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Abstract The aim of this paper is to introduce and solve the following p-radical functional
equation related to Drygas mappings

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= 2f(x) + f(y) + f(−y), x, y ∈ R,

where f is a mapping from R into a vector spaceX and p ≥ 3 is an odd natural number. Using an
analogue version of Brzdȩk’s fixed point theorem [14], we establish some hyperstability results
for the considered equation in ultrametric 2-Banach spaces. Also, we give some hyperstability
results for the inhomogeneous p-radical functional equation related to Drygas mappings

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= 2f(x) + f(y) + f(−y) +G(x, y).

1 Introduction

A classical question in the theory of functional equation is the following:
" Is it true that a function which approximately satisfies a functional equation must be close to
an exact solution of this equation."
If the answer is affirmative, then we say that equation is stable. In 1940, S. M. Ulam [45]) asked
the following question concerning the stability of group homomorphisms
Let (G1, ∗1) be a group and let (G2, ∗2) be a metric group with a metric d(., .). Given ε > 0,
does there exists a δ > 0 such that if a mapping h : G1 → G2 satisfies the inequality

d
(
h(x ∗1 y), h(x) ∗2 h(y)

)
< δ

for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with

d
(
h(x), H(x)

)
< ε

for all x ∈ G1?
This question seems to be the starting point of studying the stability of functional equations.
Since then, this question has attracted the attention of many researchers. The first partial answer
was raised by D. H. Hyers [30] in 1941 under the assumption that G1 and G2 are Banach spaces
for the the additive functional equation as follows:

Theorem 1.1. [30] Let E1 and E2 be two Banach spaces and f : E1 → E2 be a mapping such
that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ
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for some δ > 0 and for all x, y ∈ E1. Then the limit

A(x) = lim
n→∞

2−nf(2nx)

exists for each x ∈ E1, and A : E1 → E2 is the unique additive mapping such that

‖f(x)−A(x)‖ ≤ δ

for all x ∈ E1.

Later, T. Aoki [10] and D. G. Bourgin [11] considered the problem of stability with un-
bounded Cauchy differences. In 1978, Th. M. Rassias [39] attempted to weaken the condition
for the bound of the norm of Cauchy difference ‖f(x+ y)− f(x)− f(y)‖ and proved a gener-
alization of Theorem 1.1 by using a direct method (cf. Theorem 1.2):

Theorem 1.2. [39] Let E1 and E2 be two Banach spaces. If f : E1 → E2 satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
for some θ ≥ 0, for some p ∈ R with 0 ≤ p < 1, and for all x, y ∈ E1, then there exists a unique
additive mapping A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2θ
2− 2p

‖x‖p

for each x ∈ E1. If, in addition, f(tx) is continuous in t for each fixed x ∈ E1, then the mapping
A is linear.

After then, Th. M. Rassias [40],[41] motivated Theorem 1.2 as follows:

Theorem 1.3. [40],[41] Let E1 be a normed space, E2 be a Banach space, and f : E1 → E2 be
a mapping. If f satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ θ
(
‖x‖p + ‖y‖p

)
(1.1)

for some θ ≥ 0, for some p ∈ R with p 6= 1, and for all x, y ∈ E1 − {0E1}, then there exists a
unique additive mapping A : E1 → E2 such that

‖f(x)−A(x)‖ ≤ 2θ
|2− 2p|

‖x‖p (1.2)

for each x ∈ E1 − {0E1}.

Note that Theorem 1.3 reduces to Theorem 1.1 when p = 0. For p = 1, the analogous result
is not valid. Also, J. Brzdȩk [13] showed the estimation (1.2) is optimal for p ≥ 0 in the general
case.

In 1994, P. Găvruţă [29] provided a further generalization of Rassias theorem in which he re-
placed the bound θ (‖x‖p + ‖y‖p) in (1.1) by a general control function ϕ(x, y) for the existence
of a unique linear mapping.

Recently, J. Brzdȩk [17] showed that Theorem 1.3 can be significantly improved. Namely,
in the case p < 0, each f : E1 → E2 satisfying (1.1) must actually be additive. This result is
called the hyperstability of Cauchy functional equation. However, the term of hyperstability was
introduced for the first time probably in [35] and it was developed with the fixed point theorem
of Brzdȩk in [14]. There after, the hyperstability of a several functional equations have been
studied by many authors (see, for example, [5, 7, 2, 17, 35]).

In 2013, Brzdȩk [16] improved, extended and complemented several earlier classical stability
results concerning the additive Cauchy equation (in particular Theorem 1.3). Over the last few
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years, many mathematicians have investigated various generalizations, extensions and applica-
tions of the Hyers-Ulam stability of a number of functional equations (see, for instance, [18],
[19] and references therein).

