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Abstract We suggest a fractional differential equation describing the intake of illegal drugs
in a population made up of non-users and drug consumers. Drug users are categorized into ex-
perimental users, recreational users, and addicts. This is an effort by analogy with the traditional
multi-species logistic Holling type-III predator-prey models to suggest a model that considers
non-users as prey, experimental and recreational users as predators as well as preys and ad-
dicts as predators. The proposed model is analyzed in terms of boundedness, existence, and
uniqueness of solutions. We derive sufficient conditions for existence and stability of points of
equilibrium in terms of some threshold parameters. The dynamics of these threshold param-
eters and the sensitivity indices of parameter values are investigated by relating them to basic
reproduction numbers. The theoretical results are then validated by numerical simulations.

1 Introduction

A ’drug’ is a chemical substance when consumed, it modifies the function of the human body
and alters the mood. Drugs are of two kinds: legal (Eg: caffeine, tobacco, and alcohol) and
illegal (Eg: marijuana, heroin, cannabis, cocaine, etc). As the people around the world are filled
with temptation, consumption of illicit drugs has become as a matter of concern throughout the
world. Abuse of drugs and their addiction lead to a serious damage in the individual’s physical
and mental health. Over the years, so many cases of HIV and deaths have been reported due
to the same. They also lead to serious disorders in the nervous system and may lead the person
to be a victim of crime and violence. There can be no question that over the last 30 years,
substance use has risen dramatically, but it is not clear what has caused the rise or what preventive
interventions might have been effective in the past or will be successful in the future. Due to its
adverse effect, it has become necessary to study this area scientifically. To contribute to the
social cause of drug use prevention, scientists from various fields are continuously putting their
efforts in terms of modeling drug consumption behavior. Many mathematicians have modeled
this phenomenon as mathematical models of illicit drug consumption and compared the drug
consumption data of various countries to validate their models. Based on the calculations made
about these drugs, some researchers have questioned the quality and reliability of the results
[1, 2, 3]. In this context, since the beginning of the nineties, we get to see the evidence of
proposing a good number of time dependent continuous models to explain the dynamics of illegal
drug uses [4, 5, 6, 7, 8, 9, 10, 11, 12]. They prominently considered the second-order nonlinear
equations involving two variables for describing long term dynamics of drug market dealers and
addicts. Gragnani et al. [9] extended the model to a third-order model and the additional ordinary
differential equation represents the constraints imposed by the authorities. In 2013, Dauhoo et al.
[13] have formulated a model depicting drug consumption, which describes the dynamics of non-
users(N), experimental users(E), recreational users(R) and addicts(A), respectively, and termed it
as NERA model. Then, by the analogy with the classical prey-predator model, a modified illicit
drug consumption model was presented by Ginoux et al. [14] in view of a third-order differential
equation. Grass et al. [15] have studied the optimal control theory and descriptive model of drug
epidemics. Baveja et al. [16] have discussed some policies relating to drug markets and their
local enforcement by implementing crackdowns in some cities. Adam et al. [17] have considered
the person-to-person unpredictable contacts of illicit drugs and analyzed random factors of the
continuous spectrum of the drugs.
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Exploration of fractional calculus has become one of the most common trends among applied
mathematics researchers in recent years. It is gaining attention as a result of its more realistic
interpretation of physical phenomena. Many researchers have recently pointed out and demon-
strated that integer-order differential operators are not always suitable methods for modeling
complex and nonlinear events. Classical derivatives fail to confine important physical prop-
erties such as anomalous diffusion, non-Markovian processes, random walk, long-range, and
most importantly heterogeneous behaviors. Due to these drawbacks, mathematicians and physi-
cists are in the continuous effort to develop sophisticated and scientific mathematical operators
to effectively reproduce and capture the above-mentioned natural processes. In this strive of
new contribution, the definition of local differential operators, along with the power-law setting
and non-local differential operators such as Caputo, Riemann-Liouville, Grünwald Letnikov, Ju-
marie, Atangana-Baleanu, Riesz, Riesz-Caputo, etc. were proposed. Elaborate theories of the
FDEs can be found in [18, 19, 20, 21, 22, 23, 24]. Conformal fractional derivatives, introduced
by Khalil et al. [25] is applied by many researchers to give the differential equations different
physical interpretations [26, 27, 28]. Incorporation of the fractional derivative is significant in
the case of evolution equations because the definition holds integration and hence the function
holds the information about the memory. Many phenomena of mathematical biology and their
interdisciplinary fields [29, 30, 31, 32, 33, 34] have been studied in a better way by using these
fractional derivatives. Since the outcome of highly non-linear fractional derivatives are very
complicated, solving these systems analytically is very difficult. Thus, many researchers have
contributed towards introducing new numerical techniques that can accommodate fractional dif-
ferential equations [35, 36, 37, 38, 39, 40].

