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Abstract Let R be a commutative ring with nonzero identity. In this paper, we introduce and
investigate a generalization of (m, n)-closed ideals. Let ¢ : Z(R) — Z(R) U {0} be a function
where Z(R) is the set of ideals of R. A proper ideal I of R is said to be a ¢-(m, n)-closed ideal
ifa™ € I\ ¢(I) for a € R implies that a™ € I. Moreover, we give some basic properties of
this class of ideals and we study the ¢-(m, n)-closed ideals of the localization of rings, the direct
product of rings, the trivial ring extensions and amalgamation of rings.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all
modules are nonzero unital. If R is a ring, then /T denotes the radical of an ideal I of R, in the
sense of [17, page 17]. We denote the set of all ideals (resp. proper ideals) of a ring R by Z(R)
(resp. Z*(R)).

Anderson and Smith [3], defined a weakly prime ideal as a proper ideal P of R with the property
that for a,b € R, 0 # ab € P implies a € P or b € P. Then the authors of [6] defined the notion
of almost prime ideal, i.e., an ideal P € Z*(R) with the property thatif a,b € R, ab € P\ P?, then
either a € P or b € P. Thus a weakly prime ideal is almost prime and any proper idempotent
ideal is also almost prime. Moreover, an ideal P of R is almost prime if and only if P/P? is a
weakly prime ideal of R/P?. Anderson and Bataineh in [2], extended these concepts to ¢-prime
ideals. Let ¢ : Z(R) — Z(R) U {0} be a function. A proper ideal P of R is called ¢-prime if
forz,y € R, xy € P\ ¢(P) implies z € P ory € P. In fact, P is a ¢-prime ideal of R if
and only if P/¢(P) is a weakly prime ideal of R/¢(P). In 2017, J. Bagheri Harehdashti and H.
Fazaeli Moghimi defined the ¢-radical of an ideal I as the intersection of all ¢-prime ideals of
R containing I and investigated when the set of all ¢-prime ideals of R has a Zariski topology
analogous to that of the prime spectrum. Since P \ ¢(P) = P\ (P N ¢(P)), there is no loss of
generality in assuming that ¢(P) C P. In [1], Anderson and Badawi introduced and studied the
notion of (m, n)-closed ideal . Let m and n be positive integers. A proper ideal of R is said to be
a (m,n)-closed ideal if a™ € I for a € R implies that a™ € I. Also, recall from [5] that a proper
ideal of R is called a weakly (m, n)-closed ideal if 0 # o™ € I for a € R implies that " € I.
Let A be aring and F an A-module. Then A x E, the trivial (ring) extension of A by FE, is the
ring whose additive structure is that of the external direct sum A @ E' and whose multiplication
is defined by (a,e)(b, f) := (ab,af + be) for all a,b € A and all e, f € E. (This construction
is also known by other terminology and other notation, such as the idealization A(+)E.) The
basic properties of trivial ring extensions are summarized in the books [14], [13]. Trivial ring
extensions have been studied or generalized extensively, often because of their usefulness in
constructing new classes of examples of rings satisfying various properties (cf. [4, 11, 12, 15, 16]
).

Let A and B be two rings, let J be an ideal of B and let f : A — B be a ring homomorphism.
In this setting, we consider the following subring of A x B, A/ J = {(a, f(a) +j)|a € A,j €
J}, called the amalgamation of A and B along .J with respect to f. Moreover, other classical
constructions (such as the A + XB[X], A + X B[[X]], and the D + M constructions) can be
studied as particular cases of the amalgamation (see [7, Examples 2.5 and 2.6]). A particular
case of this construction is the amalgamated duplication of a ring along an ideal I (introduced
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and studied by D’Anna and Fontana in [7, 8, 9]). Let A be a ring, and let I be an ideal of A.
Al :={(a,a+1):a€ A, ie I}iscalled the amalgamated duplication of A along the ideal
1. See for instance [7, 8, 9, 10].

The purpose of this paper is to introduce and investigate a generalization of (m, n)-closed ideals.
Let ¢ : Z(R) — Z(R) U {0} be a function where Z(R) is the set of ideals of a ring R. A proper
ideal I of R is said to be a ¢-(m, n)-closed ideal if a™ € I \ ¢(I) for a € R implies that o™ € I.
Moreover, we give some basic properties of this class of ideals and we study the ¢-(m, n)-closed
ideals of the localization of rings, the direct product of rings, the trivial ring extensions and
amalgamation of rings.

