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Abstract In this paper, we prove the existence and uniqueness of positive solutions of a
fractional integro-differential equation involving Caputo-Hadamard fractional derivative with
integral boundary conditions. The technique used to prove our results depends on the upper
and lower solution, the Schauder fixed point theorem and the Banach contraction principle. An
example is given which illustrate the effectiveness of the theoretical results.

1 Introduction

Fractional differential equations with and without delay arise from a variety of applications in-
cluding in various fields of science and engineering such as applied sciences, practical problems
concerning mechanics, the engineering technique fields, economy, control systems, physics,
chemistry, biology, medicine, atomic energy, information theory, harmonic oscillator, nonlinear
oscillations, conservative systems, stability and instability of geodesic on Riemannian manifolds,
dynamics in Hamiltonian systems, etc. In particular, problems concerning qualitative analysis
of linear and nonlinear fractional differential equations with and without delay have received the
attention of many authors, see [1]–[19], [21]–[28] and the references therein.

Recently, Zhang in [28] investigated the existence and uniqueness of positive solutions for
the nonlinear fractional differential equation{

Dαx(t) = f (t, x (t)) , 0 < t ≤ 1,
x(0) = 0,

where Dα is the standard Riemann Liouville fractional derivative of order 0 < α < 1, and
f : [0, 1]×[0,∞)→ [0,∞) is a given continuous function. By using the method of the upper and
lower solution and cone fixed-point theorem, the author obtained the existence and uniqueness
of a positive solution.

The nonlinear fractional integro-differential equation with nonlinear conditions{
CDαu(t) = f (t, u (t)) +

∫ t
0 k (t, s, u (s)) ds, t ∈ (0, T ] ,

u(0) = u0 − g (u) ,

was investigated in [5], where CDα is the standard Caputo fractional derivative of order 0 <
α < 1, u0 ∈ R, g, f and k are given continuous functions. By employing the Krasnoselskii and
Banach fixed point theorems, Ahmad and Sivasundaram obtained the existence and uniqueness
results.

Wang, Wang and Zeng [25] discussed the existence of solutions of the following fractional
differential equation with integral boundary conditions{

Dαu(t) = f (t, u (t)) , t ∈ (0, T ] ,
u(0) = λ

∫ 1
0 u (s) ds+ d,



168 Adel Lachouri1 and Nesrine Gouri2

where 0 < α < 1, λ ≥ 0, f : [0;T ] ×R→ R is continuous. The authors applied the upper and
lower solutions combined with a monotone iterative technique to obtain their main results.

In [1], Abdo, Wahash and Panchal discussed the existence and uniqueness of positive solu-
tions of the following nonlinear fractional differential equation with integral boundary conditions{

CDαu(t) = f (t, u (t)) , t ∈ [0, 1] ,
u(0) = λ

∫ 1
0 u (s) ds+ d, λ ≥ 0, d > 0,

where 0 < α < 1 and f : [0, 1] × [0,∞) → [0,∞) is a given continuous function. By using
the method of the upper and lower solutions and Schauder and Banach fixed point theorems, the
existence and uniqueness of solutions has been established.

Inspired and motivated by the works mentioned above. In this paper, we used the upper
and lower solution method, Schauder fixed point theorem and Banach contraction principle to
obtain the existence and uniqueness of a positive solution for the following fractional differential
equations with integral boundary conditions{

C
HD

αu(t) = f (t, u (t)) +H Iβg(t, u(t)), t ∈ (1, T ] ,
u(1) = λ

∫ T
1 k(s)u (s) ds+ d, λ ≥ 0, d > 0,

(1.1)

where C
HD

α is the Caputo Hadamard fractional derivative of order 0 < α ≤ 1, and HIβ is the
Hadamard fractional integral of order β ∈ (0, 1), f : [1, T ] × [0,∞) → [0,∞), g : [1, T ] ×
[0,∞)→ [0,∞) and k : [1, T ]→ [0,∞) are given continuous functions. g is non-decreasing on
u.

The organization of the rest of the paper divided of four sections. In Section 2, some no-
tations, definitions of fractional calculus and fixed point theorems are presented. In Section 3,
Some useful results about the existence and uniqueness of positive solution for problem (1.1)
are obtained. In Section 4, An example is presented which illustrates the effectiveness of the
theoretical results.

