Generalization of (m, n)-closed ideals

Abdelhaq El Khalfi
Communicated by Najib Mahdou

MSC 2010 Classifications: 13A99, 13C13..
Keywords and phrases: amalgamation of rings, (m, n)-closed ideal, $\phi-(m, n)$-closed ideal, prime ideal, trivial ring extension, weakly prime ideal.

Abstract

Let R be a commutative ring with nonzero identity. In this paper, we introduce and investigate a generalization of (m, n)-closed ideals. Let $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ be a function where $\mathcal{I}(R)$ is the set of ideals of R. A proper ideal I of R is said to be a $\phi-(m, n)$-closed ideal if $a^{m} \in I \backslash \phi(I)$ for $a \in R$ implies that $a^{n} \in I$. Moreover, we give some basic properties of this class of ideals and we study the ϕ - (m, n)-closed ideals of the localization of rings, the direct product of rings, the trivial ring extensions and amalgamation of rings.

1 Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero identity and all modules are nonzero unital. If R is a ring, then \sqrt{I} denotes the radical of an ideal I of R, in the sense of [17, page 17]. We denote the set of all ideals (resp. proper ideals) of a ring R by $\mathcal{I}(R)$ (resp. $\mathcal{I}^{*}(R)$).
Anderson and Smith [3], defined a weakly prime ideal as a proper ideal P of R with the property that for $a, b \in R, 0 \neq a b \in P$ implies $a \in P$ or $b \in P$. Then the authors of [6] defined the notion of almost prime ideal, i.e., an ideal $P \in \mathcal{I}^{*}(R)$ with the property that if $a, b \in R, a b \in P \backslash P^{2}$, then either $a \in P$ or $b \in P$. Thus a weakly prime ideal is almost prime and any proper idempotent ideal is also almost prime. Moreover, an ideal P of R is almost prime if and only if P / P^{2} is a weakly prime ideal of R / P^{2}. Anderson and Bataineh in [2], extended these concepts to ϕ-prime ideals. Let $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ be a function. A proper ideal P of R is called ϕ-prime if for $x, y \in R, x y \in P \backslash \phi(P)$ implies $x \in P$ or $y \in P$. In fact, P is a ϕ-prime ideal of R if and only if $P / \phi(P)$ is a weakly prime ideal of $R / \phi(P)$. In 2017, J. Bagheri Harehdashti and H. Fazaeli Moghimi defined the ϕ-radical of an ideal I as the intersection of all ϕ-prime ideals of R containing I and investigated when the set of all ϕ-prime ideals of R has a Zariski topology analogous to that of the prime spectrum. Since $P \backslash \phi(P)=P \backslash(P \cap \phi(P))$, there is no loss of generality in assuming that $\phi(P) \subseteq P$. In [1], Anderson and Badawi introduced and studied the notion of (m, n)-closed ideal. Let m and n be positive integers. A proper ideal of R is said to be a (m, n)-closed ideal if $a^{m} \in I$ for $a \in R$ implies that $a^{n} \in I$. Also, recall from [5] that a proper ideal of R is called a weakly (m, n)-closed ideal if $0 \neq a^{m} \in I$ for $a \in R$ implies that $a^{n} \in I$.
Let A be a ring and E an A-module. Then $A \ltimes E$, the trivial (ring) extension of A by E, is the ring whose additive structure is that of the external direct sum $A \oplus E$ and whose multiplication is defined by $(a, e)(b, f):=(a b, a f+b e)$ for all $a, b \in A$ and all $e, f \in E$. (This construction is also known by other terminology and other notation, such as the idealization $A(+) E$.) The basic properties of trivial ring extensions are summarized in the books [14], [13]. Trivial ring extensions have been studied or generalized extensively, often because of their usefulness in constructing new classes of examples of rings satisfying various properties (cf. [4, 11, 12, 15, 16]).
Let A and B be two rings, let J be an ideal of B and let $f: A \longrightarrow B$ be a ring homomorphism. In this setting, we consider the following subring of $A \times B, A \bowtie^{f} J=\{(a, f(a)+j) \mid a \in A, j \in$ $J\}$, called the amalgamation of A and B along J with respect to f. Moreover, other classical constructions (such as the $A+X B[X], A+X B[[X]]$, and the $D+M$ constructions) can be studied as particular cases of the amalgamation (see [7, Examples 2.5 and 2.6]). A particular case of this construction is the amalgamated duplication of a ring along an ideal I (introduced
and studied by D'Anna and Fontana in [7, 8, 9]). Let A be a ring, and let I be an ideal of A. $A \bowtie I:=\{(a, a+i): a \in A, i \in I\}$ is called the amalgamated duplication of A along the ideal I. See for instance [7, 8, 9, 10].
The purpose of this paper is to introduce and investigate a generalization of (m, n)-closed ideals. Let $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ be a function where $\mathcal{I}(R)$ is the set of ideals of a ring R. A proper ideal I of R is said to be a ϕ - (m, n)-closed ideal if $a^{m} \in I \backslash \phi(I)$ for $a \in R$ implies that $a^{n} \in I$. Moreover, we give some basic properties of this class of ideals and we study the $\phi-(m, n)$-closed ideals of the localization of rings, the direct product of rings, the trivial ring extensions and amalgamation of rings.

