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Abstract In this paper, we will recall the main results of the Fourier transform on the quater-
nion Heisenberg group Hq, then we introduce the notion of the wavelet transform on the affine
automorphism group of Hq. Finally, we will prove a certain number of uncertainty principles
associated to this transform.

1 Introduction

The quaternionic Heisenberg group, is an example of a H-type group introduced by Kaplan
[10], plays an important role in several branches of mathematics such as representation theory,
harmonic analysis, several complex variables, partial differential equations and quantum me-
chanics. This group is a nilpotent Lie group with underlying manifold R4×R3 (see for example
[12] for its precise definition).
Wavelet analysis on the Euclidean space Rn has many applications in pure and applied mathe-
matics (see [4]). It is important to extend the theory of wavelet analysis to various cases (see
[7, 9, 11]).

The wavelet theory was born from the analysis of operators (differential and functional space
equations). The characterization of the fine oscillatory structure of these spaces led to simpler
atomic decompositions and, ultimately, to smooth the orthonormal bases which captured this
structure. A mathematical theory has therefore developed which has a rich range of applications
in signal and image processing.

The aim of this paper is to show a certain number of uncertainty principles associated with
the wavelet transform on the quaternionic Heisenberg group.

The plan of this article is as follows. In section 2, a summary of the Fourier transform on
the quaternionic Heisenberg group . The section 3 deals with the wavelet transform on the affine
automorphism group of Hq. In the section 4, we will prove a certain number of uncertainty
principles associated to this transform.

2 Fourier transform on the quaternionic Heisenberg group

Invented for the first by Sir W.R.Hamilton in 1843, quaternion algebra H is a non-commutative,
associative and division algebra.
The basis (1, i, j, k) of H satisfies:

i2 = j2 = k2 = i.j.k = −1.

Let x = x0 + x1.i+ x2.j + x3.k a quaternion where x0, x1, x2, x3 are real numbers.
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• Re(x) := x0 is called the real part of x.

• x is called a pure quaternion if Re(x) = 0.

• Im(x) := x1.i+ x2.j + x3.k is called the imaginary part of x. We will identify Im(x) with
the element (x1, x2, x3) of R3.

• x = x0 − x1.i− x2.j − x3.k is the conjugate and |x| =
√
x2

0 + x2
1 + x2

2 + x2
3 is the module

(norm) of x and we have

∀x, y ∈ H : |x| = |x|, x.y = y.x, x.x = x.x = |x|2.

• Let Sp(1) = {k ∈ H/ |k| = 1} the subgroup (of (H−{0},×)) of the quaternions of module
1. It is isomorphic to the SO(3) group [2].

Let Hq := H×R3 = {(x, t) / x ∈ H, t ∈ R3} equipped with the following product

(x, t).(y, s) = (x+ y, t+ s− 2Im(yx)).

Then Hq becomes a non-commutative Lie group, called the quaternionic Heisenberg group.
Let dxdt be the Lebesgue measure defined on Hq, the inner product of L2(Hq, dxdt) is defined
as follows :

∀f, g ∈ L2(Hq, dxdt) : 〈f, g〉 =
∫
Hq
f(x, t)g(x, t)dxdt.

Note that the pair (Hq, Sp(1)) is a Gelfand pair [6].

• We define the translation operators by

T(x,t) : (x′, t′) 7−→ (x+ x′, t+ t′ − 2Im(x′x)) = (x, t).(x′, t′)

Since H is noncommutative, we define left translation and right translation which are dif-
ferent. Here translation means left translation.

• The dilation operators is defined by

Tρ : (x′, t′) 7−→ (
√
ρx′, ρt′), ρ > 0

This dilation plays the role of a homothety.

• For u, v ∈ Sp(1), we define the operator Tu,v on Hq by

Tu,v : (x′, t′) 7−→ (ux′v, vt′v).

Tu,v can be considered as the rotation transformation on Hq [8].

