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Abstract LetG be an abelian group and S a given multiplicatively closed subset of a commu-
tative G-graded ring consisting of homogeneous elements. In this paper, we introduce G-graded
S-Artinian rings and modules which are a generalization of S-Artinian rings and modules. We
list some properties and characterizations of G-graded S-Artinian rings and modules. We also
introduce and study the concept ofG-graded S-secondary representable modules as a generaliza-
tion of graded secondary representable modules. Moreover, we prove the existence of G-graded
S-secondary representation in G-graded S-Artinian modules, which generalizes a well-known
theory of secondary representation for the Artinian modules.

1 Introduction

The theory of rings and modules satisfying chain conditions was introduced in the celebrated
works of E. Noether and E. Artin [4, 15], which played an important role in the development
of the structure theory of commutative rings. Recall that a module over a ring is called an Ar-
tinian (resp., Noetherian) module if it satisfies descending (resp., ascending) chain condition on
submodules, and a commutative ring is called an Artinian (resp., Noetherian) ring if it is an Ar-
tinian (resp., Noetherian) module over itself. Both the concepts are named for E. Artin (resp., E.
Noether), which have been widely studied by many authors (see [5], [12], [13] and [20], for ex-
ample), and hence it is one of the central subjects in the study of ring and module theory. Several
authors have generalized these notions (see [1], [6], [9], [16] and [19], for example). As one of
their crucial generalizations, many authors have studied graded Artinian and Noetherian mod-
ules (see [14], [17], [18] and [20]). Anderson and Dumitrescu [1] introduced S-Noetherian rings
as a generalization of Noetherian rings and transferred many results. Let A be a commutative
ring with identity and S a multiplicatively closed subset of A. Then A is called S-Noetherian
if for any ideal I of A, there exist an s ∈ S and a finitely generated ideal J of A such that
sI ⊆ J ⊆ I . Later, as a generalization of the Artinian rings and modules, the S-Artinian rings
and modules have been introduced and studied beautifully by Tekir et al. in [16] and [19]. An
A-module M is called S-Artinian if for each descending chain {Nn}n∈N of submodules of M ,
there exist an s ∈ S and an index j ≥ 1 such that sNj ⊆ Ni for every i ≥ j. A commutative
ring A is called S-Artinian if it is an S-Artinian module over itself, [16, 19]. They have extended
many results on Artinian rings and modules to S-Artinian rings and modules. Moreover, several
characterizations of S-Artinian modules are given in [16]. Recently, S-version of many special
rings and modules has received some attention; see, for example, [1, 2, 6, 11, 16] and [19].

The theory of secondary representation has a history extending over more than fifty years.
Macdonald [13] began the study of secondary representation for the Artinian modules and sev-
eral authors have generalized this concept (see, [7], [8], [20] and [21], for example). This theory
provides a useful tool for studying Artinian and injective modules. A nonzero A-module M
is called secondary if for every a ∈ A, aM = M or anM = 0 for some integer n ≥ 1.
An A-module M is called secondary representable (or representable) if it is a finite sum of sec-
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ondary modules, [13]. Later, Sharp [20] introduced the concepts of graded secondary and graded
secondary representable modules as a generalization of secondary and secondary representable
modules to the graded case and used them as a tool for the study of asymptotic behavior of
certain sets of attached prime ideals. Many authors have studied the graded secondary represen-
tations for the graded modules; see [7, 8, 20]. For example, graded secondary representations
for graded injective and graded Artinian modules have been discussed in [7] and [20].

This paper discusses two objectives. Section 3 discusses the first objective of the paper
which is devoted to extending the concepts of S-Artinian rings and modules to the graded case.
We introduce the concepts of G-graded S-Artinian rings and modules as a generalization of S-
Artinian rings and modules. Let G be an abelian group, A a commutative G-graded ring and
S a multiplicatively closed subset of A consisting of homogeneous elements. We say that a G-
graded A-module M is G-graded S-Artinian if for each descending chain {Nn}n∈N of graded
submodules of M , there exist an s ∈ S and an index j ≥ 1 such that sNj ⊆ Ni for every i ≥ j.
We show by Example 3.7 that this generalization is proper. We list a number of properties and
characterizations of G-graded S-Artinian rings and modules. In particular, we characterize G-
graded S-Artinian modules via graded S-MIN condition (Theorem 3.23). Also for study of the
G-graded S-Artinian rings and modules deeply, we need S-versions of G-prime and G-maximal
ideals. In [11], A. Hamed introduced the notion of S-prime ideals as a generalization of prime
ideals and studied many properties of this class of ideals in S-Noetherian rings. We introduce
and study the S-G-prime ideals as a generalization of the S-prime ideals to the graded case.
Motivated by this, we also introduce and study the S-G-maximal ideals as a generalization of
the G-maximal ideals. We transfer several properties of G-maximal ideals to S-G-maximal
ideals (Proposition 3.35 and 3.37). Recall that an Artinian ring contains only finitely many
maximal ideals and each prime ideal is maximal. We prove these results for the G-graded S-
Artinian rings by using the concepts of S-G-prime and S-G-maximal ideals (Proposition 3.38
and Theorem 3.40).

Section 4 discusses the second objective of the paper which is devoted to the study of S-
versions of the graded secondary and graded secondary representable modules. We introduce
G-graded S-secondary and G-graded S-secondary representable modules as a generalization of
the graded secondary and graded secondary representable modules. We give the basic properties
of such modules and prove the existence ofG-graded S-secondary representation inG-graded S-
Artinian modules (Theorem 4.17) as a generalization of [20, Proposition 2.4] and [12, Theorem
1]. We investigate the extent to which this representation is unique, and introduce the notion
of attached S-G-prime ideals which is a generalization of the attached prime ideals. A number
of results on attached prime ideals have been generalized for the attached S-G-prime ideals
(Theorem 4.11 and 4.14).

2 Preliminaries

Throughout this paper, G is an abelian group with identity e and all the rings are assumed to be
commutative rings with identity unless otherwise stated.

A ringA is said to beG-graded ifA =
⊕

g∈GAg for additive subgroupsAg andAgAh ⊆ Agh
for all g, h ∈ G. The elements of the set h(A) =

⋃
g∈GAg are said to be homogeneous. The

grading is trivial if Ag = 0 for every non-identity g ∈ G. If A is a G-graded ring, then Ae is a
subring of A containing 1A. An ideal I of A is said to be graded if I =

⊕
g∈G(I ∩ Ag). Let

A =
⊕

g∈GAg be a G-graded ring and M an A-module. Then M is said to be G-graded if
M =

⊕
g∈GMg for additive subgroups Mg and AgMh ⊆ Mgh for all g, h ∈ G. The elements

of h(M) =
⋃
g∈GMg are said to be homogeneous. If M is a G-graded A-module, then Mg is

an Ae-module for every g ∈ G. Let N be a submodule of a G-graded A-module M . Then N
is said to be graded if N =

⊕
g∈G(N ∩Mg). Moreover, M/N becomes a G-graded A-module

with (M/N)g = (Mg + N)/N for all g ∈ G. Let M and M ′ be G-graded A-modules. Then
an A-module homomorphism f : M −→ M ′ is said to be G-graded if f(Mg) ⊆ M ′g for every
g ∈ G.

Let A be a G-graded ring and M a G-graded A-module. A graded ideal P of A is said to be
G-prime if P 6= A; and whenever ab ∈ P , we have a ∈ P or b ∈ P , where a, b ∈ h(A). The set
of all G-prime ideals of A is denoted by SpecG(A). A proper graded ideal I of A is said to be
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G-maximal if there is no proper graded ideal J of A such that I ⊂ J . A is called G-graded local
if it has unique G-maximal ideal. A is called a G-graded field if each nonzero homogeneous
element has a multiplicative inverse. M is said to be G-graded Artinian module if it satisfies the
DCC on the graded submodules of M . A is said to be G-graded Artinian ring if it is G-graded
Artinian module over itself. Let S be a multiplicatively closed subset of h(A) containing 1A.
Then S−1M is a G-graded ring with (S−1M)g = {xs : x ∈ Mα, s ∈ S ∩ Aβ with g = αβ−1}
for all g ∈ G. Similarly, S−1A is a G-graded ring called G-graded ring of fractions. The graded
radical of a graded ideal I is Gr(I) := {a = Σg∈Gag ∈ A : for every g ∈ G, there exists an
integer ng ≥ 1 such that ang

g ∈ I}. Clearly, Gr(I) is a graded ideal of A. Also, we denote N by
the set of all positive integers.

For more details of the graded rings and modules [10], [14], [17] and [18] are referred.

Proposition 2.1. [17] Let A be a G-graded ring, M a G-graded A-module and N a graded
submodule of M . Then (N :A M) := {a ∈ A : aM ⊆ N} is a graded ideal of A. In particular,
Ann(M) := (0 :A M) is a graded ideal of A.

Proposition 2.2. [18] Let I and J be graded ideals in a G-graded ring A. Then (I : J) := {a ∈
A : aJ ⊆ I} is a graded ideal of A. In particular, (I : x) := {a ∈ A : ax ∈ I} is a graded ideal
of A for every x ∈ h(A).

Definition 2.3. [20] Let M be a G-graded A-module. Then M is said to be G-graded secondary
if M 6= 0 and for each a ∈ h(A), either aM =M or anM = 0 for some integer n ≥ 1.