2 Main Results

We start this section by the following definition.
Definition 2.1. Let R be a ring, m, n nonzero positive integers and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ be a function. A proper ideal I of R is said to be a $\phi-(m, n)$-closed ideal if $a^{m} \in I \backslash \phi(I)$ for $a \in R$ implies that $a^{n} \in I$.

Remark 2.2. Let R be a ring, m, n nonzero positive integers and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ be a function. Let I be a proper ideal of R. It is easy to see from the definition that if I is a $\phi-(m, n)$-closed ideal of R, then I is $\phi-\left(m, n^{\prime}\right)$-closed for every positive integer $n^{\prime} \geq n$.

We next give some particular examples of $\phi-(m, n)$-closed ideals
Example 2.3. Let R be a ring, I a proper ideal of $R, \phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function and let m, n be nonzero positive integers.
(1) If $\phi(I)=\emptyset$, then I is a $\phi-(m, n)$-closed ideal of R if and only if I is a (m, n)-closed ideal.
(2) If $\phi(I)=0$, then I is a $\phi-(m, n)$-closed ideal of R if and only if I is a weakly (m, n)-closed ideal.
(i) Assume that R is a local ring with maximal ideal M such that $I \cap M^{m} \subseteq \phi(I)$. Then I is a $\phi-(m, n)$-closed ideal of R. Moreover, if $I \neq M$ and $M^{m} \subseteq \phi(I)$, then I is not a ($m, 1$)-closed ideal of R because we have $a^{m} \in \phi(I) \subseteq I$ for some $a \in M \backslash I$.

Definition 2.4. Let R be a ring, m and n positive integers, $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function and I a ϕ - (m, n)-closed ideal of R. Then $a \in R$ is a $\phi-(m, n)$-unbreakable element of I if $a^{m} \in \phi(I)$ and $a^{n} \notin I$.

Remark 2.5. It is clear that a $\phi-(m, n)$-closed ideal I has a $\phi-(m, n)$-unbreakable element if and only if I is not (m, n)-closed.

Lemma 2.6. Let R be a ring, m and n positive integers, $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function, and I a ϕ - (m, n)-closed ideal of R. If a is a $\phi-(m, n)$-unbreakable element of I, then $(a+i)^{m} \in \phi(I)$ for every $i \in I$.

Proof. Let $i \in I$ and a is a ϕ - (m, n)-unbreakable element of I. As $a^{m} \in \phi(I) \subseteq I$, we conclude that

$$
(a+i)^{m}=a^{m}+\sum_{k=1}^{m}\binom{m}{k} a^{m-k} i^{k} \in I
$$

and similarly, $(a+i)^{n} \notin I$ since $a^{n} \notin I$. Thus $(a+i)^{m} \in \phi(I)$ because I is ϕ - (m, n)-closed ideal of R.

Theorem 2.7. Let R be a ring, m and n positive integers, $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\emptyset\}$ a function, and I a ϕ - (m, n)-closed ideal of R. If I is not (m, n)-closed, then $I \subseteq \sqrt{\phi(I)}$.