• Let G = {(x, t, ρ, u, v) / (x, t) ∈ Hq, ρ > 0, u, v ∈ Sp(1)} with the product

u1.u2 = (T(x1,t1)Tρ1Tu1,v1(x2, t2), ρ1ρ2, u1u2, v1v2),

where u1 = (x1, t1, ρ1, u1, v1) and u2 = (x2, t2, ρ2, u2, v2).

This group G act on Hq by

(x, t, ρ, u, v)(x′, t′) = (x+
√
ρux′v, t+ ρvt′v − 2

√
ρIm(vx′ux))

= T(x,t)TρTu,v(x
′, t′).

Then (x, t, ρ, u, v) will be identified with T(x,t)TρTu,v, so we will consider G instead of the
affine automorphism group of Hq.
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• G is locally compact non-unimodular group with the left Haar measure

dm(x, t, ρ, u, v) =
dxdtdρdudv

ρ6 ,

where du and dv are the normalized Haar measures of group Sp(1).

Consider the unitary representation π of G on L2(Hq) defined by ([8])

π(x, t, ρ, u, v)F = ρ−5/2.F.T 1
ρ
.Tu,v.T(−x,−t)

precisely we have

π(x, t, ρ, u, v)F (x′, t′) = ρ−5/2F

(
u(x′ − x)v
√
ρ

,
v(t′ − t+ 2Im(x′x))v

ρ

)
.

Given a non-zero pure quaternion λ (λ ∈ R3\{0}), then the map Jλ : q 7−→ q λ̃ define a
complex structure of H, where λ̃ = λ

|λ| , [14]. Consider the Fock space Fλ of all holomorphic
functions F on (H, Jλ) ≈ C2 such that

‖F‖2 =

∫
H
|F (q)|2e−2|λ||q|2dq <∞.

Every irreducible, infinite dimensional, unitary representation of Hq is unitarly equivalent to one
and only one of the following unitary representation πλ(x, t) of Hq on Fλ defined by

∀F ∈ Fλ, πλ(x, t)F (q) := ei〈λ,t〉 e−|λ|(|x|
2+2〈q,x〉−2i〈qλ̃,x〉)F (q + x).

We associate to a integrable and square integrable function f on Hq, the Fourier transform

f̂(λ) :=
∫
Hq
f(x, t) πλ(x, t)dxdt.

f̂(λ) is a bounded operator onFλ and ‖f̂(λ)‖∞ 6 ‖f‖1. Moreover, f̂(λ) is a Hilbert-Schmidt
operator.

Let S2 denote the Hilbert space of Hilbert-Schmidt operators on L2(Hq, dxdt) with the inner
product 〈T, S〉 = Trace(T.S∗) (where S∗ is the adjoint operator of S) and dσ(λ) be the measure
defined on R3\{0} by dσ(λ) = |λ|2

2π5 dλ [3].

The Fourier transform can be extended to an isometric isomorphism between L2(Hq) and
L2(R3\{0}, S2, dσ), the space of functions on R3\{0} taking values in S2 and square integrable
with respect to measure dσ. Furthermore we have (see [3, 13])

• The Plancherel theorem for the Heisenberg group Hq is given by

∀f ∈ L2(Hq) ∩ L1(Hq),

∫
Hq
|f(x, t)|2 dxdt =

∫
R3\{0}

‖f̂(λ)‖2
H.Sdσ(λ),

where ‖ ‖H.S is a Hilbert-Schmidt norm.
• The inversion Fourier transform for the Heisenberg group Hq is given by

∀f ∈ S(Hq), f(x, t) =

∫
R3\{0}

Trace(π∗λ(x, t)f̂(λ))dσ(λ),

where S(Hq) is the Schwartz space on Hq.
• The convolution product of two integrable functions f and g on Hq is defined by

f ∗ g(x, t) =
∫
Hq
f(y, s)g((−y,−s).(x, t))dyds.
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Let ∆ be the sub-Laplacian on Hq (see [6] for its definition) and for m ∈ N, we consider