2 Preliminaries

Some definitions, notations and results of the fractional calculus are introduced throughout this
section which will be utilized in this paper. For more details we refer the reader to see [13, 19].

Let J = [1, T ]. Denote by C (J) the Banach space of all continuous functions defined on J
endowed with the norm

‖u‖ = sup {|u (t)| : t ∈ J} .

And A a nonempty closed subset of C (J) defined as

A = {u(t) ∈ C (J) : u(t) ≥ 0, t ∈ J} .

Cn (J) denotes the class of all real valued functions defined on J which have a continuous n th
order derivative.

Definition 2.1. [13] The Hadamard fractional integral of order α > 0 for a continuous function
u : [1,∞)→ R is defined as

HIαu (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

u (s)
ds

s
, α > 0.

where Γ denotes the Gamma function.

Definition 2.2. [11] The Caputo-Hadamard fractional derivative of order α > 0 for a function
u : [1,∞)→ R is defined as

C
HD

αu (t) =
1

Γ (n− α)

∫ t

1

(
log

t

s

)n−a−1

δnu (s)
ds

s
, n− 1 < α < n,

where δn =
(
t ddt
)n
, n ∈ N.
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Lemma 2.3. [11] Let n − 1 < α ≤ n, n ∈ N and u ∈ Cn (J). Then the Caputo-Hadamard
fractional differential equation

C
HD

αu (t) = 0,

has a solution

u (t) =
n−1∑
k=0

ck (log t)k ,

and the following formula holds:

HIα
(
C
HD

αu (t)
)
= u (t)−

n−1∑
k=0

ck (log t)k ,

where ck ∈ R, k = 0, 1, ..., n− 1.

Theorem 2.4. (Schauder’s fixed point theorem [20]) Let Ω be a nonempty closed convex subset
of a Banach space S and Φ : Ω → Ω be a continuous compact operator. Then, Φ has a fixed
point in Ω.

Theorem 2.5. (Banach contraction principle [20]) Let Ω be a non-empty closed subset of a
Banach space (S, ‖.‖), then any contraction mapping Φ of Ω into itself has a unique fixed point.

Definition 2.6. A function u ∈ C1 (J) is said to be a solution of problem (1.1) if u satisfies
the equation C

HD
αu(t) = f (t, u (t)) +H Iβg(t, u(t)) , t ∈ J with integral boundary conditions

u(1) = λ
∫ T

1 k (s)u (s) ds+ d.

Definition 2.7. A function u ∈ C1 (J) is called a positive solution of problem (1.1) if u(t) ≥ 0
for all t ∈ J and u satisfies the problem (1.1).

Definition 2.8. Let a, b ∈ R+, and b > a: For any u ∈ [a, b], we define the upper-control function
U(t, u) = supa≤ρ≤u f(t, ρ), and lower-control function L(t, u) =infu≤ρ≤b f(t, ρ).

Obviously, U(t, u) and L(t, u) are monotonous non-decreasing on [a, b] and

L(t, u) ≤ f(t, u) ≤ U(t, u).

3 Main Results

In this section, we shall give existence and uniqueness results of problem (1.1) and prove it.
Before starting and proving the main result, we introduce the following lemma:

Lemma 3.1. Let u ∈ C (J), u′ exists, then u is a solution of problem (1.1) if and only if u is a
solution of the integral equation

u(t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f(s, u(s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

g(s, u(s))
ds

s

+λ

∫ T

1
k (s)u (s) ds+ d, t ∈ J. (3.1)

Proof. Suppose u (t) satisfies the problem (1.1), then applying the Hadamard fractional integral
HIα to both sides of (4.1), we have

HIα C
HD

αu(t) =H Iα
(
f (t, u (t)) +H Iβg(t, u(t))

)
,

In view of Lemma (2.3), we get

u(t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f(s, u(s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

g(s, u(s))
ds

s
+ c0.

(3.2)
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Using the integral condition, we find

c0 = λ

∫ T

1
k (s)u (s) ds+ d.

Substituting the value of c0 into (3.2), we obtain the integral equation (3.1). The converse is
followed by a direct computation that finishes the proof.