Proof. As I is a $\phi-(m, n)$-closed ideal of R that is not (m, n)-closed, we get that I has a ϕ (m, n)-unbreakable element a. Thus $a^{m} \in \phi(I)$, and $(a+i)^{m} \in \phi(I)$ for every $i \in I$ by Lemma 2.6. Which implies that $a \in \sqrt{\phi(I)}$ and $a+i \in \sqrt{\phi(I)}$. Hence $i=(a+i)-a \in \sqrt{\phi(I)}$ and thus $I \subseteq \sqrt{\phi(I)}$.

Let S be a multiplicatively closed subset of a ring R. Given a function $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup$ $\{\varnothing\}$, as in [2] we define $\phi_{S}: \mathcal{I}\left(S^{-1} R\right) \rightarrow \mathcal{I}\left(S^{-1} R\right) \cup\{\varnothing\}$ by $\phi_{S}(J)=S^{-1} \phi((J \cap R))$ and $\phi_{S}(J)=\varnothing$ if $\phi(J \cap R)=\varnothing$. Also, let J be an ideal of R, define $\phi_{J}: \mathcal{I}(R / J) \rightarrow \mathcal{I}(R / J) \cup\{\varnothing\}$ by $\phi_{J}(I / J)=(\phi(I)+J) / J$ for $I \supseteq J$ and $\phi(I / J)=\varnothing$ if $\phi(I)=\varnothing$. Then we have the following result.

Proposition 2.8. Let R be a ring, m and n positive integers and $\phi: \mathcal{I}(R) \rightarrow \mathcal{I}(R) \cup\{\varnothing\}$ be a function. Let I be a $\phi-(m, n)$-closed ideal of R.
(1) If J is an ideal R with $J \subseteq I$, then I / J is a $\phi_{J}-(m, n)$-closed ideal of R / J.
(2) Suppose that S is a multiplicatively closed subset of R with $I \cap S=\varnothing$. and $S^{-1} \phi(I) \subseteq$ $\phi_{S}\left(S^{-1} I\right)$. Then $S^{-1} I$ is a $\phi_{S^{-}}(m, n)$-closed ideal of $S^{-1} R$.

Proof. (1) Let $a \in R$ such that $\bar{a}^{m} \in I / J \backslash \phi_{J}(I / J)=I / J \backslash(\phi(I)+J) / J$. Thus $a^{m} \in$ $I \backslash(\phi(I)+J)$. Hence $a^{m} \in I \backslash \phi(I)$, and so $a^{n} \in I$. Therefore $\bar{a}^{n} \in I / J$ and thus I / J is $\phi_{J^{-}}(m, n)$-closed.
(2) Let $\left(\frac{a}{s}\right)^{m} \in S^{-1} I \backslash \phi_{S}\left(S^{-1} I\right)$. Thus $t a^{m} \in I$ for some $t \in S$. But $s a^{m} \notin \phi_{S}\left(S^{-1} I\right) \cap R$ for every $s \in S$. Now let $s a^{m} \in \phi(I)$, then $\left(\frac{a}{s}\right)^{m} \in S^{-1} \phi(I) \subseteq \phi_{S}\left(S^{-1} I\right)$ which gives a contradiction. Hence $(t a)^{m} \in I \backslash \phi(I)$ and so I is a $\phi-(m, n)$-closed ideal gives $t^{n} a^{n} \in I$. Which implies that $\left(\frac{a}{s}\right)^{n} \in S^{-1} I$ and so $S^{-1} I$ is a $\phi_{S^{-}}(m, n)$-closed ideal of $S^{-1} R$..

We next study when certain ideals of $A \ltimes E$ are $\phi-(m, n)$-closed ideals.
Proposition 2.9. Let A be a ring and E an A-module. Let m and n positive integers, $\phi: \mathcal{I}(A) \rightarrow$ $\mathcal{I}(A) \cup\{\emptyset\}$ and $\psi: \mathcal{I}(A \ltimes E) \rightarrow \mathcal{I}(A \ltimes E) \cup\{\emptyset\}$ be two functions such that $\psi(I \ltimes F)=\phi(I) \ltimes F$ and $\psi(I \ltimes F)=\varnothing$ if $\phi(I)=\varnothing$ where F is a submodule of E. Then
(i) If $I \ltimes F$ is a $\psi-(m, n)$-closed ideal of $A \ltimes E$, then I is a $\phi-(m, n)$-closed ideal of A.
(ii) $I \ltimes E$ is a $\psi-(m, n)$-closed ideal of $A \ltimes E$ if and only if I is a $\phi-(m, n)$-closed ideal of A.