Hm =
{
f ∈ L2(Hq) / ∆̂f(λ) = −8(m+ 1)|λ|f̂(λ)

}
Theorem 2.1. ([8]) Hm is an irreducible invariant closed subspace of L2(Hq) under the unitary
representation π of G, and we have

L2(Hq) =
+∞⊕
m=0

Hm. (2.1)

3 Continuous wavelet transform

Let φ ∈ L2(Hq), by the decomposition (2.1), we have

φ =
+∞∑
m=0

φm, φm ∈ Hm

If there exists a constant Cφ, which is independent of m, such that

1
m+ 1

∫
R3\{0}

‖φ̂m(λ)‖2
H.S

dλ

|λ|3
= Cφ < +∞ for all m ∈ N,

we say that φ is an admissible wavelet in L2(Hq) for π [8].

Example 3.1. For r > 0, let η(r) = e−r−1
r2+1 and consider the function φ defined by

φ̂(λ) =
+∞∑
m=0

η((m+ 1)|λ|)Pλ,m,

where Pλ,m is the orthogonal projection operator from Fλ to Fλ,m,the subspace of Fλ which
consists of all homogeneous polynomials of degree m in q ∈ C2.
We show that φ is admissible wavelet, moreover φ is a radial function (see [8, p.12-13] and with
here η(r) = e−r−1

r2+1 ).

Definition 3.2. (Wavelet transform, [8]) We define the continuous wavelet transform of f ∈
L2(Hq) by

Wφf(x, t, ρ, u, v) = 〈f, π(x, t, ρ, u, v)φ〉L2(Hq). (3.1)

Remark 3.3.

• The continuous wavelet transform is a voice transform on L2(Hq).

• For (x, t, ρ, u, v) ∈ G, we have

|Wφf(x, t, ρ, u, v)| 6 ‖f‖2 ‖φ‖2. (3.2)

Then Wφf ∈ L∞(G) and ‖Wφf‖∞ 6 ‖f‖2 ‖φ‖2.

Theorem 3.4. (Plancherel formula, [8]) Suppose φ is an admissible wavelet, then

‖Wφf‖L2(G,dm) = C
1/2
φ ‖f‖L2(Hq), f ∈ L2(Hq). (3.3)

Theorem 3.5. (Inversion formula,[8]) Suppose φ is an admissible wavelet and f ∈ L2(Hq), then

f(x, t) =
1
Cφ

∫
G

Wφf(y, s, ρ, u, v)π(y, s, ρ, u, v)φ(x, t)dm(y, s, ρ, u, v). (3.4)
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4 Uncertainty principles for wavelet transform

Theorem 4.1 (Lieb inequality). Let ψ and φ be two admissible wavelets in L2(Hq) for π. For
p ∈ [1;+∞[ and f, g in L2(Hq), the function

(x, t, ρ, u, v) 7−→Wφf(x, t, ρ, u, v)Wψg(x, t, ρ, u, v)

belong to (Lp(G), dm) and

‖WφfWψg‖(Lp(G),dm) 6 (CφCψ)
1

2p (‖φ‖2‖ψ‖2)
p−1
p ‖f‖2‖g‖2. (4.1)

Proof.

• According to Cauchy-Schwartz inequality and Plancherel theorem (3.3) for the continuous
wavelet transform Wφ and Wψ and for every f, g in L2(Hq), we get∫

G

|Wφf(x, t, ρ, u, v)Wψg(x, t, ρ, u, v)|dm(x, t, ρ, u, v) 6 ‖Wφf‖2 ‖Wψg‖2

6
√
Cφ.Cψ ‖f‖2 ‖g‖2.

• According to Cauchy-Schwartz inequality and (3.2), for every (x, t, ρ, u, v) ∈ G we have

|Wφf(x, t, ρ, u, v)Wψg(x, t, ρ, u, v)| 6 ‖φ‖2 ‖ψ‖2 ‖f‖2 ‖g‖2.