If M is a G-graded secondary A-module, then P = Gr(Ann(M)) is a G-prime ideal of
A, and M is said to be G-graded P -secondary (see [20, Proposition 2.2]). We say that a G-
graded A-module M has a G-graded secondary representation if it can be written as a sum
M = N1 + N2 + · · · + Nr with each Ni G-graded Pi-secondary, where Pi = Gr(Ann(Ni)),
[20].

Proposition 2.4. [20, Proposition 2.4] Let M be a G-graded Artinian A-module. Then M has a
G-graded secondary representation.

Definition 2.5. [19, Definition 2.1, 2.2] Let M be an A-module and S ⊆ A a multiplicatively
closed subset. We say that M is an S-Artinian A-module if N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · is
a descending chain of submodules of M , then there exist s ∈ S and an index j ≥ 1 such that
sNj ⊆ Ni for all i ≥ j. A ring A is said to be S-Artinian if it is an S-Artinian module over itself.

Definition 2.6. [11, Definition 1] Let A be a ring, S ⊆ A a multiplicatively closed subset and P
an ideal of A disjoint with S. Then P is said to be S-prime if there exists an s ∈ S such that for
every a, b ∈ A with ab ∈ P , we have sa ∈ P or sb ∈ P .

Let A be a ring and M an A-module. Following [13], M is called secondary if M 6= 0 and
for every a ∈ A, aM = M or anM = 0 for some integer n ≥ 1. In this case P =

√
Ann(M)

is a prime ideal and M is called P -secondary. We say that M is secondary representable if there
exist finitely many secondary submodules N1, N2, . . . , Nr such that M = N1 +N2 + · · ·+Nr.
One may assume that the prime ideals Pi =

√
Ann(Ni), i = 1, 2, . . . , r, are all distinct. In this

case the set {P1, P2, . . . , Pr} is independent from the choice of representation, and it is called the
set of attached prime ideals of M and denoted by Att(M). The Artinian modules are example
of secondary representable module, [13].

Theorem 2.7. [21, Theorem 1.10, 1.14] If 0 → M ′ → M → M ′′ → 0 is an exact sequence of
secondary representable A-modules, then

Att(M ′′) ⊆ Att(M) ⊆ Att(M ′) ∪Att(M ′′).

Corollary 2.8. If M1,M2, . . . ,Mk are secondary representable A-modules, then
k⊕
i=1

Mi is sec-

ondary representable and

Att(
k⊕
i=1

Mi) =
k⋃
i=1

Att(Mi).
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3 Graded S-Artinian Rings and Modules

In this section, we generalize the notion of S-Artinian rings and modules by introducing the con-
cepts of G-graded S-Artinian rings and modules. To do so, we begin this section by introducing
their definitions.

Definition 3.1. Let M be a G-graded A-module and S ⊆ h(A) a multiplicatively closed subset.
Then M is said to be a G-graded S-Artinian A-module if for every descending chain N1 ⊇ N2 ⊇
· · · ⊇ Nn ⊇ · · · of graded submodules of M , there exist s ∈ S and an index j ≥ 1 such that
sNj ⊆ Ni for every i ≥ j.

Definition 3.2. Let A be a G-graded ring and S ⊆ h(A) a multiplicatively closed subset. Then
A is said to be a G-graded S-Artinian ring if it is a G-graded S-Artinian module over itself.

Example 3.3. Every G-graded Artinian A-module is a G-graded S-Artinian A-module for every
multiplicatively closed subset S ⊆ h(A). The converse is also true if S ⊆ U(h(A)), where
U(h(A)) denotes the set of all units of h(A).

Example 3.4. Let M be a G-graded A-module and S ⊆ h(A) a multiplicatively closed subset.
If M is an S-Artinian module, then M is a G-graded S-Artinian module.

The converse of the Example 3.3 is not true in general. To see this, consider the following
example.

Example 3.5. Let G = Z, A = Z = A0 and M = Z(N)
4 (Direct sum of countable copies of Z4)

be a naturally G-graded A-module. Take the multiplicatively closed subset S = {2n : n ≥ 0}.
Put s = 4. Then M is a G-graded S-Artinian module since sN = 0 for every graded submodule
N of M . However, it is easy to see that M is not a G-graded Artinian module.

Let A be a G-graded ring, S a multiplicatively closed subset of h(A) and M a G-graded
A-module. It is clear from the definition that M with

Gr(Ann(M)) ∩ S 6= φ

is trivially a G-graded S-Artinian A-module. Thus, from now, we assume that Gr(Ann(M)) ∩
S = φ in this work. The previous example may seem a bit unfair since Gr(Ann(M)) ∩ S = φ
does not hold in that case. The following example presents a G-graded S-Artinian module that
fulfills the above condition.

Example 3.6. Let G = Z2, A = Z = A0̄, and M = Zk[x]⊕ Z(p∞) a G-graded A-module with
M0̄ = Zk[x]⊕0, M1̄ = 0⊕Z(p∞) where k ≥ 1 and Z(p∞) = { apn +Z : a, n ∈ Z, n ≥ 0}, the p-
Prüfer group for a fixed prime p. Notice that the graded submodules of M are the submodules of
the form N ⊕N ′ where N is a submodule of Zk[x] and N ′ is a submodule of Z(p∞). Consider a
multiplicatively closed subset S = {kn : n ≥ 0} of A. Here we note that S ∩Gr(Ann(M)) = φ
since knM 6= 0 for every integer n ≥ 0. Let {Ni ⊕ N ′i}i∈N be a descending chain of graded
submodules of M where Ni and N ′i are submodules of Zk[x] and Z(p∞), respectively. Now,
N ′i being a submodule of Z(p∞) implies that each N ′i is finite if it is proper (see [5, p. 74]). In
particular, N ′1 is finite if it is proper; whence there exists a positive integer j such that N ′j = N ′i
for all i ≥ j. Put s = k. Then s(Nj ⊕N ′j) = 0 ⊕ sN ′j ⊆ Ni ⊕N ′i for all i ≥ j. This holds also
if N ′1 = Z(p∞). Thus, M is a G-graded S-Artinian A-module. However, it is easy to see that M
is not a G-graded Artinian A-module since Zk[x] is not an Artinian A-module. Moreover, this
example remains valid if the p-Prüfer group Z(p∞) is replaced by any Artinian abelian group.

Let A be a G-graded ring and S a multiplicatively closed subset of A. If A is S-Artinian and
S * h(A), then obviously A is not a G-graded S-Artinian ring. However, if S ⊆ h(A) and A is
S-Artinian, then A is a G-graded S-Artinian ring. Thus the notion of G-graded S-Artinian rings
generalizes the notion of S-Artinian rings. The following example shows that this generalization
is proper in the sense that there is a G-graded S-Artinian ring which is not an S-Artinian ring.

Example 3.7. Let F be a field, G = Z and A = F [x, x−1] be the G-graded Laurent polynomial
ring withAn = Fxn for every n ∈ Z. ThenA is aG-graded field (see [10, p. 23]), and henceA is
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a G-graded Artinian ring (see also [20, p. 215]). So by Example 3.3, A is a G-graded S-Artinian
ring for every multiplicatively closed subset S ⊆ h(A). However, A is not an S-Artinian ring.
Indeed, let S = {xn : n ≥ 0} and I = (x+ 1)F [x, x−1]. Then for a descending chain of ideals
I ⊇ I2 ⊇ · · · ⊇ In ⊇ · · · in A, there do not exist s ∈ S and integer j ≥ 1 such that sIj ⊆ Ii for
all i ≥ j.

The above example also shows that the concepts of G-graded S-Artinian rings and modules
are different from S-Artinian rings and modules. Now we study the basic properties of G-graded
S-Artinian rings and modules.

Definition 3.8. [7, Definition 3.3] Let M be a G-graded A-module. A graded submodule N of
M is said to be graded pure if IN = N ∩ IM for every graded ideal I of A.

Proposition 3.9. Let M be a G-graded A-module. Then we have the following.

(i) If S1 ⊆ S2 ⊆ h(A) are multiplicatively closed subsets and M is a G-graded S1-Artinian
A-module, then M is a G-graded S2-Artinian A-module.

(ii) If S∗ is the saturation of multiplicatively closed subset S ⊆ h(A), then M is a G-graded
S-Artinian A-module if and only if M is a G-graded S∗-Artinian A-module.

(iii) If S ⊆ h(A) is a multiplicatively closed subset and M is a G-graded S-Artinian A-module.
Then S−1M is a G-graded Artinian A-module.

(iv) Let M be a G-graded A-module such that its each graded submodule is graded pure. Let
X = {a ∈ h(A) : aM = M} and S ⊆ X a multiplicatively closed subset. Then M is a
G-graded Artinian module if and only if M is a G-graded S-Artinian module.

Proof. (i) Clear.

(ii) The necessity is clear since S ⊆ S∗. Conversely, suppose M is a G-graded S∗-Artinian
A-module. Let N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · be a descending chain of graded submodules
of M . Since M is G-graded S∗-Artinian, there exist s∗ ∈ S∗ and an integer j ≥ 1 such that
s∗Nj ⊆ Ni for all i ≥ j. Since s∗

1 is a unit in S−1A, then s∗

1
a
s = 1 for some s ∈ S and

a ∈ h(A). This implies that there exists t ∈ S such that t(s∗a − s) = 0, and so ts∗a = ts.
Put s′ = ts. Then s′ ∈ S and s′Nj = tas∗Nj ⊆ s∗Nj ⊆ Ni for all i ≥ j. Hence, M is a
G-graded S-Artinian A-module.