Characterizing quasi-inner product spaces, H. Drygas considers in [22] the functional equa-
tion

f(x) + f(y) = f(x− y) +
{
f(
x+ y

2
)− f(x− y

2
)

}
, x, y ∈ R, (1.3)

which can be reduced to the following equation [42, Remark 9.2, p. 131]

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), x, y ∈ R. (1.4)

This equation is known in the literature as Drygas equation and is a generalization of the quadratic
functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), x, y ∈ R.

The general solution of Drygas equation was given by B. R. Ebanks, P. L. Kannappan and P. K.
Sahoo in [23]. It has the form

f(x) = A(x) +Q(x), x ∈ R,

where A : R → R is an additive function and Q : R → R is a quadratic function, see also [32].
A set-valued version of Drygas equation was considered by W. Smajdor in [44].
Recently, the hyperstability of the Drygas functional equation has been studied in [38], [43] and
[6].

During the 16th International Conference on Functional Equations and Inequalities (Bȩdlewo,
Poland, May 17-23, 2015), W. Sintunavarat presented a talk concerning the Ulam type stability
(for information and further references concerning this notion see, e.g., [12]) of the so-called
radical functional equation

f
(√

x2 + y2
)
= f(x) + f(y)

in the class of real functions. A question of J. Schwaiger about the general solution of the equa-
tion was answered a bit later by the author of this paper (see [36], p. 196). In this regard, many
papers concerning the solutions and stability of radical functional equations have been estab-
lished (the reader can refer, for example, to [1, 2, 3, 25, 24, 33, 34]).

We need to recall some basic notion concerning the non-Archimedean 2-normed spaces.
Indeed, the notion of linear 2-normed spaces was introduced by Gähler [27],[28] in the middle
of 1960s. We need to recall some basic facts concerning 2-normed spaces and some preliminary
results.

Definition 1.4. [26] Let X be a real linear space with dimX > 1 and ‖., .‖ : X ×X −→ [0,∞)
be a function satisfying the following properties:

(i) ‖x, y‖ = 0 if and only if x and y are linearly dependent,

(ii) ‖x, y‖ = ‖y, x‖,

(iii) ‖λx, y‖ = |λ|‖x, y‖,

(iv) ‖x, y + z‖ ≤ ‖x, y‖+ ‖x, z‖,

for all x, y, z ∈ X and λ ∈ R. Then the function ‖., .‖ is called a 2-norm on X and the pair
(X, ‖., .‖) is called a linear 2-normed space. Sometimes the condition (4) called the triangle
inequality.

Example 1.5. For x = (x1, x2), y = (y1, y2) ∈ X = R2, the Euclidean 2-norm ‖x, y‖R2 is
defined by

‖x, y‖R2 = |x1y2 − x2y1| .

Lemma 1.6. Let (X, ‖., .‖) be a 2-normed space. If x ∈ X and ‖x, y‖ = 0, for all y ∈ X , then
x = 0.
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Definition 1.7. A sequence {xk} in a 2-normed space X is called a convergent sequence if there
is an x ∈ X such that

lim
k→∞

‖xk − x, y‖ = 0,

for all y ∈ X . If {xk} converges to x, write xk −→ x with k −→∞ and call x the limit of {xk}.
In this case, we also write limk→∞ xk = x.

Definition 1.8. A sequence {xk} in a 2-normed space X is said to be a Cauchy sequence with
respect to the 2-norm if

lim
k,l→∞

‖xk − xl, y‖ = 0,

for all y ∈ X . If every Cauchy sequence in X converges to some x ∈ X , then X is said to be
complete with respect to the 2-norm. Any complete 2-normed space is said to be a 2-Banach
space.

Now, we state the following results as lemmas (See [37] for the details).

Lemma 1.9. Let X be a 2-normed space. Then,

(i)
∣∣‖x, z‖ − ‖y, z‖∣∣ ≤ ‖x− y, z‖ for all x, y, z ∈ X ,

(ii) if ‖x, z‖ = 0 for all z ∈ X , then x = 0,

(iii) for a convergent sequence xn in X ,

lim
n−→∞

‖xn, z‖ =
∥∥∥ lim
n−→∞

xn, z
∥∥∥

for all z ∈ X .

Lemma 1.10. LetX be a linear 2-normed space and let x, y1, y2 ∈ X such that y1, y2 are linearly
independent.
If ∥∥x, y1

∥∥ = 0 =
∥∥x, y2

∥∥,
then x = 0.

In the following, we recall some basic facts and definitions concerning to the ultrametric
spaces and ultrametric 2-Banach spaces.

Definition 1.11. [33] By a non-Archimedean field, we mean a field K equipped with a function
(valuation) | · | : K→ [0,∞) such that for all r, s ∈ K, the following conditions hold:

(i) |r| = 0 if and only if r = 0,

(ii) |rs| = |r||s|,

(iii) |r + s| ≤ max
{
|r|, |s|

}
.

The pair (K, |.|) is called a valued field.

Remark 1.12. In any non-Archimedean field, we have |1| = | − 1| = 1 and |n| ≤ 1 for n ∈ N.