• For p ∈ [1;+∞[, we have∫
G

|Wφf(x, t, ρ, u, v)Wψg(x, t, ρ, u, v)|pdm(x, t, ρ, u, v)

6 (‖φ‖2 ‖ψ‖2 ‖f‖2 ‖g‖2)
p−1

∫
G

|Wφf(x, t, ρ, u, v)Wψg(x, t, ρ, u, v)|dm(x, t, ρ, u, v)

6 (‖φ‖2 ‖ψ‖2 ‖f‖2 ‖g‖2)
p−1

√
Cφ.Cψ ‖f‖2 ‖g‖2

6 (‖φ‖2 ‖ψ‖2)
p−1

√
Cφ.Cψ (‖f‖2 ‖g‖2)

p,

then

‖WφfWψg‖(Lp(G),dm) 6 (CφCψ)
1

2p (‖φ‖2‖ψ‖2)
p−1
p ‖f‖2‖g‖2.

Proposition 4.2. Let φ be an admissible wavelet for π in L2(Hq) and p ∈ [2;+∞[∪{+∞}. For
every f in L2(Hq), the function Wφf belong to Lp(G) and

‖Wφf‖p 6 C
1
p

φ ‖φ‖
1− 2

p

2 ‖f‖2. (4.2)

Proof. For p = +∞, the result is deduced from the formula (3.2).
Let p > 2, then b = p

2 is in [1;+∞[. By taking in the inequality (4.1) of the previous theorem
(Lieb inequality) f = g and φ = ψ, we obtain

‖(Wφf)
2‖(Lb(G),dm) 6 C

1
b

φ ‖φ‖
2 b−1
b

2 ‖f‖2
2,

therefore (∫
G

|Wφf(x, t, ρ, u, v)|2bdm(x, t, ρ, u, v)

) 1
b

6 C
1
b

φ ‖φ‖
2(1−1/b)
2 ‖f‖2

2,

we obtain
‖Wφf‖2

Lp(G) 6 C
2
p

φ ‖φ‖
2(1−2/p)
2 ‖f‖2

2,

so
‖Wφf‖p 6 C

1
p

φ ‖φ‖
1− 2

p

2 ‖f‖2.
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Proposition 4.3. If φ ∈ L2(Hq) is an admissible wavelet for π such that

Wφ(φ) ∈ L1(Hq) and Cφ = 1,

then for f ∈ L2(Hq)
Wφ(f) ∗Wφ(φ) =Wφ(f), (4.3)

where ” ∗ ” is the convolution product in L2(G).

Proof. Let y in G,

Wφ(f) ∗Wφ(φ)(y) =

∫
G

Wφ(f)(x)Wφ(φ)(x
−1y)dm(x)

=

∫
G

〈f, π(x)φ〉〈φ, π(x−1y)φ〉dm(x)

=

∫
G

〈f, π(x)φ〉〈π(y)φ, π(x)φ〉dm(x)

= C2
φ〈f, π(y)φ〉 (according to the formula (3.3))

= Wφ(f)(y),

then Wφ(f) ∗Wφ(φ) =Wφ(f).

Remark 4.4. With the previous hypotheses of proposition 4.3, the set S = rang(Wφ) is a closed
subspace of L2(G) and the above proposition identifies S as a reproducing kernel Hilbert space.

Definition 4.5. A function F in L2(G) is α-concentrated (α > 0) on a measurable set Ω ⊆ G if(∫
G\Ω
|F (x, t, ρ, u, v)|2dm(x, t, ρ, u, v)

) 1
2

6 α‖F‖2. (4.4)

Theorem 4.6 (Donoho-Stark for Wφ). Let α > 0, φ be an admissible wavelet for π and let
f ∈ L2(Hq) such that f 6= 0. If Wφf is α-concentrated on a measurable set Ω ⊆ G hence , we
have

µ(Ω) > Cφ
1− α2

‖φ‖2
2
. (4.5)

Where µ(Ω) is the measure of Ω to respecte the measure dm.