2 Main Results

We start this section by the following definition.

Definition 2.1. Let R be a ring, m, n nonzero positive integers and ¢ : Z(R) — Z(R) U {0} be a
function. A proper ideal I of R is said to be a ¢-(m, n)-closed ideal if ™ € I \ ¢(I) fora € R
implies that a™ € 1.

Remark 2.2. Let R be a ring, m,n nonzero positive integers and ¢ : Z(R) — Z(R) U {0} be
a function. Let I be a proper ideal of R. It is easy to see from the definition that if [ is a
¢-(m,n)-closed ideal of R, then [ is ¢-(m, n’)-closed for every positive integer n’ > n.

We next give some particular examples of ¢-(m, n)-closed ideals

Example 2.3. Let R be aring, I a proper ideal of R, ¢ : Z(R) — Z(R) U {0} a function and let
m,n be nonzero positive integers.

(1) If ¢(I) = 0, then I is a ¢-(m, n)-closed ideal of R if and only if I is a (m, n)-closed ideal.

(2) If ¢(I) = 0, then I is a ¢-(m, n)-closed ideal of R if and only if I is a weakly (m, n)-closed
ideal.

(i) Assume that R is a local ring with maximal ideal M such that I N M™ C ¢(I). Then I
is a ¢-(m,n)-closed ideal of R. Moreover, if I % M and M™ C ¢(I), then I is not a
(m, 1)-closed ideal of R because we have a™ € ¢(I) C I for some a € M \ I.

Definition 2.4. Let R be aring, m and n positive integers, ¢ : Z(R) — Z(R)U{0} a function and
I a ¢-(m,n)-closed ideal of R. Then a € R is a ¢-(m, n)-unbreakable element of I if a™ € ¢(I)
and a™ ¢ 1.

Remark 2.5. Tt is clear that a ¢-(m, n)-closed ideal I has a ¢-(m, n)-unbreakable element if and
only if I is not (m,n)-closed.

Lemma 2.6. Let R be a ring, m and n positive integers, ¢ : Z(R) — Z(R) U {0} a function, and
la ¢-(m,n)-closed ideal of R. If a is a ¢-(m,n)-unbreakable element of I, then (a+1i)™ € ¢(I)
foreveryi e I.

Proof. Leti € I and a is a ¢-(m, n)-unbreakable element of 1. As a™ € ¢(I) C I, we conclude

that
N m m m—kk
a+1)"=am" + a i el,

and similarly, (a + i)™ ¢ I since a™ ¢ I. Thus (a + i)™ € ¢(I) because I is ¢-(m,n)-closed
ideal of R.
m

Theorem 2.7. Let R be a ring, m and n positive integers, ¢ : Z(R) — Z(R) U {0} a function,
and I a ¢-(m,n)-closed ideal of R. If I is not (m,n)-closed, then I C +/¢(I).

Proof. As I is a ¢-(m,n)-closed ideal of R that is not (m,n)-closed, we get that I has a ¢-
(m, n)-unbreakable element a. Thus ™ € ¢(I), and (a +:)™ € ¢(I) for every i € I by Lemma

2.6. Which implies that a € \/¢(I) and a + i € \/¢(I). Hence i = (a + i) — a € \/4(I) and
thus I C \/¢(I). o
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Let S be a multiplicatively closed subset of a ring R. Given a function ¢ : Z(R) — Z(R) U
{2}, as in [2] we define ¢g : Z(S™'R) — Z(S™'R) U {@} by ¢5(J) = S~'¢((J N R)) and
ps(J) =@ if (JNR) = @. Also, let J be an ideal of R, define ¢; : Z(R/J) — Z(R/J)U{2}
by ¢;(I/J) = (¢(I)+ J)/J for I D J and ¢(I/J) = @ if ¢(I) = &. Then we have the
following result.

Proposition 2.8. Let R be a ring, m and n positive integers and ¢ : Z(R) — Z(R) U {@} be a
function. Let I be a ¢-(m,n)-closed ideal of R.

(1) If J is an ideal R with J C I, then I/J is a ¢ j-(m,n)-closed ideal of R/ J.

(2) Suppose that S is a multiplicatively closed subset of R with I NS = @. and S~'¢(I) C
b5(S™I). Then S~'I is a p5-(m, n)-closed ideal of S™'R.