(iii) Let S−1N1 ⊇ S−1N2 ⊇ · · · ⊇ S−1Nn ⊇ · · · be a descending chain of graded sub-
modules of S−1M , where each Ni is a graded submodule of M . Then π−1(S−1N1) ⊇
π−1(S−1N2) ⊇ · · · ⊇ π−1(S−1Nn) ⊇ · · · is a descending chain of graded submodules of
M , where π : M −→ S−1M is a natural graded homomorphism given by π(m) = m

1 . Since
M isG-graded S-Artinian, there exist s ∈ S and an integer j ≥ 1 such that sπ−1(S−1Nj) ⊆
π−1(S−1Ni) for all i ≥ j. This implies that π(sπ−1(S−1Nj)) ⊆ π(π−1(S−1Ni)), and so
s
1 (S
−1Nj) ⊆ S−1Ni for all i ≥ j. But then S−1Nj ⊆ S−1Ni for all i ≥ j since s

1 is a
unit in S−1A, and therefore S−1Nj = S−1Ni for all i ≥ j. Hence, S−1M is a G-graded
Artinian A-module.

(iv) The necessity is clear (see Example 3.3). Conversely, suppose M is a G-graded S-Artinian
module. Let N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · be a descending chain of graded submodules
of M . Since M is G-graded S-Artinian, there exist s ∈ S and an integer j ≥ 1 such
that sNj ⊆ Ni for all i ≥ j. Also since each Nj is graded pure and sM = M , we have
sNj = Nj ∩ sM = Nj ∩M = Nj . Therefore we have Nj ⊆ Ni for all i ≥ j, and we
conclude that Nj = Ni for all i ≥ j. Hence, M is a G-graded Artinian A-module.

The following corollary is an immediate consequence of the Proposition 3.9.

Corollary 3.10. Let A be a G-graded ring.

(i) If S1 ⊆ S2 ⊆ h(A) are multiplicatively closed subsets and A is a G-graded S1-Artinian
ring, then A is a G-graded S2-Artinian ring.
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(ii) If S∗ is the saturation of multiplicatively closed subset S ⊆ h(A), then A is a G-graded
S-Artinian ring if and only if A is a G-graded S∗-Artinian ring.

(iii) If S ⊆ h(A) is a multiplicatively closed subset and A is a G-graded S-Artinian ring. Then
S−1A is a G-graded Artinian ring.

Proposition 3.11. Let f : M −→ M ′ be a G-graded A-homomorphism and S ⊆ h(A) a multi-
plicatively closed subset.

(i) If f is injective and M ′ is G-graded S-Artinian, then M is a G-graded S-Artinian A-
module.

(ii) If f is surjective and M is G-graded S-Artinian, then M ′ is a G-graded S-Artinian A-
module.

Proof. (i) Let N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · be a descending chain of graded submodules of
M . Notice that each f(Ni) is a graded submodule of M ′ since f is G-graded. Therefore
f(N1) ⊇ f(N2) ⊇ · · · ⊇ f(Nn) ⊇ · · · is a descending chain of graded submodules of M ′.
SinceM ′ isG-graded S-Artinian, there exist s ∈ S and an integer j ≥ 1 such that sf(Nj) ⊆
f(Ni) for all i ≥ j. This immediately shows that sNj = f−1(f(sNj)) ⊆ f−1(f(Ni)) = Ni
for all i ≥ j since f is injective. Hence, M is a G-graded S-Artinian module.

(ii) Let N ′1 ⊇ N ′2 ⊇ · · · ⊇ N ′n ⊇ · · · be a descending chain of graded submodules of M ′.
Evidently, each f−1(N ′i) is a graded submodule of M since f is G-graded. Therefore
f−1(N ′1) ⊇ f−1(N ′2) ⊇ · · · ⊇ f−1(N ′n) ⊇ · · · is a descending chain of graded submod-
ules of M . Since M is G-graded S-Artinian, there exist s ∈ S and an integer j ≥ 1
such that sf−1(N ′j) ⊆ f−1(N ′i) for all i ≥ j. But then we have sN ′j = sf(f−1(N ′j)) =

f(sf−1(N ′j)) ⊆ f(f−1(N ′i)) = N ′i for all i ≥ j since f is surjective. Hence, M ′ is a
G-graded S-Artinian module.

As an immediate consequence, we have the following result.

Corollary 3.12. Let M be a G-graded S-Artinian A-module and N be its graded submodule.
Then N and M/N are G-graded S-Artinian A-modules.

Theorem 3.13. Let M be a G-graded A-module, S ⊆ h(A) a multiplicatively closed subset and
N a graded submodule of M . Then M is a G-graded S-Artinian A-module if and only if N and
M/N are G-graded S-Artinian A-modules.

Proof. The necessary part follows from Corollary 3.12. Conversely, suppose N and M/N are
G-graded S-Artinian A-modules. Let N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · be a descending chain of
graded submodules of M . Since sum and quotient of graded submodules are graded, therefore
we have two descending chains N1 ∩N ⊇ N2 ∩N ⊇ · · · ⊇ Nn ∩N ⊇ · · · and (N1 +N)/N ⊇
(N2 +N)/N ⊇ · · · ⊇ (Nn +N)/N ⊇ · · · of graded submodules of N and M/N , respectively.
Since N and M/N are G-graded S-Artinian, there exist s′, s′′ ∈ S and positive integers j′, j′′
such that s′(Nj′ ∩N) ⊆ Ni∩N and s′′Nj′′+N ⊆ Ni+N for all i ≥ j′ and i ≥ j′′, respectively.
Put s = s′s′′ and j = maximum of j′ and j′′, then s(Nj ∩ N) ⊆ Ni ∩ N and sNj ⊆ Ni + N
for all i ≥ j. Let x ∈ Nj . For each i ≥ j, write sx = xi + yi for some xi ∈ Ni and yi ∈ N .
This implies that yi = sx − xi ∈ Nj for all i ≥ j, in fact, yi ∈ Nj ∩ N for all i ≥ j, and so
syi ∈ s(Nj ∩ N) ⊆ Ni ∩ N for all i ≥ j. Consequently, s2x = sxi + syi ∈ Ni for all i ≥ j;
whence s2Nj ⊆ Ni for all i ≥ j. Therefore, M is a G-graded S-Artinian module.

The following results are immediate consequences of the Theorem 3.13.

Corollary 3.14. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and M1,
M2 be G-graded A-modules. Then M1 ⊕M2 is a G-graded S-Artinian A-module if and only if
M1 and M2 are G-graded S-Artinian A-modules.

Corollary 3.15. Let A be a G-graded S-Artinian ring and M a finitely generated G-graded
A-module. Then M is a G-graded S-Artinian A-module.
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Proof. Follows from Corollary 3.14 and Theorem 3.13.

Let M be a G-graded A-module and H a subgroup of G. Following [14],

AH :=
⊕
h∈H

Ah

is an H-graded ring. In fact AH is a G-graded ring. Also, let g ∈ G and gH be coset of H in G,
then

MgH :=
⊕
h∈H

Mgh

is a G-graded AH-submodule of M . In particular, MH is a G-graded AH-module. Now we
characterize G-graded S-Artinian modules. For this, we need the following known lemma.

Lemma 3.16. [14, Lemma 5.4.1] Let M be a G-graded A-module, H a subgroup of G and
g ∈ G. Consider AH as a G-graded ring, and let N be a graded AH-submodule of MgH . If AN
is the graded A-submodule of M generated by N , then

AN ∩MgH = N .

Theorem 3.17. Let A be a G-graded ring, H a subgroup of G and S ⊆ h(AH) a multiplicatively
closed subset. If M is a G-graded S-Artinian A-module, then MgH is a G-graded S-Artinian
AH-module for every g ∈ G. Conversely, if [G : H] < ∞ and MgH is G-graded S-Artinian
AH-module for every g ∈ G, then M is a G-graded S-Artinian A-module.

Proof. Let N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · be a descending chain of graded AH-submodules of
MgH . Then AN1 ⊇ AN2 ⊇ · · · ⊇ ANn ⊇ · · · is a descending chain of graded A-submodules
of M . As M is G-graded S-Artinian A-module, there exist s ∈ S and an index j ≥ 1 such that
sANj ⊆ ANi for every i ≥ j. By Lemma 3.16,

sNj = sANj ∩MgH ⊆ ANi ∩MgH = Ni

for every i ≥ j. Thus MgH is G-graded S-Artinian AH-module for every g ∈ G. For the
converse, write

M =
⊕
g∈G

MgH .

This direct sum is finite as [G : H] < ∞. Now since each MgH is G-graded S-Artinian AH-
module, so by Corollary 3.14, M is a G-graded S-Artinian AH-module, and so M is a G-graded
S-Artinian A-module, as desired.

Corollary 3.18. Let G be a finite abelian group, A a G-graded ring, S ⊆ Ae a multiplicatively
closed subset and M a G-graded A-module. Then the following are equivalent:

(i) M is a G-graded S-Artinian A-module.

(ii) Mg is an S-Artinian Ae-module for every g ∈ G.

(iii) M is an S-Artinian Ae-module.

(iv) M is an S-Artinian A-module.

Proof. (1) =⇒ (2): Follows from Theorem 3.17 for H = {e}.
(2) =⇒ (3): Follows from Corollary 3.14 since G is finite.
(3) =⇒ (4): It is obvious.
(4) =⇒ (1): Follows from Example 3.4.