In our present work, we have analyzed a modified NERA model incorporating Caputo frac-
tional derivative and Holling type-III functional response. We have established the theoretical as-
pects related to the solutions of the proposed model taking into our consideration the uniqueness,
existence, and boundedness of our proposed model. We have derived the basic reproduction(BR)
number related to some threshold parameters and we have also established a relationship of BR
number and sensitivity indices, which is a novel idea of investigating the strength of the param-
eters in a narcotic mathematical model. A numerical validation of the analytical results in this
work is performed by taking suitable values of the parameters. Using the Colorado and Wash-
ington states’ marijuana drug consumption data from Hanley [41], we have analyzed the impact
of fractional derivative and Holling Type-III functional response on the obtained results. Inclu-
sion of fractional derivative in drug consumption model where the influence of one category of
the population on the other category is defined by Holling type-III functional is original in the
literature.

2 Some Essential Theorems

Since integer order initial conditions are physically more authentic, and Caputo fractional deriva-
tive(CFD) supports them, in this work fractional derivative is considered in Caputo sense. Here,
we have mentioned few theorems that we are going to apply for establishing the uniqueness,
existence, and boundedness of solutions. We will denote the CFD by the capital letter with the
upper-left index CD.

Definition 2.1. (Caputo Fractional Derivative) [18] Suppose g(t) is m times continuously differ-
entiable function and g(m)(t) is integrable in [t0, T ]. Then, Caputo fractional derivative of order
α for a function g(t) is defined as

C
t0
Dα
t g(t) =

1
Γ(m− α)

∫ t

t0

g(m)(τ)

(t− τ)α+1−m dτ,

Here, t > a and m is a positive integer with m− 1 < α < m. Γ(·) refers to Gamma function.

Lemma 2.2. [42] Consider the FDE
C
t0
Dα
t g(t) = y(t, x), t > t0, (2.1)

with the starting values g(t0), 0 < α ≤ 1 and y : [t0,∞] × Ω → Rn,Ω ∈ Rn. There exists
a unique solution of Eq. (2.1) on [t0,∞) × Ω provided that y(t, x) satisfies the locally Lipchitz
condition with respect to x.



114 Sindhu J. Achar and Chandrali Baishya

Table 1. Biological meanings of the Symbols
λ1 Rate at which E(t) influences N(t)

α1 Rate at which R(t) influences N(t)

α2 Rate at which R(t) influences E(t)
γ1 Rate at which A(t) influences N(t)

γ2 Rate at which A(t) influences E(t)
γ3 Rate at which A(t) influences R(t)
β1 Growth rate of the non-user.
β2 Natural mortality rate of experimental users in absence of all others.
β3 Natural mortality rate recreational users in absence of all others.
β4 Natural mortality rate addicts in absence of all others.

Lemma 2.3. [43] If g(t) is a continuous function on [t0,+∞) satisfying
C
t0
Dα
t g(t) ≤ −λg(t) + µ, g(t0) = gt0 ,

where 0 < α ≤ 1, (λ, µ) ∈ R2 and λ 6= 0 and t0 ≥ 0 is the initial time, then

g(t) ≤ (g(t0)−
µ

λ
)Eα[−λ(t− t0)α] +

µ

λ
.

3 Model Formulation

Motivated by the work proposed by Dauhoo et al. [13] and Ginox et al.[14], where the au-
thors have adapted the structure from the classical predator-prey model representing non-users
of drugs as preys and users of drugs as predators, in this paper, we have proposed a fractional
illicit drug consumption model by incorporating Holling type-III functional response. We denote
non-users, experimental users, recreational users, and addicts in a proportion by E(t), R(t), and
A(t) such that N(t) + E(t) + R(t) + A(t) = 1. However, experimental users and recreational
users play the role of both predators and prey. The proposed fractional mathematical model is as
follows:

C
t0
Dα
t N = β1N(1−N)− λ1

EN

1 +N2 − α1
RN

1 +N2 − γ1
AN

1 +N2 ,

C
t0
Dα
t E = λ1

EN

1 +N2 − α2
RE

1 +E2 − γ2
AE

1 +E2 − β2E,

C
t0
Dα
t R = α1

RN

1 +N2 + α2
RE

1 +E2 − γ3
AR

1 +R2 − β3R,

C
t0
Dα
t A = γ1

AN

1 +N2 + γ2
AE

1 +E2 + γ3
AR

1 +R2 − β4A

(3.1)

with initial positive conditions N(t0), E(t0), R(t0), A(t0) where t0 is the initial time. Ct0
Dα
t rep-

resents Caputo fractional derivative operator. All the parameters λ1, α1, α2, γ1, γ2, γ3,
β1, β2, β3, β4 are considered to be positive. In Table 1, parameters’ biological meanings are pre-
sented.