Proof. (1) Let a € R such that a™ € I/J\ ¢;(I/J) = I/J\ (¢(I) + J)/J. Thus a™ €
I\ (¢(I)+ J). Hence a™ € I\ ¢(I), and so a™ € I. Therefore a" € I/J and thus I/J is
¢j-(m, n)-closed.
(2) Let (2)™ € S7'I\ ¢5(S~'I). Thus ta™ € I for some t € S. But sa™ ¢ ¢s(S™'I)N R
for every s € S. Now let sa™ € ¢(I), then (£)™ € S™'¢(I) C ¢s(S~'I) which gives a
contradiction. Hence (ta)™ € I\ ¢(I) and so I is a ¢-(m,n)-closed ideal gives t"a™ € I.
Which implies that (£)" € S~'T and so S~'I is a ¢5-(m,n)-closed ideal of S~'R..

O

We next study when certain ideals of A x E are ¢-(m, n)-closed ideals.

Proposition 2.9. Let A be a ring and E an A-module. Let m and n positive integers, ¢ : Z(A) —
Z(A)U{0} andyp : I(AX E) — Z(Ax E)U{0} be two functions such that (I x F') = ¢(I) x F'
and (I x F) = @ if p(I) = & where F is a submodule of E. Then

(i) If I X F is a-(m,n)-closed ideal of A x E, then I is a $-(m,n)-closed ideal of A.
(ii) I X E is a-(m,n)-closed ideal of A x E if and only if I is a ¢-(m, n)-closed ideal of A.

Proof. (1) Leta™ € I\¢(I) fora € A. Hence (a,0)™ = (a™,0) € IKF\¢(I)X F = p(IXF).
Thus (a,0)™ € I x F since I x F is 1-(m,n)-closed. Which implies that «” € I and so I is a
¢-(m,n)-closed ideal of A.

(2) By (1), it suffices to prove the “if" assertion. Let (a,e)™ € I X E\ ¢(I) x E. Thus,
a™ € I\ ¢(I) which implies that a™ € I because I is a ¢-(m,n)-closed ideal of A. Therefore
(a,e)™ = (a™,na""'e) € I x E and this completes the proof of (2). i

Theorem 2.10. Let A be a ring, E an A-module, m and n positive integers, and ¢ : T(A) —
Z(A) U {0} a function. Let N be a submodule of E and ) : TZ(A X E) — IZ(A x E)U {0} be a
function defined by :

X N)OH if o(Iu) # 0
0 ifo(I) =0

where Iy = {a € A | (a,e) € H}. We consider a submodule F of E. Then

(i) If I X F is a -(m,n)-closed ideal of A x E, then I is a ¢-(m,n)-closed ideal of A and
m(a™~'F) C (N N F) for every ¢-(m,n)-unbreakable element a of I.

(ii) I X E is a 1-(m,n)-closed ideal of A X E that is not (m,n)-closed if and only if I is
a ¢-(m,n)-closed ideal of A that is not (m,n)-closed and m(a™ 'E) C N for every ¢-
(m, n)-unbreakable element a of I.

¢(H) _{ (¢(IH)

Proof. (1) Let J = I x F. Assume that a™ € I\ ¢(I) for a € A. Thus (a,0)™ = (a™,0) € J\
¥(J). Hence (a,0)™ = (a™,0) € J and so a™ € I. Thus [ is a ¢-(m, n)-closed ideal of A. Now,
let a be a ¢-(m, n)-unbreakable element of I and e € F. Then (a,e)™ = (a™,ma™ 'e) € J.
Since a™ ¢ I, we have (a,e)™ = (a™,ma™ 'e) € ¥(J) = ¢(I) x (N N F). Therefore
ma™ 'FC NNF.

(2) Suppose that J = I X E is a ¢-(m, n)-closed ideal of A x E that is not (m,n)-closed.
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Hence, I has an ¢-(m, n)-unbreakable element. Thus I is not a (m, n)-closed ideal of A. The
rest follows by (1). Conversely, as I is a ¢-(m,n)-closed ideal of A that is not (m, n)-closed,
I has a ¢-(m,n)-unbreakable element a. Then (a,0) is a 1)-(m, n)-unbreakable element of .J.
Thus J is not an (m,n)-closed ideal of A. Assume that (b, f)™ = (b™,mb™"1f) € J\ ¥(J).
So, b™ € I. If bis a ¢-(m, n)-unbreakable element of I, then the hypothesis gives that (b, f)™ €
#(I)x N = 1(J), a contradiction. Hence b™ € I and thus (b, nb" ! f) = (b, f)" € .J. Therefore
J is a ¢-(m, n)-closed ideal of A X FE that is not (m,n)-closed.

o

Remark 2.11. Assume that A is a reduced ring. Thus, for any function ¢ : Z(A x E) —
Z(A x E) U {0} and a submodule F of E, the ideal 0 x F is always a v-(m, n)-closed ideal of
Ax E forn > 2. Indeed. Let (a,e)™ € 0 x F\ (0 x F) for (a,e) € Ax E. Then a™ = 0 and
so a = 0. Now, the fact that (0,¢)™ = (0,0) € 0 x F implies that 0 x F is 1)-(m, n)-closed.