Corollary 3.19. LetA be aG-graded ring,H a subgroup ofG and S ⊆ h(AH) a multiplicatively
closed subset. If A is a G-graded S-Artinian ring, then AH is an H-graded S-Artinian ring.

Proof. It follows from Theorem 3.17 for M = A.
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Remark 3.20. Let M be a G-graded A-module, S ⊆ h(A) a multiplicatively closed subset. Let
N be a submodule of M and N∗ denotes the largest graded submodule of M contained in N . It
is straightforward to see that if N is an S-Artinian submodule of M , then N∗ is a G-graded S-
Artinian submodule of M . It is also straightforward to see that if M/N is an S-Artinian module,
thenM/N∗ is aG-graded S-Artinian module. From this, we can conclude that ifM is S-Artinian
A-module, then M is isomorphic to some quotient of a G-graded S-Artinian A-module.

Let A be a G graded ring and a ∈ h(A). Then Sa := {an : n ≥ 0} is a multiplicatively closed
subset of h(A). Also, U(A) denotes the set of all units of A. In the following theorem, we obtain
a characterization of G-graded Artinian modules in terms of G-graded S-Artinian modules.

Theorem 3.21. Let A be a G-graded ring which is not G-graded local and M be a G-graded
A-module. Then the following are equivalent:

(i) M is a G-graded Artinian A-module.

(ii) M is a G-graded Sa-Artinian A-module for every a ∈ h(A) \ U(A).

Proof. (i) =⇒ (ii): Follows from Example 3.3.
(ii) =⇒ (i): Let N1 ⊇ N2 ⊇ · · · ⊇ Nn ⊇ · · · be a descending chain of graded submodules

of M . Since M is G-graded Sa-Artinian for every a ∈ h(A) \ U(A), there exist nonnegative
integers la, ka such that akaNla ⊆ Nia for all ia ≥ la. In fact akaNla ⊆ Nt for all t ≥ 1.
Let T be the ideal generated by the set {aka : a ∈ h(A) \ U(A)}. Since T is generated by
the homogeneous elements of A, so T is a graded ideal of A. If T 6= A, then there exists a
G-maximal ideal L of A such that T ⊆ L. But then aka ∈ L for all a ∈ h(A) \ U(A), and
so a ∈ L since L is a G-prime ideal. Consequently, h(A) \ U(A) ⊆ L which shows that L is
the unique G-maximal ideal of A, a contradiction. Hence T = A. This immediately shows that
there exist a1, a2, . . . , ar ∈ A and nonnegative integers ka1 , ka2 , . . . , kar with akai

i Nlai
⊆ Nt for

all t ≥ 1, i = 1, 2, . . . , r such that 1 = b1a
ka1
1 + b2a

ka2
2 + · · ·+ bra

kar
r for some b1, b2, . . . , br ∈ A.

Therefore, A =
r∑
i=1

Aakai . Now, let l be the maximum of la1 , la2 , . . . , lar , then Nl ⊆ Nlai
for

i = 1, 2, . . . , r which implies that akai
i Nl ⊆ a

kai
i Nlai

⊆ Nt for all t ≥ 1, i = 1, 2, . . . , r.

Consequently, Nl = (
r∑
i=1

Aakai )Nl =
r∑
i=1

AakaiNl ⊆ Nt for all t ≥ 1. But already we have

Nt ⊆ Nl for all t ≥ l. Therefore, Nl = Nt for all t ≥ l, as desired.

Our next result gives a characterization of G-graded S-Artinian modules. In fact, it is an
S-version of a well-known characterization of G-graded Artinian modules via graded MIN con-
dition. Recall that a G-graded module M satisfies graded MIN condition if each non-empty
family of graded submodules of M has a minimal element with respect to inclusion of sets.
Before stating the result, we define S-version of graded MIN condition.

Definition 3.22. Let M be a G-graded A-module and S ⊆ h(A) a multiplicatively closed subset.
Let X be a non-empty family of graded submodules of M . Then N ∈ X is said to be S-minimal
element ofX if there exists s ∈ S such that whenever L ⊆ N for some L ∈ X , then sN ⊆ L. We
say that M satisfies graded S-MIN condition if each non-empty family of graded submodules of
M has an S-minimal element.

Theorem 3.23. Let M be a G-graded A-module and S ⊆ h(A) a multiplicatively closed subset.
Then M is G-graded S-Artinian if and only if M satisfies graded S-MIN condition.

Proof. Suppose M satisfies graded S-MIN condition. Let X = {Ni}i∈N be a descending chain
of graded submodules of M . Then X has a graded S-minimal element say Nj . Clearly, Ni ⊆ Nj
for all i ≥ j. This implies that there exists s ∈ S such that sNj ⊆ Ni for all i ≥ j since Nj is an
S-minimal element of X . Hence, M is a G-graded S-Artinian module.
Conversely, suppose M is a G-graded S-Artinian A-module. Let X be an arbitrary non-empty
set of graded submodules of M . Let X ′ be the set of those graded submodule N of M for which
there exist s ∈ S,N ′ ∈ X such that sN ′ ⊆ N . Evidently, X ⊆ X ′. Now we prove that X ′
has a minimal element. For this, let {Ni}i∈N be a descending chain in X ′. Then there exist
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s′ ∈ S and an integer j ≥ 1 such that s′Nj ⊆ N =
⋂
i≥1 Ni since M is G-graded S-Artinian.

Also since Nj ∈ X ′, there exist N ′j ∈ X and s′′ ∈ S such that s′′N ′j ⊆ Nj . This implies that
s′s′′N ′j ⊆ s′Nj ⊆ N , and so N ∈ X ′. Therefore by Zorn’s lemma, X ′ has a minimal element
say L. Consequently, there exist L′ ∈ X and s ∈ S such that sL′ ⊆ L since L ∈ X ′. Now we
claim that L′ is an S-minimal element of X . To see this, suppose T ∈ X such that T ⊆ L′. This
implies that sT ⊆ sL′ ⊆ L, and so sT ⊆ L∩T which yields that L∩T ∈ X ′. But then L∩T = L
since L is a minimal element of X ′. Consequently, L ⊆ T , and so sL′ ⊆ L ⊆ T which conclude
that L′ is an S-minimal element of X. Hence, M satisfies graded S-MIN condition.

For the case when S consists of homogeneous units, we can recover the following well-known
result.

Corollary 3.24. Let M be a G-graded A-module. Then M is a G-graded Artinian module if and
only if M satisfies graded MIN condition.

Much of the theory of G-graded Artinian rings and modules are centered around the G-prime
and G-maximal ideals. For example, a G-graded Artinian ring contains only finitely many G-
maximal ideals, and each G-prime ideal is G-maximal. The attached G-prime ideals also play
an important role in the study of G-graded Artinian modules. Thus, if we wish to obtain results
analogous to G-graded Artinian rings and modules for G-graded S-Artinian rings and modules
which depend upon G-prime and G-maximal ideals, then we need S-versions of G-prime and
G-maximal ideals. S-version of prime ideals (namely, S-prime ideal) is already introduced and
studied by Hamed et al. in [11]. To study the G-graded S-Artinian rings and modules in more
detail, we introduce S-G-prime ideals as a generalization of S-prime ideals to the graded case.

Let A be a G-graded ring and S a multiplicatively closed subset of h(A). A graded ideal I
of A is said to be S-proper if I ∩ S = φ. It is straightforward to see that every S-proper graded
ideal of A is a proper ideal but the converse need not be true.

Definition 3.25. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and P an
S-proper graded ideal of A. Then P is said to be an S-G-prime ideal if there exists an s ∈ S
such that for every a, b ∈ h(A) with ab ∈ P , we have sa ∈ P or sb ∈ P .

Remark 3.26. Let P be an S-G-prime ideal of aG-graded ringA. Let a ∈ h(A) with s′a /∈ P for
all s′ ∈ S, and let b ∈ A such that ab ∈ P . Then there exists an s ∈ S such that sb ∈ P . Indeed,
write b = b1 + b2 + · · ·+ bn where each bi is homogeneous. Evidently, ab1 + ab2 + · · ·+ abn =
ab ∈ P which implies that abi ∈ P for every i since P is a graded ideal of A. But then there
exists an s ∈ S such that sbi ∈ P for all i since P is S-G-prime. Consequently, sb ∈ P , as
required.

Example 3.27. Let F be a field, A = F [x, y] the polynomial ring over F and G = Z. Then
A is a G-graded ring with deg(x) = deg(y) = 1. Consider the multiplicatively closed subset
S = {yn : n ≥ 0} and a graded ideal P = xyA of A. Put s = y. Then P is an S-G-prime ideal
of A. Indeed, let f, g ∈ h(A) such that fg ∈ P ⊆ xA. Then x divides f or x divides g; whence
sf ∈ P or sg ∈ P , as required.

Proposition 3.28. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset. Let P
be an S-prime ideal of A in non-graded case and P ∗ be the largest graded ideal contained in P .
Then P ∗ is an S-G-prime ideal of A.

Proof. Let a, b ∈ h(A) such that ab ∈ P ∗. Then ab ∈ P , and so there exists an s ∈ S such that
either sa ∈ P or sb ∈ P . Since sa and sb are homogeneous elements of P and P ∗ is the largest
graded ideal contained in P , we have sa ∈ P ∗ or sb ∈ P ∗, as desired.

The following two propositions are the straightforward adaptations of the results of [11], and
therefore we only indicate the relevant results of [11] and leave the details to the readers.