4 Uniqueness and Existence

The uniqueness and existence of the solutions of the fractional system 3.1 are established in this
section.

Theorem 4.1. In the region Ω×[t0, T ], where Ω = {(N,E,R,A) ∈ R4 : max{|N |, |E|, |R|, |A|} ≤
1} and T < +∞, the solution of the system 3.1 exists and is unique.

Proof. Let us consider X = (N,E,R,A), X̄ = (N̄ , Ē, R̄, Ā), and a mapping

Π(X) = (Π1(X),Π2(X),Π3(X),Π4(X)),
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where

Π1(X) = β1N(1−N)− λ1
EN

1 +N2 − α1
RN

1 +N2 − γ1
AN

1 +N2

Π2(X) = λ1
EN

1 +N2 − α2
RE

1 +E2 − γ2
AE

1 +E2 − β2E

Π3(X) = α1
RN

1 +N2 + α2
RE

1 +E2 − γ3
AR

1 +R2 − β3R

Π4(X) = γ1
AN

1 +N2 + γ2
AE

1 +E2 + γ3
AR

1 +R2 − β4A

We shall show that there exists some ϒ such that

||Π(X)−Π(X̄)|| ≤ ϒ||X − X̄||

Consider,

||Π(X)−Π(X̄)||
= |Π1(X)−Π1(X̄)|+ |Π2(X)−Π2(X̄)|+ |Π3(X)−Π3(X̄)|+ |Π4(X)−Π4(X̄)|

= |β1N(1−N)− λ1
EN

1 +N2 − α1
RN

1 +N2 − γ1
AN

1 +N2 − β1N̄(1− N̄) + λ1
ĒN̄

1 + N̄2

+α1
R̄N̄

1 + N̄2
+ γ1

ĀN̄

1 + N̄2
|+ |λ1

EN

1 +N2 − α2
RE

1 +E2 − γ2
AE

1 +E2 − β2E

−λ1
ĒN̄

1 + N̄2
+ α2

R̄Ē

1 + Ē2
+ γ2

ĀĒ

1 + Ē2
+ β2Ē|+ |α1

RN

1 +N2 + α2
RE

1 +E2 − γ3
AR

1 +R2

−β3R− α1
R̄N̄

1 + N̄2
− α2

R̄Ē

1 + Ē2
+ γ3

ĀR̄

1 + R̄2
+ β3R̄|+ |γ1

AN

1 +N2 + γ2
AE

1 +E2

+γ3
AR

1 +R2 − β4A− γ1
ĀN̄

1 + N̄2
− γ2

ĀĒ

1 + Ē2
− γ3

ĀR̄

1 + R̄2
+ β4Ā|

≤ β1|(N − N̄)(1− (N + N̄))|+ λ1|(EN − ĒN̄) +NN̄(EN̄ − ĒN)|+ α1|(RN − R̄N̄)

+NN̄(RN̄ − R̄N)|+ γ1|(AN − ĀN̄) +NN̄(AN̄ − ĀN)|+ λ1|(EN − ĒN̄)

+NN̄(EN̄ − ĒN)|+ α2|(RE − R̄Ē) +EĒ(RĒ − R̄E)|+ γ2|(AE − ĀĒ)
+EĒ(AĒ − ĀE)|+ β2|E − Ē|+ α1|(RN − R̄N̄) +NN̄(RN̄ − R̄N)|
+α2|(RE − R̄Ē) +EĒ(RĒ − R̄E)|+ γ3|(AR− ĀR̄) +RR̄(AR̄− ĀR)|
+β3|R− R̄|+ γ1|(AN − ĀN̄) +NN̄(AN̄ − ĀN)|+ γ2|(AE − ĀĒ)
+EĒ(AĒ − ĀE)|+ γ3|(AR− ĀR̄) +RR̄(AR̄− ĀR)|+ β4|A− Ā|