Definition 1.13. [33] Let X be a vector space over a scalar field K with a non-Archimedean
non-trivial valuation | · |. A function || · ||∗ : X → R is a non-Archimedean norm (valuation) if it
satisfies the following conditions:

(i) ‖x‖∗ = 0 if and only if x = 0,

(ii) ‖rx‖∗ = |r| ‖x‖∗ (r ∈ K, x ∈ X),

(iii) The strong triangle inequality (ultrametric); namely

‖x+ y‖∗ ≤ max
{
‖x‖∗, ‖y‖∗

}
x, y ∈ X.

Then (X, ‖ · ‖∗) is called a non-Archimedean normed space or an ultrametric normed space.
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At the end of this section, we give the definition of a ultrametric 2-normed space which has
been introduced in [26].

Definition 1.14. [26] Let X be a vector space (with dimX > 1) over a scalar field K with a
non-Archimedean non-trivial valuation | · |. A function ||., .||∗ : X2 → R+ is called a ultrametric
2-norm (valuation) if it satisfies the following conditions, for each x, y, z ∈ X and each r ∈ K, :

(i) ‖x, y‖∗ = 0 if and only if x and y are linearly independent,

(ii) ‖x, y‖∗ = ‖y, x‖∗,

(iii) ‖rx, y‖∗ = |r| ‖x, y‖∗,

(iv) ‖x, y + z‖∗ ≤ max
{
‖x, y‖∗ , ‖x, z‖∗

}
.

Then (X, ‖·, ·‖∗) is called a non-Archimedean 2-normed space or an ultrametric 2-normed space.

Example 1.15. Let p be a fixed prime number. For x = (x1, x2) and y = (y1, y2) we define the
ultrametric 2-norm in Qp

2 by ‖x, y‖p = |x1y2 − x2y1|p.

Throughout this paper, we will denote the set of natural numbers by N, N0 := N ∪ {0}, the
set of real numbers by R, R+ = [0,∞) the set of non negative real numbers and R0 = R\{0}.
By Nm0 , m0 ∈ N, we will denote the set of all natural numbers greater than or equal to m0. Let
X be a linear space and let p ∈ N3 be an odd natural number. M. E. Hryrou et al. [31] proved
the general solution of the following functional equation

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= 2f(x) + f(y) + f(−y) x, y ∈ R, (1.5)

where f : R→ X which is called p-radical functional equation related to Drygas equation (1.4).

The main purpose of this paper is to achieve the general solution of the functional equa-
tion (1.5) and establish some hyperstability results for the considered equation in ultrametric
2-Banach space. We also provide some corollaries and outcomes concerning the hyperstability
results for the inhomogeneous of p-radical functional equation.
Before proceeding to the main results, we state Theorem 1.16 which is useful for our purpose.
To present it, we introduce the following three hypotheses:

(H1) X is a nonempty set, Y is an ultrametric Banach space over a non-Archimedean field,
g : X → Y be a mapping such that the set g(X) ⊆ Y containing two linearly independent
vectors, f1, ..., fk : X −→ X and L1, ..., Lk : X −→ R+ are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality∥∥∥T ξ(x)−T µ(x) , g(z)∥∥∥
∗
≤ max

1≤i≤k

{
Li(x)

∥∥∥ξ(fi(x))− µ(fi(x)) , g(z)∥∥∥
∗

}
, ξ, µ ∈ Y X , x, z ∈ X.

(H3) Λ : RX×X
+ −→ RX×X

+ is a linear operator defined by

Λδ(x, z) := max
1≤i≤k

{
Li(x)δ

(
fi(x) , z

)}
, δ ∈ RX×X

+ , x, z ∈ X.

Thanks to a result due to J. Brzdȩk and K. Ciepliński [15, Remark 2] and M. Almahalebi and
A. Chahbi [9], we state an analogue of the fixed point theorem [15, Theorem 1] in ultrametric
2-Banach space. We use it to assert the existence of a unique fixed point of operator T : Y X −→
Y X .

Theorem 1.16. Let hypotheses (H1)-(H3) be valid and functions ε : X × X −→ R+ and ϕ :
X −→ Y fulfill the following two conditions

‖T ϕ(x)− ϕ(x) , g(z)‖∗ ≤ ε(x, z), x, z ∈ X,

lim
n→∞

Λ
nε(x, z) = 0, x, z ∈ X.
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Then there exists a unique fixed point ψ ∈ Y X of T with

‖ϕ(x)− ψ(x) , g(z)‖∗ ≤ sup
n∈N0

Λ
nε(x, z), x, z ∈ X.

Moreover
ψ(x) := lim

n→∞
T nϕ(x), x ∈ X.

2 Main results

In this section, we examine the hyperstability of the equation (1.5) in ultrametric 2-Banach space
by using, as a basic tool, Theorem 1.16.