Now, we study the ¢-(m, n)-closed ideals of the direct product of rings.

Proposition 2.12. Let Ry and R, be rings, I a proper ideal of Ry and let ¢; : T(R;) — Z(R;) U
{0} be two functions. Let 1y = ¢y X ¢o. Then I} x Ry is a 1-(m,n)-closed ideal of Ry X Ry if
and only if I, is a ¢1-(m, n)-closed ideal of Ry which must be (m,n)-closed if ¢2(R2) # Ry.

Proof. Assume that I} x R; is a 1-(m,n)-closed ideal of Ry x R,. Let a™ € I \ ¢;(I;) for
a € R;. Hence (a,0)™ € I} x Ry \ ¢1(I1) X ¢2(Ry) which gives that (a,0)" € I} X R;.
Therefore, a” € I; and thus I; is ¢;-(m, n)-cloded. Now, suppose that ¢,(R,) # R,. If I
is not (m,n)-closed, then I has a ¢;-(m,n)-unbreakable element a. Hence, (a,1)™ € I; x
Ry \ ¥(I1 X Ry) = ¢1(I1) X ¢2(R) and (a,1)™ ¢ I} x R, a contradiction. Thus I; is a
(m,n)-closed ideal of R;. Conversely, assume that I is ¢;-(m, n)-closed and ¢,(R,) = R». Let
(a,b)™ € I} x Ry \ ¥(I1 x Ry) = ¢1(11) X Ry for (a,b) € Ry X Ry. Thus a™ € I1 \ ¢1(I;) and
so a” € I;. Which implies that (a,b)" € I} X Ry. If ¢2(R,) # Ra, then I} is (m, n)-closed and
so the result follows from [1, Theorem 2.12]. O

Theorem 2.13. Let R = Ry X R,, where Ry and R, are two rings and m and n positive integers.
Let ¢; : Z(R;) — Z(R;) U {0} be two functions and ¢ = ¢1 X ¢p. Then I} x I is a -(m,n)-
closed ideal of R that is not (m,n)-closed for proper ideals I of Ry and I, of R, if and only if
either

(i) I, is a ¢1-(m, n)-closed ideal of R that is not (m,n)-closed, b™ € ¢1(1) whenever b™ €
I forb € Ry, and if a™ € I \ ¢1(I1) for some a € Ry, then I, is an (m,n)-closed ideal of
Ry, or

(ii) I is a ¢p-(m, n)-closed ideal of R, that is not (m,n)-closed, a™ € ¢1(I,) whenever a™ €
I for a € Ry, and if b™ € I \ ¢2(12) for some b € Ry, then Iy is an (m,n)-closed ideal of
R.

Proof. Set J = I x I, and suppose that .J is 1)-(m, n)-closed ideal of R that is not (m, n)-closed.
Since J is not an (m, n)-closed ideal of R, either I is a ¢1-(m, n)-closed ideal of Ry that is not
(m,n)-closed or I is a ¢»-(m, n)-closed ideal of R, that is not (m, n)-closed. Assume that I; is
a ¢1-(m,n)-closed ideal of R; that is not (m,n)-closed. Hence I; has a ¢;-(m, n)-unbreakable
element r. Assume that ™ € I, for b € R,. Since r is a ¢;-(m, n)-unbreakable element
of I and (r,b)™ € J, we get that (r,b)™ € (J) = ¢1(L1) X ¢2(I2). Hence b™ € ¢a(ln).
Now suppose that a™ € I \ ¢;(I;) for some a € Ry. Let b € R, such that ™ € I,. Then
(a,0)™ € J\ ¢1(L1) x ¢2(L2). Then (a,b)™ € J and so b € I,. Thus I, is an (m,n)-closed
ideal of R,. Similarly, if I, is a ¢,-(m,n)-closed ideal of R, that is not (m,n)-closed, then
a™ € ¢1(I1) whenever a™ € I, for a € Ry, and if ™ € I \ ¢»(Iz) for some b € Ry, then
I, is an (m,n)-closed ideal of R;. Conversely, without loss of generality assume that I is a
¢1-(m, n)-closed proper ideal of R, that is not (m, n)-closed, b € ¢»(I>) whenever b™ € I, for
b € Ry, andif a™ € I1\ ¢1 (1) for some a € Ry, then I, is a (m, n)-closed ideal of R;. Let r be a
¢1-(m, n)-unbreakable element of ;. Then (r,0) is a 1)-(m, n)-unbreakable element of .J. Thus
J is not an (m, n)-closed ideal of R. Now assume that (a,b)™ € J\ ¥(J) = ¢1(I1) X ¢2(L2)
fora € Ry and b € R. Then b™ € ¢o(lp) and a™ € I \ ¢1({1). Since I is a ¢1-(m, n)-closed
ideal of R; and I is an (m, n) -closed ideal of R, we colclude that (a,b)™ € J. This completes
the proof. O
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Next, we study the ¢-(m, n)-closed ideals in the amalgamation of rings.