Proof. We have
‖Wφf‖2

2 = ‖χΩWφf‖2
2 + ‖χG\ΩWφf‖2

2,

where χE denote the indicator function of the set E.
Since Wφf is α-concentrated on Ω and according the Plancherel formula (3.3), we get

Cφ‖f‖2
2 6 ‖χΩWφf‖2

2 + α2‖Wφf‖2
2

6 ‖χΩWφf‖2
2 + α2.Cφ‖f‖2

2,

then

(1− α2)Cφ‖f‖2
2 6

∫
G

χΩ(x, t, ρ, u, v)|Wφf(x, t, ρ, u, v)|2dm(x, t, ρ, u, v)

6 ‖Wφf‖2
∞

∫
G

χΩ(x, t, ρ, u, v)dm(x, t, ρ, u, v)

6 ‖f‖2
2 ‖φ‖2

2 µ(Ω), (using the inequality (3.2)).

thus, we deduce the desired result.
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Theorem 4.7 (Lieb uncertainty principle). Let α ∈ [0; 1], φ be an admissible wavelet for π and
let f ∈ L2(Hq) such that f 6= 0. If Wφf is α-concentrated on a measurable set Ω ⊆ G hence
for p > 2, we have

µ(Ω) > Cφ
(1− α2)

p
p−2

‖φ‖2
2

. (4.6)

Proof. Let I =
∫
G
χΩ(x, t, ρ, u, v)|Wφf(x, t, ρ, u, v)|2dm(x, t, ρ, u, v), using the Hôlder inequal-

ity, we have

I 6
(∫

G

|Wφf(x, t, ρ, u, v)|pdm(x, t, ρ, u, v)

) 2
p
(∫

G

χΩ(x, t, ρ, u, v)
p
p−2 dm(x, t, ρ, u, v)

) p−2
p

6 ‖Wφf‖2
Lp(G)(µ(Ω))

p−2
p

6
(
C

1
p

φ ‖φ‖
1− 2

p

2 ‖f‖2

)2

(µ(Ω))
p−2
p (by (4.2))

6 C
2
p

φ ‖φ‖
2− 4

p

2 ‖f‖2
2(µ(Ω))

p−2
p .

However, we have already shown in the previous proof that

(1− α2)Cφ‖f‖2
2 6 ‖χΩWφf‖2

2,

then
(1− α2)Cφ 6 C

2
p

φ ‖φ‖
2− 4

p

2 (µ(Ω))
p−2
p ,

we then obtain

µ(Ω) > Cφ
(1− α2)

p
p−2

‖φ‖2
2

.

In the following, we will present theorems of concentration of wavelet transform on sub-
sets of G of finite measure, similar to those proven in [16] and [5].

Let φ ∈ L2(Hq) be an admissible wavelet for π and Pφ is the orthogonal projection on
S = rang(Wφ) (i.e. the base projection S = rang(Wφ) and direction the orthogonal to S =
rang(Wφ)).

Let Ω be a measurable subset of G such that 0 < µ(Ω) < +∞, and consider the operator PΩ

defined by PΩF = χΩF for F ∈ L2(G).

The operator norm of PΩPφ is defined by

‖PΩPφ‖op = sup
{
‖PΩPφF‖L2(G) / F ∈ L2(G) and ‖F‖2 6 1

}
Theorem 4.8. If ‖PΩPφ‖op < 1 then for every f in L2(Hq), we have

√
Cφ‖f‖2 6

1√
1− ‖PΩPφ‖2

op

‖χG\ΩWφf‖L2(G) (4.7)

Proof. We have
‖Wφf‖2

2 = ‖χΩWφf‖2
2 + ‖χG\ΩWφf‖2

2,

and χΩWφf = PΩPφ(Wφf), then

‖χΩWφf‖2
2 6 ‖PΩPφ‖2

op‖Wφf‖2
2

6 ‖PΩPφ‖2
opCφ‖f‖2

2,
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so

‖χG\ΩWφf‖2
2 = ‖Wφf‖2

2 − ‖χΩWφf‖2
2

> Cφ‖f‖2
2 − ‖PΩPφ‖2

opCφ‖f‖2
2

= Cφ‖f‖2
2(1− ‖PΩPφ‖2

op).

