

t
Xo=[Jul? < J[  UsxR,
i=1 q prime

q&{p1,....pt }

where n = []'_, p. As in the case of function fields, it follows that the idéle group correspond-
ing to L, is of the form
A, = H, x H U, x R,
q prime
q7p
where U™ C H, C U,

We have ek, /0, = ex/q(pilp) = e;. The extension L, /Q is totally ramified at p and even
we could mix up L, with the completion of L at p. We have, with both meanings of L,, that
[Lp - Q] = [Lp : Qp] = €,(L,|Q).

By Theorem 3.8 we have that the norm group of the abelian extension KL, /K is N}l/Q(Ap).
Since L, is maximum, we want A, to be such that (see [16, Corolario 17.6.47])

Nibo@) € I Ue x TT K5 = I Us x T[] R* € Jk,

p finite p real p finite p real
or
Ap QNK/Q( H Up X H R*>
p finite p real
Leta € Hp finite UP X Hp real R* C Jg,d = (O‘P)P' Then
Nid= [] (HNKP/@,, ap) ( I Nese ap).
q finite  p|q p real
As in the case of function fields we obtain that
H, =[[Nx,/0,Up and A, =][Nk,/0,Up x [ UsxR".
plp plp q prime
q#p
In other words, let
Si:NKFi/QpUp’i X H Uq x RT gpr H Uq x RY.
q prime q prime
a#p qa#p
‘We have

A, = H S;.
i=1

Now S; corresponds to a field R; € Q((,n») and from [16, Teorema 17.6.49] it follows that
[T;_, S; corresponds to (;_; R;. Thus L,, = (;_, R;. Furthermore, since R; corresponds to .S;,
we have

[Co:Q*S;]=[R;: Q] and Gal(R;/Q) = Cq/Q"S,.
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Since in each field R;/Q, 1 < i < r, the only finite prime ramified is p and it is totally ramified,
the global and the local degrees are equal so that [R; : Q] = [(R;)p, : Q,]. On the other hand,
since (R;)p,/Q, is fully ramified we have

[(Ri)p, : @] = [Up : N, s, Up.]
(see [16, Proposicién 17.2.15]). Thus
[Ri: Q] = [Cq: Q"Si] = [Up : Nk, /0, Up,ls
2@ = ()20 ] = [0 TTNw 0, 7]

When p > 3, we have that Q(¢, ) is cyclic for every m € N, however, when p = 2, Q((m)
is not cyclic for m > 3. We study the two cases.

Let G = (o) = C,, be a finite cyclic group of order n € N and let H; = (07i) < G where
Jiln,i=1,2. Let H N Hy = (¢') and H, H, = (0*) with s, t|n.

We have ot € H;, i = 1,2 so that there exist a; € Z such that o* = ¢7i% 4 = 1,2. Therefore
t = j;a; mod n, i = 1,2, thatis, t = j;a; + I;n, 7 = 1,2. Hence j;|t, i = 1,2 so that lem[j1, j2]|t.

Letu = lem[jy, jo], ji|u. Setu = j;b;. Then 0% = oJi% € H;,i =1,2. Thuso* € HiNH, =
(o) and o = o' for some c and u = tc + In. It follows that ¢t|u = Icm[jy, j»]|. Therefore t = u.

In other words, H; N Hy = (g'emlinaly,

H||H b .
Now, H1H, = (0%), 5= |H Hy| = % = “%’- = % Therefore st = j;j, and
Jij2 = ged(ji, j2) lem[jy, j2] = ged(j1, j2)t = st. Hence s = ged(ji, j2).
In short, we have

Proposition 4.3. Let G = (o) be a cyclic group of order n and let H; = (o) with j;|n, i = 1,2
be two subgroups of G. Then

HyNHy, = <Ulcm[j1~,jz]>, H H, = <Ugcd(j,,j2)>_ -

Corollary 4.4. With the conditions of Proposition 4.3, we have

G| o G| |G|
HNH|=————— [G:H NH]=Im[j,j] =lcm | —, —|,
L= o g O O] = lembi i) =tem 71 17
|G|
HH|l=—fF7-/—,
| : 2| ng(jlaJZ)
G L.
(G : H Hy) = |I}1}|12| = ged(ji1,j2) = ged ([G - H\],[G : Hy)). ]

Corollary 4.5. If p > 2 is a prime number and H; < Z, i = 1,2 are two subgroups of finite
index, then (L, : H\H,] = ged ([Z3 : Hy, [Z3 : Hy)).