Proof. (1) Let $a^{m} \in I \backslash \phi(I)$ for $a \in A$. Hence $(a, 0)^{m}=\left(a^{m}, 0\right) \in I \ltimes F \backslash \phi(I) \ltimes F=\psi(I \ltimes F)$. Thus $(a, 0)^{n} \in I \ltimes F$ since $I \ltimes F$ is $\psi-(m, n)$-closed. Which implies that $a^{n} \in I$ and so I is a $\phi-(m, n)$-closed ideal of A.
(2) By (1), it suffices to prove the "if" assertion. Let $(a, e)^{m} \in I \ltimes E \backslash \phi(I) \ltimes E$. Thus, $a^{m} \in I \backslash \phi(I)$ which implies that $a^{n} \in I$ because I is a $\phi-(m, n)$-closed ideal of A. Therefore $(a, e)^{n}=\left(a^{n}, n a^{n-1} e\right) \in I \ltimes E$ and this completes the proof of (2).

Theorem 2.10. Let A be a ring, E an A-module, m and n positive integers, and $\phi: \mathcal{I}(A) \rightarrow$ $\mathcal{I}(A) \cup\{\emptyset\}$ a function. Let N be a submodule of E and $\psi: \mathcal{I}(A \ltimes E) \rightarrow \mathcal{I}(A \ltimes E) \cup\{\emptyset\}$ be a function defined by:

$$
\psi(H)=\left\{\begin{array}{cl}
\left(\phi\left(I_{H}\right) \ltimes N\right) \cap H & \text { if } \phi\left(I_{H}\right) \neq \emptyset \\
\emptyset & \text { if } \phi\left(I_{H}\right)=\emptyset
\end{array}\right.
$$

where $I_{H}=\{a \in A \mid(a, e) \in H\}$. We consider a submodule F of E. Then
(i) If $I \ltimes F$ is a $\psi-(m, n)$-closed ideal of $A \ltimes E$, then I is a $\phi-(m, n)$-closed ideal of A and $m\left(a^{m-1} F\right) \subseteq(N \cap F)$ for every $\phi-(m, n)$-unbreakable element a of I.
(ii) $I \ltimes E$ is a ψ - (m, n)-closed ideal of $A \ltimes E$ that is not (m, n)-closed if and only if I is a ϕ - (m, n)-closed ideal of A that is not (m, n)-closed and $m\left(a^{m-1} E\right) \subseteq N$ for every ϕ (m, n)-unbreakable element a of I.

Proof. (1) Let $J=I \ltimes F$. Assume that $a^{m} \in I \backslash \phi(I)$ for $a \in A$. Thus $(a, 0)^{m}=\left(a^{m}, 0\right) \in J \backslash$ $\psi(J)$. Hence $(a, 0)^{n}=\left(a^{n}, 0\right) \in J$ and so $a^{n} \in I$. Thus I is a $\phi-(m, n)$-closed ideal of A. Now, let a be a $\phi-(m, n)$-unbreakable element of I and $e \in F$. Then $(a, e)^{m}=\left(a^{m}, m a^{m-1} e\right) \in J$. Since $a^{n} \notin I$, we have $(a, e)^{m}=\left(a^{m}, m a^{m-1} e\right) \in \psi(J)=\phi(I) \ltimes(N \cap F)$. Therefore $m a^{m-1} F \subseteq N \cap F$.
(2) Suppose that $J=I \ltimes E$ is a $\phi-(m, n)$-closed ideal of $A \ltimes E$ that is not (m, n)-closed.

Hence, I has an ϕ - (m, n)-unbreakable element. Thus I is not a (m, n)-closed ideal of A. The rest follows by (1). Conversely, as I is a $\phi-(m, n)$-closed ideal of A that is not (m, n)-closed, I has a $\phi-(m, n)$-unbreakable element a. Then $(a, 0)$ is a ψ - (m, n)-unbreakable element of J. Thus J is not an (m, n)-closed ideal of A. Assume that $(b, f)^{m}=\left(b^{m}, m b^{m-1} f\right) \in J \backslash \psi(J)$. So, $b^{m} \in I$. If b is a ϕ - (m, n)-unbreakable element of I, then the hypothesis gives that $(b, f)^{m} \in$ $\phi(I) \ltimes N=\psi(J)$, a contradiction. Hence $b^{n} \in I$ and thus $\left(b^{n}, n b^{n-1} f\right)=(b, f)^{n} \in J$. Therefore J is a $\psi-(m, n)$-closed ideal of $A \ltimes E$ that is not (m, n)-closed.