Proposition 3.29. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset consist-
ing of nonzero divisors and P an S-proper graded ideal of A. Then the following are equivalent:
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(i) P is an S-G-prime ideal of A.

(ii) (P : s) is a G-prime ideal of A for some s ∈ S.

(iii) S−1P is a G-prime ideal of S−1A and S−1P ∩A = (P : s) for some s ∈ S.

Proof. Use the similar arguments as in the ungraded case (see [11, Proposition 1, Remark 1]).

Proposition 3.30. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and P
an S-proper graded ideal of A. Then P is S-G-prime if and only if there exists s ∈ S such that
for all graded ideal I, J of A, if IJ ⊆ P , then sI ⊆ P or sJ ⊆ P .

Proof. Use the similar arguments as in the ungraded case (see [11, Theorem 1]).

Now we include some basic facts about S-G-prime ideals.

Remarks and Examples 3.31. (i) Let A be a G-graded ring and S ⊆ h(A) a multiplicatively
closed subset. Then an S-proper G-prime ideal of A is an S-G-prime ideal. The converse
is not true in general. For instance, in Example 3.27, the graded ideal P = xyA is an
S-G-prime ideal of A = F [x, y] but not a G-prime ideal.

(ii) An S-prime ideal of a G-graded ring A is not an S-G-prime ideal in general. Indeed, let
A = Z[x] and G = Z2. Then A is a G-graded ring with A0̄ = Z + Zx2 + Zx4 + · · · ,
A1̄ = Zx+Zx3 +Zx5 + · · · . Consider the multiplicatively closed subset S = {2n : n ≥ 0}
and an ideal P = 4(x + 1)Z[x]. Put s = 4. Then P is an S-prime ideal of A (see [11,
Example 1(3)]). However, P is not an S-G-prime ideal since it is not a graded ideal.

(iii) An S-G-prime ideal of a G-graded ring A is not an S-prime ideal in general. Indeed, let
A = Z[i] (The Gaussian integers) and G = Z2. Then A is a G-graded ring with A0̄ = Z,
A1̄ = iZ. Consider the G-prime ideal P = 2Z[i] and multiplicatively closed subset S =
{3n : n ≥ 0}. Clearly, P is an S-properG-prime ideal ofA. Then by (i), P is an S-G-prime
ideal of A. On the other hand, P is not an S-prime ideal since (1 + i)(1 − i) = 2 ∈ P but
3n(1 + i) /∈ P and 3n(1− i) /∈ P for all n ≥ 1.

(iv) Let P be an S-proper graded ideal of a G-graded ring A. Then P is an S-G-prime ideal
of A if and only if P [x] is an S-G-prime ideal of A[x]. We can prove it by using similar
arguments as in the ungraded case (see [11, Example 4]). Here we note that theG-gradation
of A can be extended to A[x] by taking the components (A[x])g = Ag[x] for every g ∈ G.

(v) Following [18, Example 4], if P is a G-prime ideal of a G-graded ring A, then Gr(P ) = P .
However, it is not true for an S-G-prime ideal in general. Indeed, let A = Z[x], G = Z2
and S = {2n : n ≥ 0}. Then A is a G-graded ring, as in (ii). Also, P = 4xZ[x] is an
S-prime ideal of A (see [11, Example 1(3)]). Then P is an S-G-prime ideal of A since it is
graded. Here Gr(P ) = 2xZ[x] 6= P .

(vi) If P is an S-G-prime ideal of aG-graded ringA, thenGr(P ) is an S-G-prime ideal. Indeed,
let a, b ∈ h(A) such that ab ∈ Gr(P ). This implies that (ab)n ∈ P for some integer
n ≥ 1. Since P is S-G-prime, there exists an s ∈ S such that either san ∈ P or sbn ∈ P .
Consequently, sa ∈ Gr(P ) or sb ∈ Gr(P ), as required.
The converse of this statement is not true in general. Indeed, let A = Z[i], G = Z2 and
S = {3n : n ≥ 0}. Then A is a G-graded ring, as in (iii). Notice that P = 4Z[i] is an S-
proper graded ideal of A. Clearly, Gr(P ) = 2Z[i] which is an S-proper G-prime ideal and
hence by (i), Gr(P ) is an S-G-prime ideal of A. On the other hand, P is not an S-G-prime
ideal since 4 ∈ P but 2s /∈ P for all s ∈ S.

(vii) If P is an S-G-prime ideal of aG-graded ringA, then there exists s ∈ S such that sGr(P ) ⊆
P . Indeed, let a ∈ Gr(P ) be a homogeneous element. Then an ∈ P for some integer n ≥ 1.
Since P is S-G-prime, there exists an s ∈ S such that sa ∈ P . Consequently, sGr(P ) ⊆ P .

As noted before, we also need an S-version of the G-maximal ideals. Inspired by the S-
G-prime ideals, we introduce and study the S-G-maximal ideals as a generalization of the G-
maximal ideals.
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Definition 3.32. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and L an
S-proper graded ideal of A. We say that L is an S-G-maximal ideal if there exists an s ∈ S such
that whenever L ⊆ I for some graded ideal I of A, then either sI ⊆ L or sA ⊆ I .

Let A be aG-graded ring and S a multiplicatively closed subset of h(A). It can be easily seen
by Zorn’s lemma that every S-proper graded ideal of A is contained in an S-G-maximal ideal.
Moreover, if L is an S-G-maximal ideal and I is an S-proper graded ideal of A such that L ⊆ I ,
then sI ⊆ L for some s ∈ S.

Example 3.33. Let A be a G-graded ring and S ⊆ h(A) a multiplicatively closed subset. If L is
an S-proper G-maximal ideal of A, then L is an S-G-maximal ideal.

Let M be an A-module. Following [3], A(+)M = A ⊕M with coordinate-wise addition
and multiplication (a1,m1)(a2,m2) = (a1a2, a1m2 + a2m1) is a commutative ring called the
idealization of M .

The converse of Example 3.33 is not true in general. For this, consider the following example.

Example 3.34. Let A = Z(+)Z4 be the idealization of the Z-module Z4. Then A is a G =
Z2-graded ring with A0̄ = Z ⊕ 0, A1̄ = 0 ⊕ Z4. Consider the multiplicatively closed subset
S = {(2, 0)n : n ≥ 0} and a graded ideal L = 6Z(+)Z4 of A. Clearly, L∩S = φ and S ⊆ h(A).
We show that L is an S-G-maximal ideal. For this, let I be a graded ideal of A such that L ⊆ I .
Notice that I is of the form mZ(+)Z4 for some integer m (see [3, p. 5]). Also, L being a subset
of I implies that 6Z ⊆ mZ; hence I is one of the 2Z(+)Z4, 3Z(+)Z4, 6Z(+)Z4 or Z(+)Z4. Put
s = (2, 0). Then it is easy to see that either sI ⊆ L or sA ⊆ I for all the cases of I . Thus, L is
an S-G-maximal ideal of A. On the other hand, L is not a G-maximal ideal since L is contained
in a proper graded ideal 3Z(+)Z4.

The following proposition collects some immediate properties of the S-G-maximal ideals of
a G-graded ring.

Proposition 3.35. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and L
an S-G-maximal ideal of A. Then

(i) L is an S-G-prime ideal of A.

(ii) S−1L is a G-maximal ideal of S−1A.

(iii) Gr(L) is an S-G-maximal ideal of A such that sGr(L) ⊆ L for some s ∈ S.

(iv) (L : s) is a G-maximal ideal among all S-proper graded ideals of A for some s ∈ S.

Proof. (i) Let a, b ∈ h(A) such that ab ∈ L. Clearly, L ⊆ L+ aA. Since L is S-G-maximal,
there exists s ∈ S such that either sA ⊆ L+ aA or s(L+ aA) ⊆ L. If s(L+ aA) ⊆ L, then
sa ∈ L. If sA ⊆ L+ aA, then sbA ⊆ bL+ abA ⊆ L since ab ∈ L; hence sb ∈ L. Thus, L
is an S-G-prime ideal of A.

(ii) Clearly S−1L is a proper graded ideal of S−1A since L is an S-proper graded ideal of A.
Now, suppose S−1L ⊆ S−1I for some graded ideal I of A and S−1I 6= S−1A. Then
π−1(S−1I) is an S-proper graded ideal of A and π−1(S−1L) ⊆ π−1(S−1I), where π :
A → S−1A is a natural graded homomorphism given by π(a) = a

1 . This implies that
L ⊆ π−1(S−1I). But then there exists s ∈ S such that sπ−1(S−1I) ⊆ L since L is S-
G-maximal. Consequently, s1S

−1I = π(sπ−1(S−1I)) ⊆ π(L) ⊆ S−1L. This yields that
S−1I ⊆ S−1L, and so S−1I = S−1L. Hence, S−1L is a G-maximal ideal of S−1A.

(iii) Suppose Gr(L) ⊆ I for some graded ideal I of A. This implies that L ⊆ I , and so there
exists s ∈ S such that either sI ⊆ L ⊆ Gr(L) or sA ⊆ I; hence, Gr(L) is an S-G-maximal
ideal of A. Also, sGr(L) ⊆ L for some s ∈ S since L ⊆ Gr(L) and Gr(L) is an S-proper
graded ideal.