Proof. We have that Z; = C,_; X Z, where C},_ is the cyclic group of order p — 1. Let
H, = H] x p™Z, where H/ is the torsion of H;,i = 1,2. Then H,H, = H|{H} x pmi“{"“”z}Zp.
Therefore

2+ HyHa] = [Cye ¢ H{ o)
= god ([Cpmr : Hi], [Cpmn 2 H])pM o)
= ng ([Z;; : H]], [Z; : Hg])

We apply the previous discussion to the case p > 2.

Proposition 4.6. If p > 2, Q((,m»)/Q is a cyclic extension and L,,/Q is a cyclic extension. For
Fy, P, contained in Q((pm» ), we have

[F] NE: Q] = gcd ([F] : Q], [Fz : Q])
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Proof. We consider F; F, /Q which is cyclic since Q((,=»)/Q is a cyclic extension. We have

F e

)

Leta =[F1NF:QL,b=1[F:Q]and ¢c = [F, : Q). We have that alb and a|c so that
a| ged(b, ¢). Now, since ged(b, ¢)|b and ged(b, ¢)|c, there exists a unique field Fy satisfying [Fp :
Q] = ged(b,¢), Fy C Fy and Fy C F». Hence Fy C F; N F>. This implies ged(b,¢) = [Fp :
QJ|[Fi N F, : Q] = a. Thus a = ged(b, ¢). o

Corollary 4.7. With the conditions of Proposition 4.6, if p > 2 and Fy, ..., F, C Q((pm»), we

have
¢

[ﬂFl : Q} = lqu ([F; - Q).
i=1 sist

Proof. Use induction. O

Remark 4.8. If p = 2, Proposition 4.6 is no longer true. For instance, if F; = Q(\ﬁ), =
Q(4), then [F} : Q] = [F> : Q] =2 and since F1 N F, = Q, we have [Fi N F, : Q] = 1.

Remark 4.9. Since

T T

[th‘ Q) = (L @ = Q) : [[Nwy, s, (B3] = [Us - TTNw, /2, U
i=1

i=1 i=1

for p > 2, we have

[Ly: Q] = ged ([R:: Q]) = ged ([Up, : HN(Ri)pi/Qp Up,)-
1<i<r 1<i<lr i=1

The main result on number fields is the following.

Theorem 4.10. Let K/Q be a finite extension. With the above notations, we have K, ger = KL
where L =[] L, and L, is a subfield of Q({pm») satisfying

p finite

Ly : Q) = |U, : f[NKpi/Qp U,

i=1

where cong g p = py' -+ psr.

Furthermore, if p > 2,

[LP : Q] = ged [UP : NKp,;/Qp Upi,]v

1<i<r

L, is determined by its degree [L,, : Q| and L,, is the class field of

HNKM/QP Uy, % H U, x R*.
i=1 q prime

q#p

The tame ramification degree of the extension [L,, : Q)] is

tame
€

= ged(er,...,ep,p—1).
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Proof. It remains to find e*™. Note that necessarily, p > 3. Let L;, be the subfield of L, of
degree b, where [L,, : Q] = p®b, and ged(p,b,) = 1.

For any F' C Q(¢,m») with [F: Q] = d and ged(p, d) = 1, F//Q is tamely ramified. Assume
that K F'/ K is unramified at p.

K —— KF

Q— F

By Abhyankar Lemma, if B is a prime in KF with BN Q = (p), PN K =p;, Q=PNF,

then
e(Blp) = lem[e(pi|p), e(Qlp)] = lemle;, d].

Therefore e(P|p;) = % = d%lp)’ that is, P is unramified in KF/K if and only if
e(PB|p;) = 1if and only if e(P|p) = e; if and only if d|e;. Hence, K F'/K is unramifed at every
finite prime, if and only if d|e; for 1 < ¢ < r if and only if d| ged(ey, . .., e,). Since d|p — 1, this
is equivalent to d| ged(ey, . .., e,,p — 1). It follows that b, = ged(ey, ..., e, p — 1). i

Remark 4.11. Theorem 4.10 was proved by M. Bhaskaran in [4] and by X. Zhang in [18].