≤ 3β1|N − N̄ |+ 2λ1(|N − N̄ |+ |E − Ē|) + 2α1(|N − N̄ |+ |R− R̄|)
+2γ1(|N − N̄ |+ |A− Ā|) + 2λ1(|N − N̄ |+ |E − Ē|) + 2α2(|R− R̄|+ |E − Ē|)
+2γ2(|A− Ā|+ |E − Ē|) + β2|E − Ē|+ 2α1(|R− R̄|+ |N − N̄ |) + 2α2(|R− R̄) + |E − Ē|)
+2γ3(|A− Ā|+ |R− R̄|) + β3|R− R̄|+ 2γ1(|A− Ā|+ |N − N̄ |)
+2γ2(|A− Ā|+ |E − Ē|) + 2γ3(|A− Ā|+ |R− R̄|) + β4|A− Ā|

This implies,

||Π(X)−Π(X̄)|| ≤ (3β1 + 4λ1 + 4α1 + 4γ1)|N − N̄ |+ (4λ1 + 4λ2 + 4γ2 + β2)|E − Ē|
+(4α1 + 4α2 + 4γ3 + β3)|R− R̄|+ (4γ1 + 4γ2 + 4γ3 + β4)|A− Ā|

≤ ϒ1|N − N̄ |+ ϒ2|E − Ē|+ ϒ3|R− R̄|+ ϒ4|A− Ā|
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Where,

ϒ1 = 3β1 + 4λ1 + 4α1 + 4γ1,

ϒ2 = 4λ1 + 4λ2 + 4γ2 + β2,

ϒ3 = 4α1 + 4α2 + 4γ3 + β3,

ϒ4 = 4γ1 + 4γ2 + 4γ3 + β4

Let, ϒ = max{ϒ1,ϒ2,ϒ3,ϒ4}
∴ ||Π(X)−Π(X̄)|| ≤ ϒ||X − X̄||
Hence, by lemma 2.2, the solution exists and is unique.

5 Boundedness

In this section we show that the solutions of the system 3.1 are bounded.

Theorem 5.1. The solutions of the system 3.1 are uniformly bounded.

Proof. Let us define a function, F (t) = N(t) +E(t) +R(t) +A(t)
by using the lemma 2.3, we get,

C
t0
Dα
t F (t) + β2F (t)

= C
t0
Dα
t (N(t) +E(t) +R(t) +A(t)) + β2(N(t) +E(t) +R(t) +A(t))

= β1N(1−N)− λ1
EN

1 +N2 − α1
RN

1 +N2 − γ1
AN

1 +N2 + λ1
EN

1 +N2 − α2
RE

1 +E2 − γ2
AE

1 +E2

−β2E + α1
RN

1 +N2 + α2
RE

1 +E2 − γ3
AR

1 +R2 − β3R+ γ1
AN

1 +N2 + γ2
AE

1 +E2 + γ3
AR

1 +R2

−β4A+ β2(N +E +R+A)

= β1N(1−N)− β2E − β3R− β4A+ β2(N +E +R+A)

= β1N(1−N)− β3R− β4A+ β2(N +R+A)

≤ β1N(1−N) + β2(N +R+A)

= −β1(N −
1
2
)2 +

1
4
β1 + 3β2

≤ 1
4
β1 + 3β2

The solution exists and is unique in
Ω = {(N,E,R,A) : max{|N |, |E|, |R|, |A|} ≤ 1}
The above inequality yields,
C
t0
Dα
t F (t) + β2F (t) ≤ 1

4β1 + 3β2
By the lemma 2.3, we get
c
t0
Dα
t F (t) ≤

(
F (t0)− 1

β2

( 1
4β1 + 3β2

))
Eα[−β2(t− t0)α] + 1

β2

( 1
4β1 + 3β2

)
→ 1

4β1 + 3β2, t→∞
Therefore, all solutions of the system 3.1 that were initiated in Ω remained bounded in
Θ = {(N,E,R,A) ∈ Ω+|F (t) ≤ 1

4β1 + 3β2 + ε, ε > 0}

6 Existence of points of equilibrium and their local stability

The system 3.1 has a set of interesting points of equilibrium. Their stability criteria are investi-
gated in this section.

(i) Axial equilibrium point is ξ = (1, 0, 0, 0), and it always exists.

Theorem 6.1. Let <0 =
α1
2β3
,<1 =

λ1
2β2
,<2 =

γ1
2β4
.

Then, the axial equilibrium point ξ = (1, 0, 0, 0) is stable if <0 < 1,<1 < 1,<2 < 1.
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Proof. Eigen values at the axial equilibrium point ξ are Λ00 = −2β1, Λ01 = α1 −
2β3, Λ02 = −2β2 + λ1, Λ03 = −2β4 + γ1. ξ will be stable if |arg(Λ0i)| > απ

2 , i =
0, 1, 2, 3 i.e., we must have eigenvalues as negative. Λ00 is always negative. Λ01,Λ02,Λ03
will be negative if <0 < 1,<1 < 1,<2 < 1 respectively.