(iv) Since L is S-G-maximal, there exists s ∈ S such that if L ⊆ I for some graded ideal I of
A then either sI ⊆ L or sA ⊆ I . By Proposition 2.2, (L : s) is a graded ideal of A. If
(L : s)∩S 6= φ, then there exists s′ ∈ S such that ss′ ∈ L, absurd since L is S-proper. Thus
(L : s) is an S-proper graded ideal, and so a proper graded ideal of A. We show that (L : s)
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is a G-maximal ideal among all S-proper graded ideals. For this, let (L : s) ⊆ J for some
S-proper graded ideal J of A. We need to show (L : s) = J . Clearly, L ⊆ (L : s) ⊆ J ;
whence either sJ ⊆ L or sA ⊆ J since L is S-G-maximal. But J being an S-proper graded
ideal implies that sA * J , and so we conclude that sJ ⊆ L which implies that J ⊆ (L : s).
Hence (L : s) = J , as desired.

The converse of Proposition 3.35(i) is not true in general. For this consider the following
example.

Example 3.36. Let A = Z[x], G = Z and S = {2n : n ≥ 0} a multiplicatively closed subset.
Then A is a G-graded ring with deg(x) = 1. Take a graded ideal P = 4xZ[x] of A. By [11,
Example 1(3)], P is an S-prime ideal of A; hence P is an S-G-prime ideal since it is graded. On
the other hand, P is not S-G-maximal since P ⊆ I = 4xZ[x]+3Z[x] but 2nA * I and 2nI * P
for any integer n ≥ 0.

The next proposition gives a characterization of the S-G-maximal ideals in terms of G-
maximal ideals .

Proposition 3.37. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and L
an S-proper graded ideal of A. Then

(i) L is an S-G-maximal ideal of A if and only if S−1L is a G-maximal ideal of S−1A and
S−1L ∩A = (L : s) for some s ∈ S.

(ii) L is an S-G-maximal ideal of A if (L : s) is a G-maximal ideal of A for some s ∈ S.

Proof. (i) Suppose L is an S-G-maximal ideal of A. Then by Proposition 3.35(ii), S−1L is
a G-maximal ideal of S−1A. Also, since L is S-G-maximal, there exists s ∈ S such that
if L ⊆ I for some graded ideal I of A then either sI ⊆ L or sA ⊆ I . We show that
S−1L ∩ A = (L : s). For this, let a ∈ (L : s). Then sa ∈ L, and so a

1 ∈ S−1L. Thus
a ∈ S−1L∩A, and so (L : s) ⊆ S−1L∩A. For the reverse containment, let a ∈ S−1L∩A.
Since L is S-G-maximal and L ⊆ L+aA, we have either sA ⊆ L+aA or s(L+aA) ⊆ L. If
sA ⊆ L+aA, then S−1A = S−1(sA) ⊆ S−1(L+aA) = S−1L+S−1(aA), and so S−1A =
S−1L since a ∈ S−1L, absurd because S−1L is G-maximal. Therefore, s(L + aA) ⊆ L
which implies that sa ∈ L; hence a ∈ (L : s). Thus S−1L ∩A ⊆ (L : s), as required.
Conversely, suppose S−1L is a G-maximal ideal of S−1A and S−1L ∩ A = (L : s) for
some s ∈ S. Notice that L is S-proper since S−1L is a proper graded ideal. Now let
L ⊆ I for some S-proper graded ideal I of A. Then S−1L ⊆ S−1I . Since S−1L is a
G-maximal ideal of S−1A and I ∩ S = φ, we obtain that S−1L = S−1I . This implies that
I ⊆ S−1I ∩ A = S−1L ∩ A = (L : s); hence sI ⊆ L. Thus L is an S-G-maximal ideal of
A.

(ii) Suppose (L : s) is a G-maximal ideal of A for some s ∈ S. Clearly, (L : s) is S-proper
since L is S-proper. Let L ⊆ I for some graded ideal I of A. Then (L : s) ⊆ (I : s)
which implies that either (I : s) = A or (L : s) = (I : s) since (L : s) is G-maximal. If
(I : s) = A , then sA ⊆ I . If (L : s) = (I : s), then sI ⊆ L. Hence, L is an S-G-maximal
ideal of A.

Now we are in a position to explore the analogous properties of G-graded Artinian rings and
modules depending upon G-prime and G-maximal ideals for the G-graded S-Artinian rings and
modules. It is well known that in a G-graded Artinian ring, each G-prime ideal is G-maximal.
The following proposition generalizes this result for the G-graded S-Artinian rings.

Proposition 3.38. Let A be a G-graded S-Artinian ring, where S ⊆ h(A) is a multiplicatively
closed subset. Then each S-G-prime ideal of A is an S-G-maximal ideal.

Proof. Let P be an S-G-prime ideal of A. Suppose P ⊆ I for some S-proper graded ideal I of
A. Since P is S-G-prime, there exists an s ∈ S such that for all a, b ∈ h(A) with ab ∈ P , either
sa ∈ P or sb ∈ P . We claim that sI ⊆ P . On contrary, suppose sI * P . Let x ∈ sI \ P be a
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homogeneous element. Consider the descending chain P +Ax ⊇ P +Ax2 ⊇ P +Ax3 ⊇ · · · ⊇
P +Axn ⊇ · · · of graded ideals of A. Since A is G-graded S-Artinian, there exist s′ ∈ S and an
integer j ≥ 1 such that s′(P + Axj) ⊆ P + Axj+1. Let y ∈ P . Then s′(y + xj) = y′ + xj+1z
for some y′ ∈ P and z ∈ A. This implies that xj(s′ − xz) = y′ − s′y ∈ P . Write x = sw for
some homogeneous w ∈ I . Then swj /∈ P since x = sw /∈ P and P is an S-G-prime ideal.
Consequently, sxj = sj+1wj /∈ P . Since P is S-G-prime and xj is a homogeneous element with
sxj /∈ P , then by Remark 3.26, we have s(s′−zx) ∈ P ⊆ I which implies that s2(s′−zx) ∈ sI .
But then s′s2 ∈ sI ⊆ I since s2zx ∈ sI . This is a contradiction since I is S-proper. Hence
sI ⊆ P , and therefore P is an S-G-maximal ideal of A.

In the sequel of generalizing the results of G-graded Artinian rings and modules to G-graded
S-Artinian rings and modules, our next result generalizes the fact that G-graded Artinian rings
have only finitely many G-maximal ideals.

Lemma 3.39. Let A be a G-graded S-Artinian ring, where S ⊆ h(A) is a multiplicatively closed
subset. Then A has only finitely many S-proper G-prime ideals.

Proof. Use the similar arguments as in the ungraded case (see [19, Theorem 2.4]).

Theorem 3.40. Let A be a G-graded S-Artinian ring. Then there exist finitely many S-G-
maximal ideals L1, L2, . . . , Lr of A such that if L is any S-G-maximal ideal of A, then there
exists an s ∈ S such that sL ⊆ Lj and sLj ⊆ L for some j.

Proof. Consider the set X = {S−1L : L is an S-G-maximal ideal of A}. Then by Proposition
3.37(i), X ⊆ SpecG(S−1A). By Lemma 3.39, S−1A has only finitely many G-prime ideals
which implies that X is a finite set. Consequently, there exist only finitely many S-G-maximal
ideals L1, L2, . . . , Lr in A such that S−1Li 6= S−1Lj if i 6= j.
Let L be an S-G-maximal ideal of A. If L = Li for some i = 1, 2, . . . , r, then we are done.
Suppose L 6= Li for any i. Then obviously S−1L = S−1Lj for some j. By Proposition 3.37(1),
S−1L ∩A = (L : s) and S−1Lj ∩A = (Lj : s′) for some s, s′ ∈ S. But then (L : s) = (Lj : s′)
since S−1L = S−1Lj . This yields that s′L ⊆ Lj and sLj ⊆ L. Consequently, ss′L ⊆ Lj and
ss′Lj ⊆ L, as desired.

Corollary 3.41. Let A be a G-graded Artinian ring. Then A has only a finite number of G-
maximal ideals.

Proof. Follows form Theorem 3.40 for S = {1}.

Corollary 3.42. Let A be an Artinian ring. Then A has only a finite number of maximal ideals.

Proof. Follows form Corollary 3.41 for G = {e}.

4 Graded S-Secondary Modules and Graded S-Secondary Representations

It is known that the class of G-graded Artinian modules is one of the examples of the existence
of graded secondary representation (Proposition 2.4). As we have transferred several results on
G-graded Artinian modules to G-graded S-Artinian modules so far; in that sequence, if we wish
to obtain analogous representation in G-graded S-Artinian modules, we must replace G-graded
secondary modules by their S-version, namely, G-graded S-secondary modules. We begin this
section by introducing its definition.

Definition 4.1. Let M be a G-graded A-module and S ⊆ h(A) a multiplicatively closed subset.
Then M is said to be G-graded S-secondary if M 6= 0 and there exists s ∈ S such that for each
a ∈ h(A), either sM ⊆ aM or (sa)nM = 0 for some integer n ≥ 1. By aG-graded S-secondary
submodule, we mean a graded submodule which is also a G-graded S-secondary module.

If S ⊆ h(A) is a multiplicatively closed subset such that 0 ∈ S, then every G-graded A-
module M is G-graded S-secondary. More generally, if S ∩ Gr(Ann(M)) 6= φ, then M is
trivially a G-graded S-secondary A-module. Thus, from now, we assume that Gr(Ann(M)) ∩
S = φ in this work.
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Proposition 4.2. Let M be a G-graded S-secondary A-module. Then P = Gr(Ann(M)) is an
S-G-prime ideal of A, and we say that M is G-graded S-P -secondary.