4.1 Remarkson L,

For any finite extension K/Q, we have that if Ky, = KL with L/Q the maximum abelian
extension contained in K+, we have proved that if L = [] L, then for p > 3, L, is
completely determined by

q prime

Ly : Q) = Uy [Nk, s, U | = ged[Uy : Nig, g, Usl:
plp pip

This is not so for p = 2. We want to study L,.
Let [L, : Q] =29, a > 1. For a > 2, there are three possible L,, namely

QGen),  QGara)t = Q(Ga +G5ala)  and - Q(Gpara) ™ 1= Q(Gravz — (ala),

see [16, §5.3.1].

If L, is real, then Ly = Q((e+2)". If L, has conductor 24! then L, = Q((pa+1). In other
words, L, can be determined by means of its conductor and whether it is real or not.

If K((ya1)/K is unramified, we have Ly = Q((a+1). In any case Q((ar1)t C Ly, and
therefore KQ((pa+1)" /K is unramified.

J

Q(Gaer)™ Q(Gpar)
Q(Cas2)™
Q(§2a+])+ Q(C20+]) Gal (Q(C2“+2)/Q(C2“")+)

2y, x ()
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We need to determine the group of ideles corresponding to each extension L,, where L, €
{Q(Ga), Q(Ge2) ", Q(Goa2) ™ }-

Recall that for a local field K we have K* = F; x U, M x x (), where 7 is a uniformizing
element, vy (7) = 1, U, are the units of K* Ug ) are the units modulo 1, that s, Up ={¢e
Upg|é—1€(m)}=14+70kg =1+p,and Up x F} = U, where I, is the residue field.

In the particular case of K = Qy, ¢ =p,F; = C, 1 =Z/(p —1)Z and U, = { Yo aip’ |

ap # 0,a;, € {0,1,...,p— 1} for all z} & Z, where Z,, denotes the ring of p—adic integers and

Z,, is the multiplicative group of Z,.
We have

Proposition 4.12. (1) Ifp >2,Z; = C,_| x Z, as groups.
(2) Ifp=2 1427, = {£1} x (1 +4Z,) and 1 + 4Z, = 7Z,. In particular,
Uy =U" =75 =1+ 272 {£1} x (1 +4Z,) = {1} x Z,. O
We are going to identify complex conjugation J with —1 since J((on) = Cz_nl for all n.
The non—zero closed subgroups of U, = Z3 =2 {1} x Z, are: {£1} x 2"Z,, 2"Z, and

{£1} - 2"Z, withn € NU {0}.
The quotient groups are respectively

E1IxZ o~ ~
* {;{tl}};:;"%? 2nzz Cpn,
Z"ZZ {:l:l} X Czn
+1IxZ A~
¢ {{il}};ﬂ Zs — H.
Let us study H. Consider b := 1 € Z,. Then b is a topological generator of Z,. Let a := —1

be the unique torsion element of Z3 of order 2. Let H be the procyclic group with topological
generator ab® : H = (ab?") (topological closure). Denote by @ and b the classes of a and b
modulo # respectively: & = a mod H; b = b mod .

We have G/H = (a,b) where G = {£1} x Z, = Z}. Since ab*" € H,5*" = a~' mod H and
="' = @ mod H (indeed, a~! = a = —1). Therefore G/H = (b) since @ = b*" € (b) so that
G/H is a cyclic group.

Note that b*" ¢ H since otherwise a € 7 but a is a torsion element and # is torsion free.
Therefore b2" ¢ H. On the other hand v*"" = b*"b*" = ab?” mod H so that b*"" € H. It
follows that o(b) = 2"*!. Thus G/H is a cyclic group of order 2!,

Uniformizing the indexes, we have

+1}X7Z (a,b) __ ™y~
. {j{cl}iizmzzz = ({ibyi) = (bmod b*") = Cym,
o Gl (;;Tﬂ) — (3,5) mod 1" = Cy x Cyui,
+1}X7Z (a,b) _ /5 ~
[ ] {Eﬁ:l}};'"zzg = (ibz”g) = <b> mOd H = sz.
Define A,, := {£1} x 2" Zy; B, := 2" Zy; Cp, := {11271 Z,.
We have

o R, =G/ A, = Gal(Q(¢Gm2)t/Q) = Cym since —1 € A,,,
o S :i=G/B, = Gal(Q({m1)/Q) =2 Cy x Cym—i1 since G/B,y, is noncyclic and —1 ¢ B,,,

o T :=G/Cpn = Gal(Q(Gm+) ™ /Q) = Com since it is cyclic and —1 ¢ Cpy,.
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Q(Gm2)* Q(Come2)
/
2 Q(Gam+2)™ 2
/
Qo) 2 Qo)
2'rn7] e 27n71
Q ; Q)
Q(&=)
Am X
Q(C2m+2)+ B, Q(szﬂ )
Q(Gme2)™