Theorem 2.1. Let p be an odd natural number, (X , ‖·, ·‖∗) be an ultrametric 2-Banach space,
g : R0 → X be a mapping such that the set g(R0) ⊆ X containing two linearly independent
vectors and let h1, h2 : R0 ×R0 → R+ be two functions such that

U : =
{
n ∈ N : αn = max{λ1(n+ 1)λ2(n+ 1) , λ1(2n+ 1)λ2(2n+ 1) , λ1(n)λ2(n) ,

λ1(−n)λ2(−n) } < 1
}
6= φ,

where
λi(m) := inf {t ∈ R+ : hi(mx, z) ≤ t hi(x, z), x, z ∈ R0} ,

for all m ∈ N, where i = 1, 2 such that

lim
m→∞

λ1(m+ 1)λ2(m) = 0. (2.1)

Assume that f : R→ X satisfies the inequality∥∥f ( p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y) , g(z)

∥∥
∗ ≤ h1(x

p, z)h2(y
p, z),

(2.2)
for all x, y, z ∈ R0 such that x 6= y and x 6= −y. Then f is a solution of the equation (1.5) on
R0.

Proof. Replacing x by p
√
m+ 1 x and y by p

√
m x in the inequality (2.2), we get∥∥∥2f

(
p
√
m+ 1 x

)
− f

(
p
√

2m+ 1 x
)
+ f

(
p
√
m x

)
+ f

(
p
√
−m x

)
− f(x) , g(z)

∥∥∥
∗
≤ h1((m+ 1)xp, z)h2((m)xp, z), (2.3)

for all x, z ∈ R0. For each m ∈ N, we define the operator Tm : XR0 → XR0 by

Tmξ(x) := 2ξ
(

p
√
m+ 1 x

)
− ξ

(
p
√

2m+ 1 x
)
+ ξ

(
p
√
m x

)
+ ξ

(
p
√
−m x

)
,

for all ξ ∈ XR0 , x ∈ R0 and the function εm : R0 ×R0 → R+ by

εm(x, z) := h1((m+ 1)xp, z)h2((m)xp, z), m ∈ N, x, z ∈ R0.

We observe that
εm(x, z) ≤ λ1(m+ 1)λ2(m)h1(x

p, z)h2(x
p, z), (2.4)

for all x, z ∈ R0 and all m ∈ U . Then the inequality (2.3) become as∥∥Tmf(x)− f(x) , g(z)∥∥∗ ≤ εm(x, z), x, z ∈ R0.

Furthermore, the operator Λm : RR0×R0
+ → RR0×R0

+ is defined by

Λmδ(x, z) := max
1≤i≤4

{
Li(x)δ

(
fi(x), z

)}
,
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for all x ∈ R0 and all δ ∈ RR0
+ where f1(x) = p

√
m+ 1 x , f2(x) = p

√
2m+ 1 x , f3(x) =

p
√
m x , f4(x) =

p
√
−m x , and L1(x) = L2(x) = L3(x) = L4(x) = 1.

Moreover, for every x ∈ R0, ξ, µ ∈ XR0 , we obtain∥∥Tmξ(x)− Tmµ(x) , g(z)∥∥∗ (2.5)

=
∥∥∥2
(
ξ
(

p
√
m+ 1 x

)
− µ

(
p
√
m+ 1 x

))
−
(
ξ
(

p
√

2m+ 1 x
)
− µ

(
p
√

2m+ 1 x
))

(2.6)

+
(
ξ
(

p
√
m x

)
− µ

(
p
√
m x

) )
+
(
ξ
(

p
√
−m x

)
− µ

(
p
√
−m x

) )
, g(z)

∥∥∥
∗

(2.7)

≤ max
{

2
∥∥ξ ( p
√

2m+ 1 x
)
− µ

(
p
√

2m+ 1 x
)
, g(z)

∥∥
∗ ,
∥∥ξ ( p
√
m+ 1 x

)
− µ

(
p
√
m+ 1 x

)
, g(z)

∥∥
∗ ,

(2.8)∥∥ξ ( p
√
m x

)
− µ

(
p
√
m x

)
, g(z)

∥∥
∗ ,
∥∥ξ ( p
√
−m x

)
− µ

(
p
√
−m x

)
, g(z)

∥∥
∗

}
(2.9)

≤ max
{∥∥ξ ( p

√
2m+ 1 x

)
− µ

(
p
√

2m+ 1 x
)
, g(z)

∥∥
∗ ,
∥∥ξ ( p
√
m+ 1 x

)
− µ

(
p
√
m+ 1 x

)
, g(z)

∥∥
∗ ,

(2.10)∥∥ξ ( p
√
m x

)
− µ

(
p
√
m x

)
, g(z)

∥∥
∗ ,
∥∥ξ ( p
√
−m x

)
− µ

(
p
√
−m x

)
, g(z)

∥∥
∗

}
(2.11)

= max
1≤i≤4

{
Li(x)

∥∥ξ(fi(x))− µ(fi(x)) , g(z)∥∥∗}, (2.12)

which means that (H2) is valid. Now we will show, by induction on n ∈ N0, that

Λ
nεm(x, z) ≤ λ1(m+ 1)λ2(m)αn

mh1(x
p, z)h2(x

p, z). (2.13)

for all x, z ∈ R0 and all m ∈ U where

αm = max
{
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1) , λ1(m)λ2(m) ,

λ1(−m)λ2(−m)
}
.