We get the desired result.

Proposition 4.9. If Wφ(φ) ∈ L1(G) and Cφ = 1, then

‖PΩPφ‖2
op

‖φ‖2 6 µ(Ω). (4.8)

Proof. From formula (4.3),then

Wφf(x
′, t′, ρ′, u′, v′) =

∫
G

Wφf(x, t, ρ, u, v)Wφφ((x, t, ρ, u, v)
−1(x′, t′, ρ′, u′, v′))dm(x, t, ρ, u, v)

and

PΩPφ(Wφf)(x′, t′, ρ′, u′, v′) =

∫
G
Wφf(x, t, ρ, u, v)χΩ(x′, t′, ρ′, u′, v′)Wφφ((x, t, ρ, u, v)−1(x′, t′, ρ′, u′, v′))dm(x, t, ρ, u, v),

from this formula, PΩPφ is an integral operator and its Hilbert-Schmidt normN = ‖PΩPφ‖2
H.S

is given by

N =
∫
G

∫
G
|χΩ(x′, t′, ρ′, u′, v′)Wφφ((x, t, ρ, u, v)−1(x′, t′, ρ′, u′, v′))|2dm(x, t, ρ, u, v)dm(x′, t′, ρ′, u′, v′)

=
∫
G
χΩ(x′, t′, ρ′, u′, v′)

(∫
G
|Wφφ((x, t, ρ, u, v)−1(x′, t′, ρ′, u′, v′))|2dm(x, t, ρ, u, v)

)
dm(x′, t′, ρ′, u′, v′)

= µ(Ω)‖Wφφ‖2
2

= µ(Ω)Cφ‖φ‖2
2.

In particular and since Cφ = 1, we have:

‖PΩPφ‖2
op 6 ‖PΩPφ‖2

H.S 6 µ(Ω)‖φ‖2
2.

Remark 4.10. With the hypotheses and the notations of the two previous results, we find Donoho-
Stark’s theorem.

Definition 4.11 (Entropy). The entropy of a probability density function P on G is defined by

E(P ) = −
∫
G

ln(P (x, t, ρ, u, v)) P (x, t, ρ, u, v)dm(x, t, ρ, u, v). (4.9)

Remark 4.12. Entropy plays an important role in several areas of physics, to better understand its
physical meaning, see [1]. Entropy represents an advantageous means of measuring the decrease
of a function f , so it was very interesting to locate the entropy of a probability measure and one
of its transforms.
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Theorem 4.13 (Beckner’s u.p in terms of entropy for Wφ). Let φ be an admissible wavelet for π.
Then for all f ∈ L2(Hq) such that f 6= 0, we have

E(|Wφf |2) > Cφ ‖f‖2 ln
(

1
‖φ‖2

2 ‖f‖2
2

)
. (4.10)

Proof. Assume that ‖φ‖2 = ‖f‖2 = 1, then by relation (3.2) we deduce that

∀(x, t, ρ, u, v) ∈ G, |Wφf(x, t, ρ, u, v)| 6 ‖φ‖2 ‖f‖2 = 1,

then ln(|Wφf(x, t, ρ, u, v)|) 6 0, in particular E(|Wφf |) > 0.

• Therefore if the entropy E(|Wφf |) = +∞, then the inequality (4.10) holds trivially.

• Suppose now that the entropy E(|Wφf |) < +∞.