Proof. Let a, b ∈ h(A) such that ab ∈ P = Gr(Ann(M)) and sa /∈ P for all s ∈ S. Then
(ab)mM = 0 for some integer m ≥ 1 and (sa)nM 6= 0 for all s ∈ S and integers n ≥ 1. But
then there exists s′ ∈ S such that s′M ⊆ aM since M is G-graded S-secondary. This implies
that (s′b)mM ⊆ (ab)mM = 0, and so s′b ∈ P = Gr(Ann(M)). Also, P is S-proper since
Gr(Ann(M)) ∩ S = φ. Hence P = Gr(Ann(M)) is an S-G-prime ideal of A.

Now we include some basic facts about G-graded S-secondary modules.

Remarks and Examples 4.3. (i) EveryG-graded secondaryA-module is aG-graded S-secondary
A-module for every multiplicatively closed subset S ⊆ h(A). The converse is also true if
S ⊆ U(h(A)), where U(h(A)) denotes the set of all units of h(A).

(ii) A G-graded S-secondary module is not a G-graded secondary module in general. Indeed,
let G = Z, A = Z = A0 a G-graded ring and M = Z6[x] a G-graded A-module with
deg(x) = 1. Consider a multiplicatively closed subset S = {6n : n ≥ 0}. Put s = 6. Then
0 = sM ⊆ aM for all a ∈ h(A) = Z; hence M is a G-graded S-secondary module. On the
other hand, M is not a G-graded secondary module since 3M 6= M and 3nM 6= 0 for all
integers n ≥ 1.

(iii) The converse of Proposition 4.2 is not true in general. Indeed, letG = Z2, A = Z = A0̄ and
M = Z[i] a G-graded A-module with M0̄ = Z, M1̄ = iZ. Take the multiplicatively closed
subset S = {2n : n ≥ 0}. Then Gr(Ann(M)) = 0, a G-prime ideal, and so an S-G-prime
ideal of A. However, M is not G-graded S-secondary since sM * 3M and (3s)nM 6= 0
for all integers n ≥ 1 and s ∈ S.

(iv) Let M = Z6[x] be a G-graded A-module, as in (ii). Take the multiplicatively closed subset
S = {5n : n ≥ 0}. Then Gr(Ann(M)) = 6Z is not an S-G-prime ideal of A since 6 ∈ 6Z
but 3s /∈ 6Z and 2s /∈ 6Z for any s ∈ S. Hence by Proposition 4.2, M is not G-graded
S-secondary.

(v) Let M be a G-graded A-module. Let X = {a ∈ h(A) : aM = M} and S ⊆ X a
multiplicatively closed subset. Then it is straightforward to see that M is G-graded S-
secondary if and only if it is G-graded secondary.

Now we study the basic properties of the G-graded S-secondary modules, especially under
localization and homomorphism.

Proposition 4.4. LetM be aG-gradedA-module and S ⊆ h(A) a multiplicatively closed subset.

(i) If N1 and N2 are G-graded S-P -secondary submodules of M . Then N1+N2 is a G-graded
S-P -secondary submodule of M .

(ii) If M is a G-graded S-secondary module, then S−1M is a G-graded secondary S−1A-
module.

Proof. (i) Let N = N1 + N2. Then Gr(Ann(N)) = Gr(Ann(N1)) ∩ Gr(Ann(N2)) = P
since P = Gr(Ann(N1)) = Gr(Ann(N2)). Now, let a ∈ h(A). Suppose (sa)nN 6= 0
for all s ∈ S and n ≥ 1. Then sa /∈ P = Gr(Ann(N)) for every s ∈ S. Consequently,
(sa)nN1 6= 0 and (sa)nN2 6= 0 for all s ∈ S and n ≥ 1. This implies that there exist
s1, s2 ∈ S such that s1N1 ⊆ aN1 and s2N2 ⊆ aN2 since N1 and N2 are G-graded S-
secondary. Put s′ = s1s2. Then s′N = s′N1 + s′N2 ⊆ aN1 + aN2 = aN . Hence, N is a
G-graded S-P -secondary submodule of M .

(ii) Let a
t ∈ h(S

−1A), where a ∈ h(A) and t ∈ S. Since M is G-graded S-secondary, there
exist s ∈ S and an integer n ≥ 1 such that (sa)nM = 0 or sM ⊆ aM . Suppose (sa)nM =
0. Let x

t′ ∈ S−1M , where x ∈ M and t′ ∈ S. Then sn(anx) = (sa)nx = 0; whence
anx

1 = 0, and so (at )
n x
t′ = 0. This implies that (at )

nS−1M = 0.
Now, suppose sM ⊆ aM . Let x

t′ ∈ S−1M , where x ∈ M and t′ ∈ S. Write sx = ay

for some y ∈ M . This implies that sx1 = ay
1 in S−1M , and so x

t′ = (at )(
ty
st′ ) ∈

a
t S
−1M .

Consequently, at S
−1M = S−1M . Hence, S−1M is a G-graded secondary S−1A-module.
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Proposition 4.5. Let f : M −→ M ′ be a G-graded A-homomorphism and S ⊆ h(A) a multi-
plicatively closed subset.

(i) If f is injective and M ′ is G-graded S-P -secondary such that f(M) is a graded pure
submodule of M ′, then M is G-graded S-P -secondary.

(ii) If f is surjective and M is G-graded S-P -secondary, then M ′ is G-graded S-P -secondary.

Proof. (i) Let a ∈ h(A). If a ∈ P = Gr(Ann(M ′)), then f(anM) = anf(M) ⊆ anM ′ = 0
for some integer n ≥ 1. Consequently, anM = 0 since f is injective. If sa /∈ P for all s ∈ S,
then there exists s′ ∈ S such that s′M ′ ⊆ aM ′ since M ′ is G-graded S-P -secondary. This
implies that s′f(M) = f(M) ∩ s′M ′ ⊆ f(M) ∩ aM ′ = af(M) since f(M) is a graded
pure submodule of M ′. Therefore s′M ⊆ aM since f is injective. Hence, M is a G-graded
S-P -secondary module.

(ii) Let a ∈ h(A). If a ∈ P = Gr(Ann(M)), then anM = 0 for some n ≥ 1. This implies that
anM ′ = anf(M) = f(anM) = 0 since f is surjective. If sa /∈ P for all s ∈ S, then there
exists s′ ∈ S such that s′M ⊆ aM since M is G-graded S-P -secondary. This implies that
s′M ′ = s′f(M) = f(s′M) ⊆ f(aM) = af(M) = aM ′ since f is surjective. Hence, M ′ is
a G-graded S-P -secondary module.

In general, a graded submodule of a G-graded S-P -secondary module need not be G-graded
S-P -secondary. The following corollary asserts that under some conditions graded submodules
of a G-graded S-P -secondary module are G-graded S-P -secondary.

Corollary 4.6. Let M be a G-graded S-P -secondary A-module and N a proper graded sub-
module of M .

(i) If N is a graded pure submodule of M , then N is G-graded S-P -secondary.

(ii) M/N is G-graded S-P -secondary.

The following corollary is a generalization of [8, Proposition 2.7].

Corollary 4.7. Let M be a G-graded A-module and N a nonzero graded pure submodule of M .
Then M is a G-graded S-P -secondary module if and only if both N and M/N are G-graded
S-P -secondary.

Proof. Assume that M is G-graded S-P -secondary. Then by Corollary 4.6, N and M/N are
G-graded S-P -secondary. Conversely, assume that N and M/N are G-graded S-P -secondary.
Clearly, P = Gr(Ann(N)) = Gr(Ann(M/N)). Now let a ∈ h(A). If a ∈ P , then an1M ⊆ N ,
an2N = 0 for some integers n1, n2 ≥ 1. Let n be the maximum of n1 and n2. Then 0 = anN =
N∩anM = anM sinceN is graded pure and anM ⊆ N . If sa /∈ P for all s ∈ S, then there exist
s1, s2 ∈ S such that s1N ⊆ aN and s2(M/N) ⊆ a(M/N) since N and M/N are G-graded S-
P -secondary. Put s′ = s1s2. Then N ∩s′M = s′N ⊆ aN = N ∩aM and s′(M/N) ⊆ a(M/N);
hence s′M ⊆ aM , as required.

Now we introduce an S-version of G-graded secondary representation, namely, G-graded
S-secondary representation.

Definition 4.8. Let A be a G-graded ring, S ⊆ h(A) a multiplicatively closed subset and M a G-
graded A-module. We say thatM has aG-graded S-secondary representation (orM isG-graded
S-secondary representable) if it can be written as a sum

M = N1 +N2 + · · ·+Nr

with each Ni G-graded S-Pi-secondary, where Pi = Gr(Ann(Ni)) for i = 1, 2, . . . , r.
The representation is minimal if the S-G-prime ideals Pi are all distinct and none of the Ni is
redundant.

It is straightforward to see that G-graded secondary representable modules are G-graded S-
secondary representable. Thus the notion G-graded S-secondary representation generalizes the
notion of graded secondary representation. The next result follows by Proposition 4.4(i).
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Theorem 4.9. (Existence of minimal G-graded S-secondary representations) Let M be a G-
graded S-secondary representable A-module. Then it has a minimal G-graded S-secondary
representation.

Remark 4.10. If M =
r∑
i=1

Ni is a minimal G-graded S-secondary representation for a G-graded

A-module M , then it follows from Proposition 4.4(ii) that

S−1M =
r∑
i=1

S−1Ni

is a G-graded secondary representation for S−1M . Thus if M is G-graded S-secondary repre-
sentable, then S−1M is a G-graded secondary representable module.