Remark 2.11. Assume that A is a reduced ring. Thus, for any function $\psi: \mathcal{I}(A \ltimes E) \rightarrow$ $\mathcal{I}(A \ltimes E) \cup\{\emptyset\}$ and a submodule F of E, the ideal $0 \ltimes F$ is always a $\psi-(m, n)$-closed ideal of $A \ltimes E$ for $n \geq 2$. Indeed. Let $(a, e)^{m} \in 0 \ltimes F \backslash \psi(0 \ltimes F)$ for $(a, e) \in A \ltimes E$. Then $a^{m}=0$ and so $a=0$. Now, the fact that $(0, e)^{n}=(0,0) \in 0 \ltimes F$ implies that $0 \ltimes F$ is ψ - (m, n)-closed.

Now, we study the $\phi-(m, n)$-closed ideals of the direct product of rings.
Proposition 2.12. Let R_{1} and R_{2} be rings, I_{1} a proper ideal of R_{1} and let $\phi_{i}: \mathcal{I}\left(R_{i}\right) \rightarrow \mathcal{I}\left(R_{i}\right) \cup$ $\{\emptyset\}$ be two functions. Let $\psi=\phi_{1} \times \phi_{2}$. Then $I_{1} \times R_{2}$ is a $\psi-(m, n)$-closed ideal of $R_{1} \times R_{2}$ if and only if I_{1} is a $\phi_{1}-(m, n)$-closed ideal of R_{1} which must be (m, n)-closed if $\phi_{2}\left(R_{2}\right) \neq R_{2}$.

Proof. Assume that $I_{1} \times R_{2}$ is a $\psi-(m, n)$-closed ideal of $R_{1} \times R_{2}$. Let $a^{m} \in I_{1} \backslash \phi_{1}\left(I_{1}\right)$ for $a \in R_{1}$. Hence $(a, 0)^{m} \in I_{1} \times R_{2} \backslash \phi_{1}\left(I_{1}\right) \times \phi_{2}\left(R_{2}\right)$ which gives that $(a, 0)^{n} \in I_{1} \times R_{2}$. Therefore, $a^{n} \in I_{1}$ and thus I_{1} is $\phi_{1}-(m, n)$-cloded. Now, suppose that $\phi_{2}\left(R_{2}\right) \neq R_{2}$. If I_{1} is not (m, n)-closed, then I_{1} has a $\phi_{1}-(m, n)$-unbreakable element a. Hence, $(a, 1)^{m} \in I_{1} \times$ $R_{2} \backslash \psi\left(I_{1} \times R_{2}\right)=\phi_{1}\left(I_{1}\right) \times \phi_{2}\left(R_{2}\right)$ and $(a, 1)^{n} \notin I_{1} \times R_{2}$, a contradiction. Thus I_{1} is a (m, n)-closed ideal of R_{1}. Conversely, assume that I_{1} is $\phi_{1}-(m, n)$-closed and $\phi_{2}\left(R_{2}\right)=R_{2}$. Let $(a, b)^{m} \in I_{1} \times R_{2} \backslash \psi\left(I_{1} \times R_{2}\right)=\phi_{1}\left(I_{1}\right) \times R_{2}$ for $(a, b) \in R_{1} \times R_{2}$. Thus $a^{m} \in I_{1} \backslash \phi_{1}\left(I_{1}\right)$ and so $a^{n} \in I_{1}$. Which implies that $(a, b)^{n} \in I_{1} \times R_{2}$. If $\phi_{2}\left(R_{2}\right) \neq R_{2}$, then I_{1} is (m, n)-closed and so the result follows from [1, Theorem 2.12].