Let a ∈ [0; 1]. The study of the variations of the function p 7−→ a2−ap
p−2 over the interval ]2; 3]

gives

Lemma 4.14. For all a ∈ [0; 1] and for all p ∈]2; 3], we get

0 6
a2 − ap

p− 2
6 −a2 ln(a).

Then, for all (x, t, ρ, u, v) ∈ G and p ∈]2; 3], we have

0 6
|Wφf(x, t, ρ, u, v)|2 − |Wφf(x, t, ρ, u, v)|p

p− 2
6 −|Wφf(x, t, ρ, u, v)|2 ln (|Wφf(x, t, ρ, u, v)|) .

(4.11)
Let H be the function defined on [2; 3] by

H(p) =

∫
G

|Wφf(x, t, ρ, u, v)|pdm(x, t, ρ, u, v)− Cφ.

According to inequality (4.2), we have H(p) 6 0. Moreover H(2) = 0, then H(p) 6 H(2)
and

(
dH
dp

)
p=2+

6 0, whenever this derivative is well defined.

(
dH

dp

)
p=2+

= lim
p→2
p>2

∫
G

|Wφf(x, t, ρ, u, v)|2 − |Wφf(x, t, ρ, u, v)|p

p− 2
dm(x, t, ρ, u, v)

by Lebesgue’s dominated convergence theorem and (4.11)

=

∫
G

lim
p→2
p>2

|Wφf(x, t, ρ, u, v)|2 − |Wφf(x, t, ρ, u, v)|p

p− 2
dm(x, t, ρ, u, v)

=
1
2

∫
G

|Wφf(x, t, ρ, u, v)|2 |ln (|Wφf(x, t, ρ, u, v)|)|2 dm(x, t, ρ, u, v)

= −1
2
E(|Wφf |2),

so we get E(|Wφf |2) > 0.

For the general case, let h = f
‖f‖2

and ψ = φ
‖φ‖2

, from where

Wψ(h)(x, t, ρ, u, v) =
Wφf(x, t, ρ, u, v)

‖f‖2 ‖φ‖2
,
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and

0 6 E(|Wψ(h)|2)

= −
∫
G

ln(|Wψ(h)(x, t, ρ, u, v)|2) |Wψ(h)(x, t, ρ, u, v)|2dm(x, t, ρ, u, v)

= −
∫
G

ln
(
|Wφf(x, t, ρ, u, v)|2

‖f‖2
2 ‖φ‖2

2

) ∣∣∣∣Wφf(x, t, ρ, u, v)

‖f‖2 ‖φ‖2

∣∣∣∣2 dm(x, t, ρ, u, v)

= −
∫
G

(
ln(|Wφf(x, t, ρ, u, v)|2)− ln(‖f‖2

2 ‖φ‖2
2)
) ∣∣∣∣Wφf(x, t, ρ, u, v)

‖f‖2 ‖φ‖2

∣∣∣∣2 dm(x, t, ρ, u, v)

=
E(|Wφf |2)
‖f‖2

2 ‖φ‖2
2
+ ln(‖f‖2

2 ‖φ‖2
2)

Cφ

‖φ‖2
2

=
E(|Wφf |2)
‖f‖2

2 ‖φ‖2
2
− ln

(
1

‖f‖2
2 ‖φ‖2

2

)
Cφ

‖φ‖2
2
,

we deduce that
E(|Wφf |2) > Cφ ‖f‖2

2 ln
(

1
‖φ‖2

2 ‖f‖2
2

)
.

5 Conclusion

In this article, after recalling the definitions and fundamental properties of Fourier transform on
the Heisenberg quaternion group Hq, we introduced the wavelet transform on the affine automor-
phism group of Hq and its inversion formula,then we have proved some qualitatives uncertainty
principles: Lieb inequality, Donoho-Stark’s uncertainty principle....We soon hope to determine
a version of Hardy and Beurling’s theorem for this transform.
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