(ii) Experimental and Recreational free equilibrium point is

ξ̄ = (N̄ , 0, 0, Ā) =
(
γ1+
√
−4β2

4+γ
2
1

2β4
, 0, 0,

2β1β4+β1γ1−
β1γ

2
1

β4
+β1

√
−4β2

4+γ
2
1−

β1γ1

√
−4β2

4
+γ2

1
β4

2β2
4

)
.

ξ̄ exists if γ1 > 2β4.

Theorem 6.2. Let <̄0 =
λ1β4

γ1(β2+Āγ2)
and <̄1 =

β4α1
γ1(β3+Āγ3)

. The experimental and recreational

free equilibrium point ξ̄ = (N̄ , 0, 0, Ā) is stable if <̄0 < 1, <̄1 < 1, Āγ1 ≥ 1
(1−N̄)2 β4.

Proof. Eigen values at ξ̄ are
Λ10 =

1
2(−P −

√
(P 2 − 4Q)), Λ11 =

1
2(−P +

√
(P 2 − 4Q))

Λ12 =
N̄γ1
β4

(
β4λ1
γ1
− (β2 + Āγ2)

)
, Λ13 =

N̄γ1
β4

(
β4α1
γ1
− (β3 + Āγ3)

)
where,
P = − 1

(1−N̄)2 β4 + Āγ1

Q = Ā(1− N̄2)β1γ1

We have, N̄
1+N̄2 = β4

γ1
. Λ12 and Λ13 will be negative if <̄0 < 1 and <̄1 < 1 respectively.

Clearly, Q is positive. Therefore
√
(P 2 − 4Q) will be either complex number or a real

number less than P . Hence the eigenvalues Λ10 and Λ11 will be negative or complex con-
jugate with negative real part if P ≥ 0.
Hence, the sufficient conditions for ξ̄ to be stable are, <̄0 < 1, <̄1 < 1 and Āγ1 ≥

1
(1−N̄)2 β4.

(iii) Recreational and Addiction free equilibrium point is

ξ̃ = (Ñ , Ẽ, 0, 0) =
(
λ1−
√
−4β2

2+λ
2
1

2β2
,

2β1β2+β1λ1−
β1λ

2
1

β2
+β1

√
−4β2

2+λ
2
1−

β1λ1

√
−4β2

2
+λ2

1
β2

2β2
2

, 0, 0
)
.

ξ̃ exists if λ1 > 2β2.

Theorem 6.3. Let <̃0 =
Ẽα2

1+Ẽ2 and <̃1 =
Ẽγ2

1+Ẽ2 . The recreational and addiction free equilib-
rium point ξ̃ = (Ñ , Ẽ, 0, 0) is stable if <̃0 < β3− α1β2

λ1
, <̃1 < β4− β2γ1

λ1
and Ẽλ1 ≥ 1

(1−Ñ)2 β1.

Proof. Eigen values at ξ̃ are
Λ20 =

Ñλ1
β2(1+Ẽ2)

((
β2α1
λ1
− β3

)
+ Ẽα2

1+Ẽ2

)
,

Λ21 =
1
2(−X −

√
(X2 − 4Y )), Λ22 =

1
2(−X +

√
(X2 − 4Y )).

Λ23 =
Ñλ1

(1+Ẽ2)β2

((
β2γ1
λ1
− β4

)
+ Ẽγ2

1+Ẽ2

)
where,
X = − 1

(1−Ñ)2 β1 + Ẽλ1

Y = Ẽλ1((1− Ñ2 + Ẽ2(3 + Ñ2))β2 + 2Ẽ2Ñλ1)

We have, Ñ
1+Ñ2 = β2

λ1
. Λ20 and Λ23 will be negative if <̃0 < β3 − α1β2

λ1
and <̃1 < β4 − β2γ1

λ1

respectively. Clearly, Y is positive. Therefore,
√
(X2 − 4Y ) is either a complex number or

a real number less than X . So, the eigenvalues Λ21 and Λ22 will be negative if X ≥ 0.
Hence, the sufficient conditions for ξ̃ to be stable are, <̃0 < β3 − α1β2

λ1
, <̃1 < β4 − β2γ1

λ1
and

Ẽλ1 ≥ 1
(1−Ñ)2 β1.
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7 Dynamics of the system based on the threshold parameters

Threshold parameters defined in section 6 have been validated in this section.