Theorem 2.13. Let $R=R_{1} \times R_{2}$, where R_{1} and R_{2} are two rings and m and n positive integers. Let $\phi_{i}: \mathcal{I}\left(R_{i}\right) \rightarrow \mathcal{I}\left(R_{i}\right) \cup\{\emptyset\}$ be two functions and $\psi=\phi_{1} \times \phi_{2}$. Then $I_{1} \times I_{2}$ is a $\psi-(m, n)$ closed ideal of R that is not (m, n)-closed for proper ideals I_{1} of R_{1} and I_{2} of R_{2} if and only if either
(i) I_{1} is a $\phi_{1}-(m, n)$-closed ideal of R_{1} that is not (m, n)-closed, $b^{m} \in \phi_{2}\left(I_{2}\right)$ whenever $b^{m} \in$ I_{2} for $b \in R_{2}$, and if $a^{m} \in I_{1} \backslash \phi_{1}\left(I_{1}\right)$ for some $a \in R_{1}$, then I_{2} is an (m, n)-closed ideal of R_{2}, or
(ii) I_{2} is a $\phi_{2}-(m, n)$-closed ideal of R_{2} that is not (m, n)-closed, $a^{m} \in \phi_{1}\left(I_{1}\right)$ whenever $a^{m} \in$ I_{1} for $a \in R_{1}$, and if $b^{m} \in I_{2} \backslash \phi_{2}\left(I_{2}\right)$ for some $b \in R_{2}$, then I_{1} is an (m, n)-closed ideal of R_{1}.

Proof. Set $J=I_{1} \times I_{2}$ and suppose that J is ψ - (m, n)-closed ideal of R that is not (m, n)-closed. Since J is not an (m, n)-closed ideal of R, either I_{1} is a $\phi_{1}-(m, n)$-closed ideal of R_{1} that is not (m, n)-closed or I_{2} is a $\phi_{2}-(m, n)$-closed ideal of R_{2} that is not (m, n)-closed. Assume that I_{1} is a $\phi_{1}-(m, n)$-closed ideal of R_{1} that is not (m, n)-closed. Hence I_{1} has a $\phi_{1^{-}}(m, n)$-unbreakable element r. Assume that $b^{m} \in I_{2}$ for $b \in R_{2}$. Since r is a $\phi_{1}-(m, n)$-unbreakable element of I_{1} and $(r, b)^{m} \in J$, we get that $(r, b)^{m} \in \psi(J)=\phi_{1}\left(I_{1}\right) \times \phi_{2}\left(I_{2}\right)$. Hence $b^{m} \in \phi_{2}\left(I_{2}\right)$. Now suppose that $a^{m} \in I_{1} \backslash \phi_{1}\left(I_{1}\right)$ for some $a \in R_{1}$. Let $b \in R_{2}$ such that $b^{m} \in I_{2}$. Then $(a, b)^{m} \in J \backslash \phi_{1}\left(I_{1}\right) \times \phi_{2}\left(I_{2}\right)$. Then $(a, b)^{n} \in J$ and so $b^{n} \in I_{2}$. Thus I_{2} is an (m, n)-closed ideal of R_{2}. Similarly, if I_{2} is a $\phi_{2}-(m, n)$-closed ideal of R_{2} that is not (m, n)-closed, then $a^{m} \in \phi_{1}\left(I_{1}\right)$ whenever $a^{m} \in I_{1}$ for $a \in R_{1}$, and if $b^{m} \in I_{2} \backslash \phi_{2}\left(I_{2}\right)$ for some $b \in R_{2}$, then I_{1} is an (m, n)-closed ideal of R_{1}. Conversely, without loss of generality assume that I_{1} is a $\phi_{1}-(m, n)$-closed proper ideal of R_{1} that is not (m, n)-closed, $b^{m} \in \phi_{2}\left(I_{2}\right)$ whenever $b^{m} \in I_{2}$ for $b \in R_{2}$, and if $a^{m} \in I_{1} \backslash \phi_{1}\left(I_{1}\right)$ for some $a \in R_{1}$, then I_{2} is a (m, n)-closed ideal of R_{2}. Let r be a $\phi_{1}-(m, n)$-unbreakable element of I_{1}. Then $(r, 0)$ is a $\psi-(m, n)$-unbreakable element of J. Thus J is not an (m, n)-closed ideal of R. Now assume that $(a, b)^{m} \in J \backslash \psi(J)=\phi_{1}\left(I_{1}\right) \times \phi_{2}\left(I_{2}\right)$ for $a \in R_{1}$ and $b \in R_{2}$. Then $b^{m} \in \phi_{2}\left(I_{2}\right)$ and $a^{m} \in I_{1} \backslash \phi_{1}\left(I_{1}\right)$. Since I_{1} is a $\phi_{1}-(m, n)$-closed ideal of R_{1} and I_{2} is an (m, n)-closed ideal of R_{2}, we colclude that $(a, b)^{n} \in J$. This completes the proof.