For n = 0, the inequality (2.13) is exactly (2.4). Next we will assume that (2.13) holds for n = k,
where k ∈ N. Then

Λ
k+1
m εm(x, z) = Λm

(
Λ

k
mεm(x, z)

)
= max

{
Λ

k
mεm

(
p
√
m+ 1 x, z

)
, Λ

k
mεm

(
p
√

2m+ 1 x, z
)
, Λ

k
mεm

(
p
√
m x, z

)
, Λ

k
mεm

(
p
√
−m x, z

) }
≤ λ1(m+ 1)λ2(m)αk

m max
{
h1
(
(m+ 1)xp, z

)
h2
(
(m+ 1)xp, z

)
, h1

(
(2m+ 1)xp, z

)
h2
(
(2m+ 1)xp, z

)
,

h1
(
(m)xp, z

)
h2
(
(m)xp, z

)
, h1

(
(−m)xp, z

)
h2
(
(−m)xp, z

) }
≤ λ1(m+ 1)λ2(m)αk

m max
{
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1) , λ1(m)λ2(m) ,

λ1(−m)λ2(−m)
}
h1(x

p, z)h2(x
p, z)

= λ1(m+ 1)λ2(m)αk+1
m h1(x

p, z)h2(x
p, z),

for all x, z ∈ R0 and all m ∈ U . It shows that (2.13) holds for n = k + 1. We conclude that the
inequality (2.13) holds for all n ∈ N0.
Since αm < 1 for all m ∈ U , we get

lim
n→∞

Λ
nεm(x, z) = 0,

for all x, z ∈ R0. According to Theorem 1.16, there exists, for each m ∈ U , a fixed point
Fm : R0 → X of the operator Tm such that∥∥f(x)−Fm(x) , g(z)

∥∥
∗ ≤ sup

n∈N

{
Λ

n
mεm(x, z)

}
(2.14)

≤ sup
n∈N

{
λ1(m+ 1)λ2(m)αn

mh1(x
p, z)h2(x

p, z)
}
, x, z ∈ R0.
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Moreover,
Fm(x) = lim

n→∞
(T n

mf) (x), x ∈ R0.

Next, we should prove the following inequality∥∥∥T n
mf
(

p
√
xp + yp

)
+ T n

mf
(

p
√
xp − yp

)
− 2T n

mf(x)− T n
mf(y)

− T n
mf(−y) , g(z)

∥∥∥
∗
≤ αn

mh1(x
p, z)h2(y

p, z), (2.15)

for all m ∈ U , all x, y, z ∈ R0 such that x 6= y , x 6= −y and all n ∈ N .
We proceed by induction that the case n = 0 gives us (2.2). Assume that (2.15) holds for n = k
where k ∈ N. Then for eachm ∈ U and every x, y, z ∈ R0 such that x 6= y and x 6= −y , we have

∥∥∥T k+1
m f

(
p
√
xp + yp

)
+ T k+1

m f
(

p
√
xp − yp

)
− 2T k+1

m f(x)− T k+1
m f(y)− T k+1

m f(−y), g(z)
∥∥∥
∗

=
∥∥∥2T k

mf
(

p
√
m+ 1 p

√
xp + yp

)
− T k

mf
(

p
√

2m+ 1 p
√
xp + yp

)
+ T k

mf
(

p
√
m p
√
xp + yp

)
+ T k

mf
(

p
√
−m p
√
xp + yp

)
+ 2T k

mf
(

p
√
m+ 1 p

√
xp − yp

)
− T k

mf
(

p
√

2m+ 1 p
√
xp − yp

)
+ T k

mf
(

p
√
m p
√
xp − yp

)
+ T k

mf
(

p
√
−m p
√
xp − yp

)
− 4T k

mf
(

p
√
m+ 1 x

)
+ 2T k

mf
(

p
√

2m+ 1 x
)
− 2T k

mf
(

p
√
m x

)
− 2T k

mf
(

p
√
−m x

)
− 2T k

mf
(

p
√
m+ 1 y

)
+ T k

mf
(

p
√

2m+ 1 y
)
− T k

mf
(

p
√
m y

)
− T k

mf
(

p
√
−m y

)
− 2T k

mf
(

p
√
m+ 1 (−y)

)
+ T k

mf
(

p
√

2m+ 1 (−y)
)
− T k

mf
(

p
√
m (−y)

)
− T k

mf
(

p
√
−m (−y)

)
, g(z)

∥∥∥
∗

≤ max
{∥∥∥T k

mf
(

p
√
m+ 1 p

√
xp + yp

)
+ T k

mf
(

p
√
m+ 1 p

√
xp − yp

)
− 2T k

mf
(

p
√
m+ 1 x

)
− T k

mf
(

p
√
m+ 1 y

)
− T k

mf
(

p
√
m+ 1 (−y)