(i) <0 = α1
2β3
,<1 = λ1

2β2
and <2 = γ1

2β4
determine the local stability of the axial equilibrium

ξ. 1
2β3

is the average life span of a recreational user, and α1 is the rate at which non-users
are being influenced by each recreational user. Hence, the product of 1

2β3
and α1 gives the

mean number of population going to the recreational user category which can be referred
as BR number of the recreational user category in ξ.

1
2β2

is the average life span of an experimental user category, and λ1 is the rate at which
non-users are being influenced by each experimental user. Hence, the product of 1

2β2
and

λ1 gives the mean number of population going to the experimental user category which can
be referred as the BR number of the experimental user category in ξ.

1
2β4

is the average life span of an addict and γ1 is the rate at which non-users are being
influenced by each addict. Hence, the product of 1

2β4
and γ1 gives the mean number of

population going to the addicts category which can be referred as the BR number of the
addicts category in ξ. If <0 < 1,<1 < 1 and <2 < 1, the recreational users, experimental
users, and addict population go to extinction.

(ii) <̄0 = λ1β4
γ1(β2+Aγ2)

and <̄1 = β4α1
γ1(β3+Aγ3)

control the stability of experimental and recreational

free equilibrium point ξ̄. We have, N̄
1+N̄2 = β4

γ1
. 1
β2+Āγ2

is the total population number re-

taining in the experimental user category, and λ1N̄
1+N̄2 is the total number of non-users being

influenced by each experimental user. Hence, the product of 1
β2+Āγ2

and λ1N̄
1+N̄2 gives the

mean number of population going to the experimental user category which can be referred
as the BR number of the experimental user category in ξ̄.

On the other hand, 1
β3+Āγ3

is the total number of population retaining in the recreational user

category and α1N̄
1+N̄2 is the total number of non-users being influenced by each recreational

user. Hence, the product of 1
β3+Āγ3

and α1N̄
1+N̄2 gives the mean number of population going to

the recreational user category which can be referred as the BR number of the recreational
user category in ξ̄. If <̄0 < 1 and <̄1 < 1, the experimental and recreational users category
go to extinction.

(iii) <̃0 < β3 − α1β2
λ1

and <̃1 < β4 − β2γ1
λ1

determine the local stability of the recreational and

addiction free equilibrium point ξ̃ where, <̃0 = Ẽα2
1+Ẽ2 and <̃1 = Ẽγ2

1+Ẽ2 . We have 1
2 > β2

λ1
.

<̃0 = Ẽα2
1+Ẽ2 is the total number of experimental users being influenced by each recreational

user, which can be referred as the BR number of the recreational user category at ξ̃. β3 is the
natural death rate of recreational users. α1β2

λ1
indicates the rate of influence of recreational

users on the population who quit recreational category. Hence, β3 − α1β2
λ1

is a quantity less
than the death rate of recreational users.
On the other hand, <̃1 = Ẽγ2

1+Ẽ2 is the total number of experimental user population being
influenced by each addict, which can be referred as the BR number of the addict category
in ξ̃. β4 is the natural death rate of addicts. β2γ1

λ1
indicates the rate of influence of addicts on

the population who quit recreational category. Hence, β4 − β2γ1
λ1

is a quantity less than the
death rate of addicts. If <̃0 < β3 − α1β2

λ1
and <̃1 < β4 − β2γ1

λ1
, the recreational and addict

user category go to extinction.

8 Sensitivity indices of illicit drug usage

Sensitivity indices analysis is generally used to determine the accuracy and effectiveness of the
BR number. In our drug model, the BR number describes the mean number of population staying
in the particular drug user category. Analysis of the sensitivity indices for the parameters of the
model 3.1 is evaluated by relating them to the BR number <. The sensitivity indices of the
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variable v are given as follows:

S<v =
∂<
∂v
∗ v
<

The sign of sensitivity indices of each parameter indicates their contribution to the drug usage.
Here, we are going to determine the reduction in drug usage by formulating the sensitivity indices
for all the BR numbers <0,<1,<2, <̄0, <̄1, <̃0, <̃1 of the model 3.1 with respect to the parameter
values. By considering nine different parameters, we have derived the sensitivity indices for
them which are given in the table 2. The sign of each parameter in the sensitivity indices table