Since [L; : Q] = 2™ and [Us : [[,, Nk, /g, Up] = 2", it follows the following theorem.
Theorem 4.13. If [L, : Q] = 2™, then

(1) Ly = Q(Gm+2)™ <= for every place p of K with p|2 we have —1 € Nk, q, Uy, that is,

2) Ly = Q(Gmn) — nPIZ Nk, jq, Up is not cyclic (automatically we have that —1 ¢
ﬂp|2 NKp /Q2 UP)'

(3) Ly =Q(Gme2)” <= NNk, /@, Up is cyclic and —1 ¢ (o Nk, /g, Up- O

5 Some remarks on genus fields of number fields

Let L/Q be a finite Galois extension. Since L/Q is normal, L is either totally real or totally
imaginary. Let J: C — C be the complex conjugation. Since J|g = Idg and L/Q is normal,
we have J(L) = L = L. Hence J|;, € G := Gal(L/Q). Furthermore J|, has order o(J|.) = 1
or 2. Let L7 be the fixed field of L under the action of J. We have Gal(L|L7) = (J|) = {1} or
(3, the cyclic group of order 2 and [L : L”]|2. Furthermore, L’ C R.

Note that L7 is neither necessarily normal over Q nor totally real. For instance, if L =

Q(G, V2).
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Then Gal(L/Q) = (o, 8) = C, x C3 2 S, the symmetric group in 3 elements. L is totally
imaginary and L’ = Q(~/2), the extension Q(+/2)/Q is not normal and the 3 embeddings are

\3/2
V2 —s §3\3@ . In other words, with the usual meaning, r; = 1 and r, = 1.
(V2

When L/Q is abelian, then (J|) < G, L7 /Q is a Galois extension and L” is totally real.

In the case of genus fields, we consider K/Q a finite extension and let Ky and Kg+ be
the Hilbert class field and the Hilbert extended (narrow) class field of K respectively. Then
the genus field K, is the maximum extension such that K C Ky € Ky with K. = KF),
F/Q abelian. In particular, F' = Fy.. The extended or narrow genus field Ky, of K is the
maximum extension such that K C Ky € Kpy+ with Ky, = KL and L/Q is abelian. In
particular, Lg.; = L. Recall that L., is the maximum abelian extension of QQ such that Lge./L
is unramfied at every finite prime and Fj is the maximum abelian extension of Q with Fy./K
unramified at every prime.

From the remarks above, it follows that [Kg., : Kge] = 1 or 2 for every finite abelian
extension K/Q. Now, we have Ky C Kp+ and in fact Gal(Ky+/Ky) = C; for some r €
N U {0}. In our notation, we have that F' C L since K F/K is unramified and F'/Q is abelian.
On the other hand, L is totally real, L/ /Q is abelian and K L’ /K is unramified at every prime.
It follows that

L’ CFCL.
Since F' = Fy, it follows that [L : F']|2 and therefore

[Kger : Kgel =[KL: KFJ|[L:F]=1or?2.
In short, we have
Proposition 5.1. For a finite extension K/Q, we have [K gy @ Kg.]|2. i

Now consider K;/Q, i = 1,2, two finite extensions and let X = K;K,. We have K; C K
for i = 1,2. On the other hand the extension (K )g4./K is unramified and abelian, it follows
that K (K,)q./KK, = K is unramified and abelian. Hence K (K)ge C Kg.. It follows that
(K1)ge C Kge. Similarly (K3)ge € Kge. Therefore (K)ge(K2)ge € Kge.

Remark 5.2. Not necessarily (K)ge(K2)ge = Kge-

Example 5.3. Let p, ¢, p1, ¢ be four odd distinct primes. Let K| = Q((pq) ", K2 = Q(Cpyq, )"
Then, using Dirichlet characters, we have that (K1) g. € Q((pq) and Q((pq)/Q(Cpq) ™ is ramified
at oo, it follows that (K)g. = K. Similarly (K3)ge = K>.