Next, we study the $\phi-(m, n)$-closed ideals in the amalgamation of rings.
Theorem 2.14. Let A and B be two rings, $f: A \rightarrow B$ be a ring homomorphism and J an ideal of B. Let $\phi: \mathcal{I}(A) \rightarrow \mathcal{I}(A) \cup\{\emptyset\}$ and $\psi: \mathcal{I}\left(A \bowtie^{f} J\right) \rightarrow \mathcal{I}\left(A \bowtie^{f} J\right) \cup\{\emptyset\}$ be two functions such that

$$
\psi\left(P \bowtie^{f} J\right)=\left\{\begin{array}{cc}
\phi(P) \bowtie^{f} K & \text { if } \phi(P) \neq \emptyset \\
\emptyset & \text { if } \phi(P)=\emptyset
\end{array}\right.
$$

where P is an ideal of A and K a subideal of J. Then, $P \bowtie^{f} J$ is a $\psi-(m, n)$-closed ideal if and only if P is a $\phi-(m, n)$-closed ideal and for every $\phi-(m, n)$-unbreakable element p of P we have $(f(p)+i)^{m}-f(p)^{m} \in K$ for all $i \in J$.

Proof. Suppose that $P \bowtie^{f} J$ is a $\psi-(m, n)$-closed ideal of $A \bowtie^{f} J$. Let $a \in A$ such that $a^{m} \in$ $P \backslash \phi(P)$. Then, $(a, f(a))^{m} \in P \bowtie^{f} J \backslash \psi\left(P \bowtie^{f} J\right)$. Hence, $(a, f(a))^{n} \in P \bowtie^{f} J$. Therefore, $a^{n} \in P$ and thus P is a $\phi-(m, n)$-closed ideal of A. Now, let p be a $\phi-(m, n)$-unbreakable element of P such that $p^{m} \in \phi(P)$ and $p^{n} \notin P$ and assume that $(f(p)+i)^{m}-f(p)^{m} \notin K$ for some i of J. Then, $(p, f(p)+i)^{m}=\left(p^{m}, f(p)^{m}+(f(p)+i)^{m}-f(p)^{m}\right) \in P \bowtie^{f} J \backslash \phi(P) \bowtie^{f} K$ since $(f(p)+i)^{m}-f(p)^{m} \notin K$. Thus, $(p, f(p)+i)^{n} \in P \bowtie^{f} J$ and so $p^{n} \in P$, which is a contradiction. Thus, for every ϕ - (m, n)-unbreakable element p of P we have $(f(p)+i)^{m}-f(p)^{m} \in K$ for all $i \in J$.
Conversely, without loss of generality we may assume that $\phi(P) \neq \varnothing$. Let $(a, f(a)+i)^{m} \in$ $P \bowtie^{f} J \backslash \phi(P) \bowtie^{f} K$ for $(a, f(a)+i) \in A \bowtie^{f} J$. Then, $a^{m} \in P$. Two cases are possible :

Case $1: a^{m} \in \phi(P)$. Suppose that $a^{n} \notin P$, then $\left(a^{m},(f(a)+i)^{m}\right) \in \phi(P) \bowtie^{f} K$ since $(f(a)+i)^{m}-f(a)^{m} \in K$, which is a contradiction. Hence, $a^{n} \in P$ and thus $(a, f(a)+i)^{n} \in$ $P \bowtie^{f} J$.

Case 2: $a^{m} \notin \phi(P)$. Then, $a^{n} \in P$ since P is ϕ - (m, n)-closed. Hence, $(a, f(a)+i)^{n} \in$ $P \bowtie^{f} J$.

In both cases we have $(a, f(a)+i)^{n} \in P \bowtie^{f} J$ and so $P \bowtie^{f} J$ is a $\psi-(m, n)$-closed ideal of $A \bowtie^{f} J$.