Table 2. Sensitivity indices of parameter values
Parameter Description Sensitivity In-

dex (+ve, -ve)
α1 Rate at which R(t) influences N(t) -ve
λ1 Rate at which E(t) influences N(t) -ve
γ1 Rate at which A(t) influences N(t) -ve
β3 Rate at which recreational users stop

drug consumption
+ve

β2 Rate at which experimental users stop
drug consumption

+ve

β4 Rate at which addicts stop drug con-
sumption

+ve

γ2 Rate at which A(t) influences E(t) -ve
γ3 Rate of conversion of recreational

users into addicts
-ve

α2 Rate at which R(t) influences E(t) -ve

represents their contribution to illicit drug usage. As the value of α1, λ1, γ1, γ2, γ3, α2 decreases,
the basic reproduction number decreases which makes the mean number of population staying
in particular drug user category less. Also, the increase in the value of β2, β3, β4 helps to reduce
the drug usage. Hence, the usage of illicit drugs can be reduced.

9 Numerical Simulation

The obtained theoretical results for the fractional-order model 3.1 in Section 6 are numerically
investigated in this section. The trapezoidal-based homotopy perturbation method [44] is applied
to solve the system 3.1 with the help of mathematical software Mathematica. The role of various
parameters involved in the system and fractional order α are discussed to establish the validity
of the model 3.1 in the ecological environment.

9.1 Dynamics of the system 3.1 around various points of equilibrium.

(i) Axial equilibrium
For the parameter values λ1 = 0.2, α1 = 0.3, α2 = 0.5, γ1 = 0.3, γ2 = 0.9, γ3 = 0.3, β1 =
0.4, β2 = 0.2, β3 = 0.2, β4 = 0.3, we get the axial equilibrium point ξ = (1, 0, 0, 0). For
this parameter set, we get <0 = 0.75 < 1,<1 = 0.5 < 1 and <2 = 0.5 < 1, which
satisfies the conditions of the theorem 6.1. The eigenvalues for Jacobian matrix at ξ are
(−0.8,−0.3,−0.2,−0.) and hence the equilibrium point ξ is stable. Figure 1 indicates the
stability profile of the axial equilibrium point. We can see that, for all the values of α, the
equilibrium point is stable and converges to ξ.

(ii) Experimental and Recreational free equilibrium
For the parameter values λ1 = 0.2, α1 = 0.6, α2 = 0.5, γ1 = 0.6, γ2 = 0.9, γ3 = 0.3, β1 =
0.4, β2 = 0.2, β3 = 0.2, β4 = 0.1, we get the experimental and recreational free equilibrium
point ξ̄ = (0.171573, 0, 0, 0.568542). For this parameter set, we get <̄0 = 0.04683 < 1 and
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Figure 1. Stability profile of the axial equilibrium point ξ = (1, 0, 0, 0). (A) α = 1, (B) α =
0.95, (C) α = 0.9, (D) α = 0.8

<̄1 = 0.2698 < 1, which satisfies the conditions of the theorem 6.2. The eigenvalues for
Jacobian matrix at ξ̄ are (−0.698324,−0.278527,−0.0255701+i0.180151,−0.0255701−
i0.180151) and hence the equilibrium point ξ̄ is stable. Figure 2 gives a clear observation
of experimental and recreational free equilibrium point. It can be observed that as the value
of fractional derivative is diverging from 1, oscillatory behavior of the solution gradually
reduced to smooth stability. For α = 1, the non-user and addict population are converging
to the desired values that were obtained theoretically. As the value of α decreases, the
convergence rate is even faster, and the stability is achieved quickly.

(iii) Recreational and Addiction free equilibrium
For the parameter values λ1 = 0.8, α1 = 0.3, α2 = 0.5, γ1 = 0.2, γ2 = 0.9, γ3 =
0.3, β1 = 0.4, β2 = 0.2, β3 = 0.3, β4 = 0.4, we get the recreational and addiction free
equilibrium point ξ̃ = (0.267949, 0.392305, 0, 0). For this parameter set, we get <̃0 =
0.16999 < 0.225 = β3 − α1β2

λ1
and <̃1 = 0.3059 < 0.35 = β4 − β2γ1

λ1
, which sat-

isfies the conditions of the theorem 6.3. The eigenvalues for Jacobian matrix at ξ̃ are
(−0.0364139+i0.256716,−0.0364139−i0.256716,−0.0680331,−0.0544384) and hence
the equilibrium point ξ̃ is stable. In Figure 3, we can see that for α = 1, the non-user and
experimental user population are converging to the stable point of equilibrium with oscilla-
tion. As the value of α decreases, the convergence rate becomes faster and smooth.