Furthermore, since p # ¢ (respectively p; # ¢1), Q(Cpq)/Q((pq) T is ramified only at oo, that
is, Q((pq)/Q(¢pq) T is unramified at every finite prime ([16, Teorema 5.3.2]).

Now K1K2 =K= Q(Cpq)+Q(Cp1q1 )+ g Q(Cpqplql )
Q(CPQ) Q(Cpq;ﬂ]m)

/
2 Q(Cpapra)*
/

K K,=K

Ky = Q(Cpg)"

Q—— Kx= Q(CPIQI )+ Q(Cplql)



1018 Elizabeth Ramirez, Martha Rzedowski and Gabriel Villa

We have that Q((pgp,q, )T/ K is unramified since p is unramified in Q((pq)/Q((pq) " and thus

ep(QCpap1a))1Q) =p — 1 =1¢,(Q (Cpq) Q) = e,(K|Q).

The same holds for ¢, p; and ¢;. Now, oo is ramified in Q(Cpgp,q, )/Q(Cpgpiq )" It follows
that Kge = Q((pgpq, )T and that [Kge 1 (K1) ge(K2)ge] =2 > 1.

Remark 5.4. For extended genus fields, we have that for any two finite abelian extensions K;/Q,

i=1,2wehave Kgey = (K1)ger(K2)ger Where K = K K, (see [2]).

Theorem 5.5. Let K;/Q, i = 1,2 be two finite abelian extensions and let K = K| K;. Then
[Kge © (K1)ge(K2)ge]|2.

Proof. In general we consider a finite abelian extension K/Q. Let L = Kg.,. We have K. =
LTK (see [2]). Let K = K K,. Then Ky = (K1)ger(K2)ger- Therefore L = LyL, and
Kge = LYK, (K1) ge(K2)ge = LT K1 L} K7 = L L] K. Hence

[ng : (Kl)ge(KZ)ge] = [L+K : LTL;KH[LJF : LTL;—]‘

To prove the result, it suffices to show that for two finite abelian extensions L;/Q, i = 1,2,
and for L = L L,, we have [L" : LT L7]|2.

In general, we have L™ = LN Q(¢,)" = LN Q(¢,)” for L € Q(¢,). In particular, if
S = Gal(Q(¢n)/L), LT = LN Q)" = Q(¢n)® NQ(¢)! = Q(¢n)®! where I = (J) and
thus Gal(Q(¢,,)/LT) = SI.

Let S; := Gal(Q(¢,)/L;), i = 1,2. Since L = L L,, we have S = S; N S,. We also have

LTLy = Q)% Q(¢n)% = Q(¢n)5 M5 € LT = Q(¢)%.

Therefore
Gal((@((n)/L+L+) SiINSy I SiINSy I
Gal(L*/L{LT) = 12/ = . 5.1
(L /LT L) = —Ga@ien) /o) ST (S10 51 SR
Now
s Sl _ B oot
PR TS S0 T Bl T SdS)]
1S15,n1] EREREERI
_ |Sl ﬂ52||5132ﬂ.[|| |
‘SlﬂIHSzﬂH ’
On the other hand |(S; N S2)I| = |SI| = ‘I?Aﬂ It follows that
[S1 N Sy||S1S, NI |SNI| [S1S, N IS NI
INSHI: 1= _ ,
SIS S0 = e g AT s Y T s n s gl
Now SNICS,NI.Leta=[S;NI:SNI|eN. Then
|15, ||1]

1 |S]S2ﬂ[‘ 1 1580 1 |515,]|S11]

INS,I : = = '
[S1IN S : (S1NSH)I| = o Sindl o BIT T a|SiSS)

We have 515, C S15,1. Let 3 = [S15,1 : 51.5,] € N. It follows that

Y R
1 I: I|=— = — = =
ST 0 ST (8510 S)]] aB 1Si]  aBlSiISinI]  aB|SinI]  ap’
with v = [I : Sy N I]||I|. Therefore [S11 N S : (SN S)I] = 5 € Nand [S1INSI :
(S1 N S2)I]||I] = 1 or 2. It follows that

[L*: LTL;HZ and  [Kge @ (K1)ge(K2)ge][2-
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