)
, g(z)

∥∥∥
∗
,∥∥∥T k

mf
(

p
√

2m+ 1 p
√
xp + yp

)
+ T k

mf
(

p
√

2m+ 1 p
√
xp − yp

)
− 2T k

mf
(

p
√

2m+ 1 x
)

− T k
mf
(

p
√

2m+ 1 y
)
− T k

mf
(

p
√

2m+ 1 (−y)
)
, g(z)

∥∥∥
∗
,∥∥∥T k

mf
(

p
√
m p
√
xp + yp

)
+ T k

mf
(

p
√
m p
√
xp − yp

)
− 2T k

mf
(

p
√
m x

)
− T k

mf
(

p
√
m y

)
− T k

mf
(

p
√
m (−y)

)
, g(z)

∥∥∥
∗
,∥∥∥T k

mf
(

p
√
−m p
√
xp + yp

)
+ T k

mf
(

p
√
−m p
√
xp − yp

)
− 2T k

mf
(

p
√
−m x

)
− T k

mf
(

p
√
−m y

)
− T k

mf
(

p
√
−m (−y)

)
, g(z)

∥∥∥
∗

}
≤ max

{
αk
mh1

(
(m+ 1)xp, z

)
h2
(
(m+ 1)yp, z

)
, αk

mh1
(
(2m+ 1)xp, z

)
h2
(
(2m+ 1)yp, z

)
, αk

mh1
(
(m)xp, z

)
h2
(
(m)yp, z

)
, αk

mh1
(
(−m)xp, z

)
h2
(
(−m)yp, z

) }
≤ αk

mh1(x
p, z)h2(y

p, z)max
{
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1) ,

λ1(m)λ2(m) , λ1(−m)λ2(−m)
}

= αk+1
m h1(x

p, z)h2(y
p, z).

Thus, we have shown that (2.15) holds for n ∈ N0, and all m ∈ U . Letting n→∞ in (2.15), we
obtain

Fm

(
p
√
xp + yp

)
+ Fm

(
p
√
xp − yp

)
= 2Fm(x) + Fm(y) + Fm(−y),
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for all x, y ∈ R0 such that x 6= y , x 6= −y and m ∈ U . This implies that Fm : R → X is a
solution of the equation (1.5).
Therefore, we construct a sequence {Fm}m∈ U of the solutions of equation (1.5) on R0 such that∥∥Fm(x)− f(x) , g(z)‖∗ ≤ sup

n∈N
Λ

n
mεm(x, z)

≤ sup
n∈N

{
λ1(m+ 1)λ2(m)αn

mh1(x
p, z)h2(x

p, z)
}
,

for all x, z ∈ R0 and all m ∈ U . Letting n → ∞ in the previous inequality and using (2.1), we
deduce that f is a solution of the equation (1.5) on R0 which means that the equation (1.5) is
hyperstable on R0.

In a similar way, we can prove the following theorem.

Theorem 2.2. Let p be an odd natural number, (X , ‖·, ·‖∗) be an ultrametric 2-Banach space,
g : R0 → X be a mapping such that the set g(R0) ⊆ X containing two linearly independent
vectors and let h : R0 ×R0 → R+ be a mapping such that

U : =
{
n ∈ N : αn = max{λ(n+ 1) , λ(2n+ 1) , λ(n) , λ(−n) } < 1

}
6= φ,

where
λ(n) = inf {t ∈ R+ : h(nx, z) ≤ t h(x, z), x, z ∈ R0} ,

for all n ∈ N, such that
lim

n→∞

(
λ(n+ 1) + λ(n)

)
= 0.

Assume that f : R→ X satisfies the inequality∥∥∥f ( p
√
xp + yp

)
+f

(
p
√
xp − yp

)
−2f(x)−f(y)−f(−y) , g(z)

∥∥∥
∗
≤ h(xp, z)+h(yp, z), (2.16)

for all x, y, z ∈ R0 such that x 6= y and x 6= −y. Then f is a solution of the equation (1.5) on
R0.

Proof. We will suffice with the basic idea of the proof. Replacing x by p
√
m+ 1 x and y by

p
√
m x in the inequality (2.16) where x ∈ R0 , m ∈ U , we get∥∥∥2f

(
p
√
m+ 1 x

)
− f

(
p
√

2m+ 1 x
)
+ f

(
p
√
m x

)
+ f

(
p
√
−m x

)
− f(x) , g(z)

∥∥∥
∗

≤ h((m+ 1)xp, z) + h((m)xp, z)

≤
(
λ(m+ 1) + λ(m)

)
h(xp, z),

for all m ∈ U and all x, z ∈ R0. We define operators Tm : XR0 → XR0 and Λm : RR0×R0
+ →

RR0×R0
+ by

Tmξ(x) := 2ξ
(

p
√
m+ 1 x

)
− ξ

(
p
√

2m+ 1 x
)
+ ξ

(
p
√
m x

)
+ ξ

(
p
√
−m x

)
,

for all ξ ∈ XR0 and all x ∈ R0 and

Λmδ(x, z) := max
{
δ
(

p
√
m+ 1 x, z

)
, δ
(

p
√

2m+ 1 x, z
)
, δ
(

p
√
m x, z

)
, δ
(

p
√
−m x, z

) }
.