10 Applications of fractional NERA model

We have used the marijuana drug consumption data in the states of Washington and Colorado
from Hanley [41], and we have performed the numerical experiments. While collecting the data
in the Washington state, four key indicators of marijuana use are taken into consideration. They
are current marijuana use, lifetime marijuana use, marijuana abuse, and age of initiation. In the
fractional NERA model 3.1, the first three categories are related to the recreational, experimental,
and addict categories. The aim of the numerical experiments here is to analyze the behavioral
change of the solution after implementing the data collected from Hanley [41] in the model 3.1.

(i) Fractional NERA model for Colorado
The parameter values λ1 = 0.44, α1 = 0.043, α2 = 0.193, γ1 = 0.103, γ2 = 0.031, γ3 =
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Figure 2. Stability profile of the experimental and recreational free equilibrium point ξ̄ =
(0.171573, 0, 0, 0.568542). (A) α = 1, (B) α = 0.95, (C) α = 0.9, (D) α = 0.8
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Figure 3. Stability profile of the recreational and addiction free equilibrium point ξ̃ =
(0.267949, 0.392305, 0, 0). (A) α = 1, (B) α = 0.95, (C) α = 0.9, (D) α = 0.8
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Figure 4. Stability profile of the Colorado model. (A) α = 1, (B) α = 0.95, (C) α = 0.9, (D)
α = 0.8

0.029, β1 = 0.042, β2 = 0.016, β3 = 0.052, β4 = 0.047 correspond to the Colorado model
[41]. For the above parameter values, we have three equilibrium points ( 0.03641, 0.0921,
0, 0), ( 0.64779, 0, 0, 0.20388), and (1, 0, 0, 0) and the eigenvalues for Jacobian ma-
trix at these points are ( -0.0404234, -0.0328104,-0.000711+0.0254i, -0.000711-0.0254i),
(0.178456, -0.0382913, -0.00923+0.0141i, -0.00923-0.0141i), and ( 0.204, -0.042, -0.0305,
0.0045) respectively. Hence, the equilibrium point ( 0.03641, 0.0921, 0, 0) is the stable
point of equilibrium. In Figure 4, it is observed that the fractional NERA model 3.1 with
integer-order derivative (Figure 4(A)) for Colorado data does not give the scope to study the
coexistence pattern for all of the four population. As the value of α reduces, we can observe
the coexistence behavior (Figure 4(D)). Also, it can be noticed that the influences of R on
N , A on E and A on R are very less. Therefore, experimental users play a dominating role
here.

(ii) Fractional NERA model for Washington
For the parameter values λ1 = 0.38, α1 = 0.112, α2 = 0.142, γ1 = 0.099, γ2 = 0.032, γ3 =
0.034, β1 = 0.015, β2 = 0.03, β3 = 0.066, β4 = 0.039 correspond to the Washing-
ton model. For the above parameter values, we have three equilibrium points ( 0.07944,
0.03656,0,0), ( 0.4875,0,0,0.09609) and (1,0,0,0) and the eigenvalues for Jacobian ma-
trix for these equilibrium points are (-0.0519723, -0.0300156, -0.0005 + 0.0202i, -0.0005
-0.0202i), (0.116622, -0.025146, -0.00218+ 0.01341i, -0.00218-0.01341i) and ( 0.16, -
0.015, 0.0105, -0.01) respectively. Hence, the equilibrium point ( 0.07944, 0.03656,0,0)
is stable. For Washington data, we have observed that for α = 1 initially drug users have
huge influence on non-users. But in long run non-users only dominate the population.
However, as α started decreasing, experimental users dominance becomes visible. Again,
the influence of fractional derivative facilitates the study of the coexistence pattern in the
proposed model 3.1(Figure 5).

11 Conclusion

By classifying the drug users in four categories viz. non-users (N), experimental users (E),
recreational users (R), and addicts (A), we have presented a modified drug consumption model
by introducing the influence of one category on other in terms of Holling Type-III functional
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Figure 5. Stability profile of the Washington model. (A) α = 1, (B) α = 0.95, (C) α = 0.9, (D)
α = 0.8

response and by incorporating Caputo fractional order derivative. We have analyzed the theoret-
ical aspects such as uniqueness, existence, and boundedness of the solutions of the system 3.1.
For various equilibrium points, conditions for local stability are set by defining certain threshold
parameters, the dynamics of which in turn are analyzed concerning BR number. We have cal-
culated the sensitivity indices and established a good connection among threshold parameters,
BR number, and sensitivity indices. The performed numerical analysis for various set of val-
ues of parameters make it clear that fractional derivative has a great impact on modeling drug
consumption behavior, and it can be a fantastic tool for a deeper understanding of illegal drug
use.
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