Let M be a G-graded A-module. Recall that a G-prime ideal P of A is called an attached
G-prime ideal ofM ifM has aG-graded P -secondary quotient. In order to investigate the extent
to which the G-graded S-secondary representation is unique, we need S-version of the attached
G-prime ideals, namely, the attached S-G-prime ideals. An S-G-prime ideal P of A is called
an attached S-G-prime ideal of M if M has a G-graded S-P -secondary quotient. The set of all
attached S-G-prime ideals of M is denoted by S-AttGA(M).

Theorem 4.11. Let M be a G-graded S-secondary representable A-module. If M = N1 +N2 +
· · ·+Nr is a minimal G-graded S-secondary representation of M and Pi = Gr(Ann(Ni)) for
i = 1, 2, . . . , r, then

S-AttGA(M) = {P1, P2, . . . , Pr}.

Proof. Let N i =
r∑

j=1,j 6=i
Nj for i = 1, 2, . . . , r. Then for each i,

M/N i ∼= Ni/(Ni ∩N i)

is a nonzero quotient of Ni; hence by Corollary 4.6, M/N i is G-graded S-Pi-secondary. Thus
{P1, P2, . . . , Pr} ⊆ S-AttGA(M). For the reverse containment, let P ∈ S-AttGA(M) and let U
be a G-graded S-P -secondary quotient of M . Evidently, S-AttGA(U)={P}. Write U = M/N ,
where N is graded submodule of M . Let N̄i = (Ni+N)/N for i = 1, 2, . . . , r. Then for each i,

N̄i ∼= Ni/(Ni ∩N)

is a nonzero quotient of Ni; hence again by Corollary 4.6, N̄i is G-graded S-Pi-secondary.
Consequently, U = N̄1 + N̄2 + · · ·+ N̄r is a G-graded S-secondary representation of U . From
this we obtain a minimal G-graded S-secondary representation U = N̄i1 + N̄i2 + · · ·+ N̄ik , and
then

{Pi1 , Pi2 , . . . , Pik} ⊆ S-AttGA(U) = {P}.

This yields that P = Pj for some j (1 ≤ j ≤ r), as desired.

Corollary 4.12. (Uniqueness Theorem) Let M be a G-graded S-secondary representable A-

module. If
r∑
i=1

Ni and
k∑
j=1

N ′j are two minimal G-graded S-secondary representations of M with

Ni is G-graded S-Pi-secondary and N ′j is G-graded S-P ′j-secondary, then k = r and

{P1, P2, . . . , Pr} = {P ′1, P ′2, . . . , P ′r}.

Proof. By Theorem 4.11, {P ′1, P ′2, . . . , P ′k} = S-AttGA(M) = {P1, P2, . . . , Pr} which implies that
k = r, as required.

Remark 4.13. LetM be aG-graded S-secondary representableA-module andN a proper graded
submodule of M . Then M/N is G-graded S-secondary representable and S-AttGA(M/N) ⊆ S-

AttGA(M). Indeed, let M =
r∑
i=1

Ni be a minimal G-graded S-secondary representation of M ,

then M/N =
r∑
i=1

(Ni +N)/N . Notice that
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(Ni +N)/N ∼= Ni/(N ∩Ni)

is a quotient of Ni; hence by Corollary 4.6, each (Ni + N)/N is G-graded S-secondary, as
required. Next, let P ∈ S-AttGA(M/N). Then M/N has a G-graded S-P -secondary quotient,
and hence M has a G-graded S-P -secondary quotient. Consequently, P ∈ S-AttGA(M), as
desired.

Now we study an important property of the attached S-G-prime ideals in the next theorem
which is a generalization of Theorem 2.7.

Theorem 4.14. Let M be a G-graded S-secondary representable A-module. If N is a G-graded
S-secondary representable submodule of M . Then

S-AttGA(M/N) ⊆ S-AttGA(M) ⊆ S-AttGA(N) ∪ S-AttGA(M/N).

Proof. The first containment follows from Remark 4.13. For the next containment, let P ∈ S-
AttGA(M). Let L be a graded submodule of M such that M/L is G-graded S-P -secondary. If
L+N 6=M , then

M/N

(L+N)/N
∼=M/(L+N) ∼=

M/L

(L+N)/L

and hence by Corollary 4.6, M/(L + N) is G-graded S-P -secondary since M/L is G-graded
S-P -secondary. This implies that M/N has a G-graded S-P -secondary quotient. Therefore,
P ∈ S-AttGA(M/N). If L+N =M , then

M/L = (N + L)/L ∼= N/(L ∩N).

Consequently, N/(L ∩N) is G-graded S-P -secondary since M/L is G-graded S-P -secondary.
Hence P ∈ S-AttGA(N), as desired.

As an immediate consequence, we have the following result which is a generalization of
Corollary 2.8.

Corollary 4.15. If M1,M2, . . . ,Mk are G-graded S-secondary representable A-modules, then
k⊕
i=1

Mi is G-graded S-secondary representable and we have

S-AttGA(
k⊕
i=1

Mi) =
k⋃
i=1

S-AttGA(Mi).

Now we give an S-version of graded secondary representation for graded Artinian modules.
For this, we need S-version of the G-graded sum-irreducible modules. Recall that a non-zero
G-graded module is said to beG-graded sum-irreducible if it is not the sum of two proper graded
submodules [20, Definition 2.1(iii)]. A nonzero G-graded A-module M is called G-graded S-
sum-irreducible if whenever sM ⊆ M1 +M2 for some s ∈ S and graded submodules M1, M2
of M , then there exists s′ ∈ S such that either s′sM ⊆M1 or s′sM ⊆M2.

We end this section by proving the existence of G-graded S-secondary representation in G-
graded S-Artinian modules. For this, we need the following lemma which is a generalization of
[20, Proposition 2.3].

Lemma 4.16. Let M be a G-graded S-Artinian, G-graded S-sum-irreducible A-module, where
S ⊆ h(A) is a multiplicatively closed subset. Then M is a G-graded S-secondary module.

Proof. On the contrary, suppose M is not a G-graded S-secondary module. Then there exists
a ∈ h(A) such that sM * aM and (sa)nM 6= 0 for every s ∈ S and n ≥ 1. This implies that
aM 6= M and anM 6= 0 for all n ≥ 1. Consider a descending chain aM ⊇ a2M ⊇ · · · ⊇
anM ⊇ · · · of graded submodules of M . Since M is G-graded S-Artinian, there exist s′ ∈ S
and an integer j ≥ 1 such that s′ajM ⊆ aiM for all i ≥ j. Let x ∈M . Then there exists y ∈M
such that s′ajx = aj+1y. This implies that s′x−ay ∈ (0 :M aj), and so s′M ⊆ aM+(0 :M aj).
Notice that aM and (0 :M aj) := {m ∈ M : ajm = 0} are graded submodules of M . Now,
since M is G-graded S-sum-irreducible, there exists s′′ ∈ S such that either s′′s′M ⊆ aM or
s′′s′M ⊆ (0 :M aj). This is a contradiction since sM * aM and sM * (0 :M an) for every
s ∈ S and n ≥ 1. Hence, M is a G-graded S-secondary module.
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Theorem 4.17. Let M be a G-graded S-Artinian A-module, where S ⊆ h(A) is a multiplica-
tively closed subset. Then M contains a graded submodule which has a G-graded S-secondary
representation.

Proof. If M is G-graded S-secondary representable, then we are done. Suppose M is not G-
graded S-secondary representable. Let X be the set of nonzero graded submodules of M which
is not G-graded S-secondary representable. Then X is non-empty as M ∈ X . By Theorem
3.23, X has a graded S-minimal element N say. Then N itself is not a G-graded S-secondary
submodule and hence by Lemma 4.16, N is not G-graded S-sum-irreducible. This implies that
that there exist an s ∈ S and graded submodules N1, N2 of N with s′sN * N1, s′sN * N2 for
all s′ ∈ S such that sN ⊆ N1 +N2. Consequently, N1, N2 /∈ X since s′N * N1, s′N * N2 for
all s′ ∈ S and N is a graded S-minimal element of X . This implies that N1 and N2 are G-graded
S-secondary representable. Notice that N1 and N2 are nonzero. Hence, N1 +N2 has a G-graded
S-secondary representation, as desired.

Corollary 4.18. Let M be a G-graded Artinian A-module. Then M has a G-graded secondary
representation.

Proof. Follows from Theorem 4.17 for S = {1}.

Let A be a G-graded ring, S a multiplicatively closed subset of h(A), and M a G-graded S-
secondary A-module. If the grading is trivial, then M is called an S-secondary module. Clearly,
the notion of S-secondary module is a generalization of secondary modules. By Proposition 4.2,
if an A-module M is S-secondary, then

√
Ann(M) is an S-prime ideal of A, and in this case we

say that M is an S-P -secondary module.

Corollary 4.19. Let A be a ring, S a multiplicatively closed subset of A and M an S-Artinian
A-module. Then M contains a submodule which can be written as the sum of finite number of
S-secondary modules.

Proof. Follows from Theorem 4.17 for G = {e}.

Notice that the case S = {1} of the result above is nothing but a well-known fact that Artinian
modules have secondary representations. Thus Theorem 4.17 generalizes the graded secondary
representation for graded Artinian modules and at the same time is the extension of secondary
representation for Artinian modules given by Macdonald in [13].
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