Theorem 2.14. Let A and B be two rings, f : A — B be a ring homomorphism and J an ideal
of B. Let ¢ : Z(A) — Z(A) U {0} and ¢ : Z(A >l J) — Z(A <! J) U {0} be two functions
such that
o(P)oaf K if o(P) # 0

0 ifo(P) =10
where P is an ideal of A and K a subideal of J. Then, P <! J is a 1-(m, n)-closed ideal if and

only if P is a ¢-(m, n)-closed ideal and for every ¢-(m,n)-unbreakable element p of P we have
(f(p) +9)™ — f(p)™ € K forall i € J.

wwwﬂ:{

Proof. Suppose that P > J is a 1-(m, n)-closed ideal of A </ J. Let a € A such that a™ €
P\ ¢(P). Then, (a, f(a))™ € P>f J\ (P </ J). Hence, (a, f(a))™ € P >/ J. Therefore,
a™ € P and thus P is a ¢-(m, n)-closed ideal of A. Now, let p be a ¢-(m, n)-unbreakable element
of P such that p™ € ¢(P) and p" ¢ P and assume that (f(p) + i)™ — f(p)™ ¢ K for some i of
J. Then, (p, f(p) +i)™ = (p™, f(p)™ + (f(p) + i)™ — f(p)™) € Pl T\ ¢(P) >/ K since
(f(p)+i)™—f(p)™ ¢ K. Thus, (p, f(p)+i)" € P>/ Jandsop" € P, whichis a contradiction.
Thus, for every ¢-(m, n)-unbreakable element p of P we have (f(p) +¢)™ — f(p)™ € K for all
1€ J.
Conversely, without loss of generality we may assume that ¢(P) # @. Let (a, f(a) +19)™ €
Paf J\ ¢(P) <! K for (a, f(a) + i) € Axf J. Then, a™ € P. Two cases are possible :

Case 1: a™ € ¢(P). Suppose that a” ¢ P, then (a™, (f(a) +i)™) € ¢(P) ¢ K since
(f(a) + i)™ — f(a)™ € K, which is a contradiction. Hence, " € P and thus (a, f(a) 4+ i)™ €
Pt J.

Case 2 : a™ ¢ ¢(P). Then, a™ € P since P is ¢-(m,n)-closed. Hence, (a, f(a) + i)™ €
Pt J.

In both cases we have (a, f(a) + i)™ € P>/ J and so P </ J is a ¢-(m,n)-closed ideal of
Al J.

m

The next corollaries are immediate applications of Theorem 2.14.

Corollary 2.15. Let A and B be two rings, f : A — B be a ring homomorphism and J an ideal of
B. Then, P <! J is a weakly (m, n)-closed ideal if and only if P is a weakly (m, n)-closed ideal
and for every element p of P such that p™ = 0 and p™ ¢ P we have (f(p) +i)™ — f(p)™ =0
forallie J.

Corollary 2.16. Let A be a ring and I an ideal of A. Let ¢ : T(A) — Z(A)U{0} and ¢ : T(A <
I) = Z(Ax I) U {0} be two functions such that

p(P) = K if o(P) # 0
0 ifo(P) =0
where P is an ideal of A and K a subideal of I. Then, P < I is a 1-(m,n)-closed ideal if and

only if P is a ¢-(m, n)-closed ideal and for every ¢-(m,n)-unbreakable element p of P we have
(p+i)™—p™ € K foralli € I

e ={
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