Moreover, we write

εm(x, z) = h
(
(m+ 1)xp, z

)
+ h

(
(m)xp, z

)
≤
(
λ(m+ 1) + λ(m)

)
h(xp, z), x, z ∈ R0.

As in Theorem 2.1, we observe that if (2.16) takes the following form∥∥f(x)− Tm, g(z)∥∥∗ ≤ εm(x, z), x, z ∈ R0,m ∈ U ,

then we complete the proof by similar steps of the proof of Theorem 2.1.
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3 Applications

In this section, we get, as particular cases of of our main results, the hyperstability results in
the sens of Hyers-Ulam-Rassiass. Also, we get the same results for the inhomogeneous general
p-radical functional equation

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
= 2f(x) + f(y) + f(−y) +G(x, y). (3.1)

Corollary 3.1. Let p be an odd natural number,
(
X , ‖·, ·‖∗

)
be an ultrametric 2-Banach space,

g : R0 → X be a mapping such that the set g(R0) ⊆ X containing two linearly independent
vectors and let c, r, s, t ∈ R such that s + t < 0, r ≥ 0 and c ≥ 0. Assume that a mapping
f : R→ X satisfies the inequality∥∥∥f ( p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y) , g(z)

∥∥∥
∗
≤ c|Q1(x

p)|s|Q2(y
p)|t|z|r,

(3.2)
for all x, y, z ∈ R0 where Q1, Q2 : R0 → R+ are two quadratic functions. Then f is a solution
of the equation (1.5) on R0.

Proof. The proof follows from Theorem 2.1 by taking h1, h2 : R0 ×R0 → R+ as follows:

h1(x
p, z) = c1|Q1(x

p)|s|z|r1

and
h2(x

p, z) = c2|Q2(x
p)|t|z|r2

for all x, y, z ∈ R0 where c1, c2r1, r2 ∈ R+ such that c1c2 = c ≥ 0 and r1 + r2 = r. For each
m ∈ N , we define λ1(m) as in Theorem 2.1 by

λ1(m) = inf {t ∈ R+ : h1 (mx
p, z) ≤ th1(x

p, z)}

= inf
{
t ∈ R+ : c1

∣∣∣Q1 (mx
p)
∣∣∣s|z|r1 ≤ tc1

∣∣∣Q1(x
p)
∣∣∣s|z|r1

}
= inf

{
t ∈ R+ : m2s

∣∣∣Q1(x
p)
∣∣∣s|z|r1 ≤ t

∣∣∣Q1(x
p)
∣∣∣s|z|r1

}
=m2s,

for all x, z ∈ R0. Also, for each m ∈ N, we have λ2(m) = m2t. It is clear that there exists
m0 ∈ N such that, for each m ≥ m0, we get

αm =max
{
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1) , λ1(m)λ2(m) , λ1(m)λ2(m)

}
,

=max
{
(m+ 1)2(s+t) , (2m+ 1)2(s+t) , m2(s+t) , (−m)2(s+t)

}
< 1

According to Theorem 2.1, there exists a unique mapping Fm : R0 → X satisfying the equation
(1.5) such that

‖Fm − f(x) , g(z)‖∗ ≤ c sup
n∈N

{
λ1(m+ 1)λ2(m)αn

m|Q1(x
p)|s|Q2(x

p)|t|z|r
}

= c(m+ 1)2s m2t|Q1(x
p)|s|Q2(x

p)|t|z|r sup
n∈N

{
αn
m

}
,

for all x, z ∈ R0. On the other hand, since s+ t < 0, one of s, t must be negative. Assume that
s < 0. Then

lim
m→∞

λ1(m+ 1)λ2(m) = lim
m→∞

m2(s+t) = 0 (3.3)

We get the desired result.

Corollary 3.2. Let p be an odd natural number,
(
X , ‖·, ·‖∗

)
be an ultrametric 2-Banach space,

g : R0 → X be a mapping such that the set g(R0) ⊆ X containing two linearly independent
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vectors and let c, r, s ∈ R such that c ≥ 0, r ≥ 0 and s < 0. Assume that a function f : R→ X
satisfies the inequality∥∥∥f ( p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
−2f(x)− f(y)− f(−y), g(z)

∥∥∥
∗
≤ c
(
|Q(xp)|s+ |Q(yp)|s

)
|z|r

(3.4)
for all x, y, z ∈ R0 where Q : R0 → R+ is a quadratic function. Then f is a solution of the
equation (1.5) on R0.