To transform (3.1) to be applicable to Schauder’s fixed point, we define the operator Φ : A→
A by

(Φu) (t) =
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

f(s, u(s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

g(s, u(s))
ds

s

+λ

∫ T

1
k (s)u (s) ds+ d, t ∈ J. (3.3)

where figured fixed point must satisfy the identity operator equation Φu = u.
We introduce the following assumptions
(H1) Let u∗, u∗ ∈ A such that a ≤ u∗ (t) ≤ u∗ (t) ≤ b and{

C
HD

αu∗(t)−H Iβg(t, u∗(t)) ≥ U (t, u∗ (t)) ,
C
HD

αu∗(t)−H Iβg(t, u∗(t)) ≤ L (t, u∗ (t)) ,

for any t ∈ J.
(H2) For t ∈ J , and u, v ∈ [0,∞), there exist two positives number lf and lg such that

|f(t, u)− f(t, v)| ≤ lf |u− v| ,
|g(s, u)− g(s, v)| ≤ lg |u− v| .

The function u∗and u∗ are respectively called the pair of upper and lower solutions for problem
(1.1).

The first result is based on the Schauder fixed point theorem.

Theorem 3.2. Assume that (H1) is satisfied, then problem(1.1) has at least one positive solution.

Proof. Let Ω = {u ∈ A : u∗(t) ≤ u(t) ≤ u∗(t), t ∈ J} endowed with the norm ‖u‖ = maxt∈J |u(t)| ,
then we have ‖u‖ ≤ b. Hence, Ω is convex bounded and closed subset of the Banach space
C (J) . Notice that continuity of the operator Φ follows from that of the functions f and g. Now,
if u ∈ Ω, there exist two positives constants cf , cg such that

max {f (t, u(t)) : t ∈ J, u(t) ≤ b} < cf ,

max {g (t, u(t)) : t ∈ J, u(t) ≤ b} < cg,

Then

|(Φu) (t)|

≤ 1
Γ (α)

∫ t

1

(
log

t

s

)α−1

|f(s, u(s))| ds
s

+
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u(s))| ds
s

+ λ

∫ T

1
k (s) |u (s)| ds+ d

≤ cf (logT )α

Γ(α+ 1)
+
cg (logT )α+β

Γ(α+ β + 1)
+ λbk∗ (T − 1) + d,

where k∗ = supt∈J k (t), thus

‖Φu‖ ≤ cf (logT )α

Γ(α+ 1)
+
cg (logT )α+β

Γ(α+ β + 1)
+ λbk∗ (T − 1) + d.
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Hence, Φ (Ω) is uniformly bounded. Next, we prove the equicontinuity of Φ (Ω) . For each
u ∈ Ω. Then for t1, t2 ∈ [1, T ] with t1 < t2, we have

|Φu(t2)−Φu(t1)| ≤
1

Γ(α)

∫ t1

1

[
(log

t1
s
)α−1 − (log

t2
s
)α−1

]
|f(s, u(s))| ds

s

+
1

Γ(α)

∫ t2

t1

(log
t2
s
)α−1 |f(s, u(s))| ds

s

+
1

Γ (α+ β)

∫ t1

1

[(
log

t2
s

)α+β−1

−
(

log
t1
s

)α+β−1
]
|g(s, u(s))| ds

s

+
1

Γ(α)

∫ t2

t1

(
log

t2
s

)α+β−1

|g(s, u(s))| ds
s

≤ cf
Γ(α+ 1)

[
2(log

t2
t1
)α + (log t1)α − (log t2)α

]
+

cg
Γ(α+ β + 1)

[
(log t2)α+β − (log t1)α+β

]
≤ 2cf

Γ(α+ 1)
(log

t2
t1
)α +

cg
Γ(α+ 2)

(
(log t2)α+β − (log t1)α+β

)
.

As t1 → t2. We see that the right hand side of the above inequality tends to zero and the
convergence is independent of u in Ω, which means Φ (Ω) is equicontinuous. The Arzela-Ascoli
Theorem implies that Φ : Ω→ A is compact. The only thing to apply Schauder fixed point is to
prove that Φ (Ω) ⊂ Ω. For any u ∈ Ω, then u∗(t) ≤ u(t) ≤ u∗(t) and by (H1), we have

(Φu) (t)

=
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f(s, u(s))| ds
s

+
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u(s))| ds
s

+ λ

∫ T

1
k (s)u (s) ds+ d

≤ 1
Γ(α)