The next corollaries are immediate applications of Theorem 2.14.
Corollary 2.15. Let A and B be two rings, $f: A \rightarrow B$ be a ring homomorphism and J an ideal of B. Then, $P \bowtie^{f} J$ is a weakly (m, n)-closed ideal if and only if P is a weakly (m, n)-closed ideal and for every element p of P such that $p^{m}=0$ and $p^{n} \notin P$ we have $(f(p)+i)^{m}-f(p)^{m}=0$ for all $i \in J$.

Corollary 2.16. Let A be a ring and I an ideal of A. Let $\phi: \mathcal{I}(A) \rightarrow \mathcal{I}(A) \cup\{\emptyset\}$ and $\psi: \mathcal{I}(A \bowtie$ $I) \rightarrow \mathcal{I}(A \bowtie I) \cup\{\emptyset\}$ be two functions such that

$$
\psi(P \bowtie I)=\left\{\begin{array}{cl}
\phi(P) \bowtie K & \text { if } \phi(P) \neq \emptyset \\
\emptyset & \text { if } \phi(P)=\emptyset
\end{array}\right.
$$

where P is an ideal of A and K a subideal of I. Then, $P \bowtie I$ is a $\psi-(m, n)$-closed ideal if and only if P is a ϕ - (m, n)-closed ideal and for every $\phi-(m, n)$-unbreakable element p of P we have $(p+i)^{m}-p^{m} \in K$ for all $i \in I$.

References

[1] D. D. Anderson and A. Badawi, On (m, n)-closed ideals of commutative rings, J. Algebra Appl. 16 (2017), no. 1, 1750013, 21 pp.
[2] D. D. Anderson and M. Bataineh, Generalization of prime ideals, Comm. Algebra 36 (2008), no. 2, 686696.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29 (2003), no. 4, 831-840.
[4] D. D. Anderson and M. Winders, Idealization of a module, J. Commut. Algebra 1 (2009), no. 1, 3-56.
[5] D. F. Anderson, A. Badawi, and B. Fahid, Weakly (m, n)-closed ideals and (m, n)-Von Neumann regular rings, J. Korean Math. Soc. 55 (2018), No. 5, pp. 1031-1043.
[6] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra 33 (2005), no. 1, 43-49.
[7] M. D'Anna, C. Finocchiaro and M. Fontana, Amalgamated algebras along an ideal, in: M. Fontana, S. Kabbaj, B. Olberding, I. Swanson (eds.), Commutative Algebra and its Applications, Walter de Gruyter, Berlin, (2009), 155-172.
[8] M. D'Anna, C. A. Finocchiaro and M. Fontana, New algebraic properties of an amalgamated algebra along an ideal, Comm. Algebra, 44 (2016), 1836-1851.
[9] M. D'Anna, C. A. Finocchiaro and M. Fontana, Properties of chains of prime ideals in amalgamated algebras along an ideal, J. Pure Appl. Algebra 214 (2010), 1633-1641.
[10] M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6 (2007), 443-459.
[11] D.E Dobbs, A. Elkhalfi and N. Mahdou, Trivial extensions satisfying certain valuation-like properties, Comm. Algebra 47(5) (2019), 2060-2077.
[12] T. Dumitrescu, N. Mahdou and Y. Zahir, Radical factorization for trivial extension and amalgamated duplication rings, J. Algebra Appl., to appear.
[13] S. Glaz, Commutative Coherent Rings, Lecture Notes in Math. 1371, Springer-Verlag, Berlin, 1989.
[14] J. A. Huckaba, Commutative Rings with Zero Divisors, Dekker, New York, 1988.
[15] S. Kabbaj, Matlis' semi-regularity and semi-coherence in trivial ring extensions : a survey, Moroccan Journal of Algebra and Geometry with Applications (MJAGA), In Press.
[16] S. Kabbaj and N. Mahdou, Trivial extensions defined by coherent-like conditions, Comm. Algebra 32 (2004), no. 10, 3937-3953.
[17] I. Kaplansky, Commutative Rings, rev. ed., Univ. Chicago Press, Chicago, 1974.

Author information

Abdelhaq El Khalfi, Laboratory of Topology, Algebra, Geometry and Discrete Mathematics, Faculty of Sciences Ain Chock, Hassan II University of Casablanc, Morocco.
E-mail: abdelhaqelkhalfi@gmail.com
Received: April 6, 2021
Accepted: May 31, 2021