Proof. The proof is similar to the proof of Corollary 3.1 with taking h : R0 ×R0 → R+ defined
by h(xp, z) = c

∣∣∣Q(xp)∣∣∣s|z|r for all x, z ∈ R0 where c ≥ 0, r ≥ 0 and s < 0.

In the following corollaries, we get the hyperstability results for the inhomogeneous general
p-radical functional equation related to quadratic mappings.

Corollary 3.3. Let p be an odd natural number, c, r, s, t ∈ R such that c, r ≥ 0 and s + t < 0,(
X , ‖·, ·‖∗

)
be an ultrametric 2-Banach space, g : R0 → X be a mapping such that the set

g(R0) ⊆ X containing two linearly independent vectors, G : R × R → X be a mapping such
that G(0, 0) = 0 and let f : R → X be a mapping such that f(0) = 0. Assume that f and G
satisfy the inequality∥∥∥f ( p

√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− 6f(y)− f(−y)−G(x, y) , g(z)

∥∥∥
∗

≤ c |Q1(x
p)|s|Q2(y

p)|t|z|r, (3.5)

for all x, y, z ∈ R0, where Q1, Q2 : R0 → R+ are two quadratic functions. If the functional
equation

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)−G(x, y) = 0 (3.6)

has a solution f0 : R→ X on R0, then f is a solution of the equation (3.6) on R0.

Proof. Let ψ : R → X be a mapping defined by ψ(x) := f(x) − f0(x) for all x ∈ R. Then we
get that∥∥∥ψ ( p

√
xp + yp

)
+ ψ

(
p
√
xp − yp

)
− 2ψ(x)− ψ(y)− ψ(−y), g(z)

∥∥∥
∗

=
∥∥∥f ( p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)

−G(x, y)− f0
(

p
√
xp + yp

)
− f0

(
p
√
xp − yp

)
+ 2f0(x) + f0(y) + f0(−y) +G(x, y) , g(z)

∥∥∥
∗

≤ max
{∥∥f ( p

√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)−G(x, y) , g(z)

∥∥∥
∗

,
∥∥∥f0

(
p
√
xp + yp

)
+ f0

(
p
√
xp − yp

)
− 2f0(x)− f0(y)− f0(−y)−G(x, y) , g(z)

∥∥∥
∗

}
≤
∥∥∥f ( p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)−G(x, y) , g(z)

∥∥∥
∗

≤ c
∣∣∣Q1(x

p)
∣∣∣s ∣∣∣Q2(y

p)
∣∣∣t|z|r,

for all x, y, z ∈ R0. By using Corollary 3.1, we deduce that ψ is a solution of equation (1.5).
Moreover, for all x, y ∈ R0, we have

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)−G(x, y)

= ψ
(

p
√
xp + yp

)
+ ψ

(
p
√
xp − yp

)
− 2ψ(x)− ψ(y)− ψ(−y)

+f0
(

p
√
xp + yp

)
+ f0

(
p
√
xp − yp

)
− 2f0(x)− f0(y)− f0(−y)−G(x, y) = 0,

which means that f is a solution of (3.6) on R0.
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With an analogous proof of Corollary 3.3, we can prove the following corollary.

Corollary 3.4. Let p be an odd natural number, c, r, s ∈ R such that c, r ≥ 0 and s < 0,(
X , ‖·, ·‖∗

)
be an ultrametric 2-Banach space, g : R0 → X be a mapping such that the set

g(R0) ⊆ Y containing two linearly independent vectors and let G : R × R → X be a mapping
such that G(0, 0) = 0 and f : R → X be a mapping such that f(0) = 0. Assume that f and G
satisfy the inequality∥∥f ( p

√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)−G(x, y) , g(z)

∥∥
∗

≤ c (|Q(xp)|s + |Q(yp)|s) |z|r, (3.7)

for all x, y, z ∈ R0, where Q : R0 → R+ is a quadratic function. If the functional equation

f
(

p
√
xp + yp

)
+ f

(
p
√
xp − yp

)
− 2f(x)− f(y)− f(−y)−G(x, y) = 0, (3.8)

has a solution f0 : R→ X on R0, then f is a solution of the equation (3.8) on R0.

4 Conclusion

This paper indeed presents a relationship between three various disciplines: the theory of Banach
spaces, the theory of stability of functional equations, and the fixed point theory. We established
some hyperstability results concerning a general radical functional equation in ultrametric 2-
Banach spaces by using the fixed point approach with some particular cases and applications.
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[12] N. Brillouët-Belluot, J. Brzdȩk, K. Ciepliński, On some recent developments in Ulam’s type stability,
Abstr. Appl. Anal., (2012), Art. ID 716936.
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[14] J. Brzdȩk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear
Anal., 74 , 6728-6732, (2011).
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[27] S. Gähler, 2-metrische Räume und ihre topologische Struktur, Math. Nachr., 26, 115-148, (1963).

[28] S. Gähler, Linear 2-normiete Räumen, Math. Nachr., 28, 1-43,(1964).
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