∫ t

1

(
log

t

s

)α−1

U(s, u(s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u(s))| ds
s

+ λ

∫ T

1
k (s)u (s) ds+ d

≤ 1
Γ(α)

∫ t

1

(
log

t

s

)α−1

U(s, u∗ (s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u∗ (s))|
ds

s

+ λ

∫ T

1
k (s)u∗ (s) ds+ d

≤ u∗(t),
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and

(Φu) (t)

=
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f(s, u(s))| ds
s

+
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u(s))| ds
s

+ λ

∫ T

1
k (s)u (s) ds+ d

≥ 1
Γ(α)

∫ t

1

(
log

t

s

)α−1

L(s, u(s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u(s))| ds
s

+ λ

∫ T

1
k (s)u (s) ds+ d

≥ 1
Γ(α)

∫ t

1

(
log

t

s

)α−1

L(s, u∗(s))
ds

s
+

1
Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u∗(s))|
ds

s

+ λ

∫ T

1
k (s)u∗ (s) ds+ d

≥ u∗(t).

Hence, u∗(t) ≤ (Φu) (t) ≤ u∗(t), t ∈ J, that is , Φ (Ω) ⊂ Ω. According to Schauder fixed point
theorem, the operator Φ has at least one fixed point u ∈ Ω.Therefore, problem (1.1) has at least
one positive solution.

The second result is based on the Banach contraction principle.

Theorem 3.3. Assume that (H2) is satisfied and(
lf (logT )α

Γ(α+ 1)
+
lg (logT )α+β

Γ(α+ β + 1)
+ λk∗ (T − 1)

)
< 1. (3.4)

Then problem (1.1) has a unique positive solution.

Proof. From Theorem (3.2), it follows that problem (1.1) has at least one positive solution.
Hence, we need only to prove that the operator defined in (3.3) is a contraction in Ω. In fact, for
each u, v ∈ Ω, we have

|(Φu) (t)− (Φv) (t)| ≤
1

Γ (α)

∫ t

1

(
log

t

s

)α−1

|f(s, u(s))− f(s, v(s))| ds
s

+
1

Γ (α+ β)

∫ t

1

(
log

t

s

)α+β−1

|g(s, u(s))− g(s, v(s))| ds
s

+ λk∗
∫ T

1
|u (s)− v (s)| ds

≤

(
lf (logT )α

Γ(α+ 1)
+
lg (logT )α+β

Γ(α+ β + 1)
+ λk∗ (T − 1)

)
‖u− v‖ .

From (3.4), Φ is a contraction. As a result of Theorem 2.5, Φ has a unique fixed point that is the
corresponding unique positive solution of the problem (1.1). This finishes the proof.

4 Example

As an application of our result, we consider the following fractional integro-differential equation
with integral boundary condition{

C
HD

1
2u(t) = sin(t)

exp(t2−1)+7

(
|u|
|u|+1

)
+ 1

4I
1
4

u(t)
exp(t−1) , t ∈ (1, e] ,

u (1) = 1
6

∫ e
1

1
tu (s) ds+

1
10 .

(4.1)
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Where α = 1
2 , β = 1

4 , λ = 1
6 , d = 1

10 , f(t, u) = sin(t)
exp(t2−1)+7

(
|u|
|u|+1

)
, g(t, u) = u

4 exp(t−1) and

k (t) = 1
t .

Since f , g and k are continuous positive functions, g is non-decreasing on u. For u, v ∈
[0,∞), we have

|f(t, u)− f(t, v)| =
∣∣∣∣ sin (t)
exp (t2 − 1) + 7

(
|u|
|u|+ 1

− |v|
|v|+ 1

)∣∣∣∣
≤ 1

exp (t2 − 1) + 7

(
|u− v|

(1 + |u|) (1 + |v|)

)
≤ 1

8
|u− v| ,

and

|g(t, u)− g(t, v)| =
1

4 exp (t− 1)
|u− v|

≤ 1
4
|u− v| .

Thus, the assumption (H2) is satisfied with lf = 1
8 , and lg = 1

4 . We will check that condition
(3.4) is satisfied. Indeed

lf (logT )α

Γ(α+ 1)
+
lg (logT )α+β

Γ(α+ β + 1)
+ λk∗ (T − 1)

' 0.7 < 1.

Then by Theorem (3.3), the problem (4.1) has a unique positive solution.
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