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Abstract We consider hypersphere x = x(u, v, w) in the four dimensional Euclidean space.
We calculate the Gauss map, and the curvatures of it. Moreover, we obtain the Laplace-Beltrami
operator the hypersphere satisfying Ax =.Ax, where A € Mat (4,4).

1 Introduction

With the works of Chen [10, 11, 12, 13], the studies of submanifolds of finite type whose immer-
sion into E™ (or E") by using a finite number of eigenfunctions of their Laplacian have been
studied for almost a half century.

Takahashi [49] gave that a connected Euclidean submanifold is of 1-type, iff it is either min-
imal in E™ or minimal in some hypersphere of E™. Submanifolds of finite type closest in
simplicity to the minimal ones are the 2-type spherical submanifolds (where spherical means
into a sphere). Some results of 2-type spherical closed submanifolds were given by [7, 8, 11].
Garay studied [25] an extension of Takahashi’s theorem in E”. Cheng and Yau [16] introduced
hypersurfaces with constant scalar curvature; Chen and Piccinni [14] focused submanifolds with
finite type Gauss map in E™. Lawson [37] gave minimal submanifolds in the lecture notes.
Dursun [20] considered hypersurfaces with pointwise 1-type Gauss map in E"*+1.

In [E?; Takahashi [49] proved that minimal surfaces and spheres are the only surfaces satis-
fying the condition Ar = Ar, A € R; Ferrandez, Garay, and Lucas [22] found that the surfaces
satisfying AH = AH, A € Mat(3,3) are either minimal, or an open piece of sphere or of a right
circular cylinder; Choi and Kim [17] classified the minimal helicoid in terms of pointwise 1-type
Gauss map of the first kind; Garay [24] studied a certain class of finite type surfaces of revolu-
tion; Dillen, Pas and Verstraelen [18] obtained that the only surfaces satisfying Ar = Ar + B,
A€ Mat(3,3), B € Mat(3, 1) are the minimal surfaces, the spheres and the circular cylinders;
Stamatakis and Zoubi [48] focused surfaces of revolution satisfying A’z = Ax; Senoussi and
Bekkar [41] gave helicoidal surfaces M? which are of finite type with respect to the fundamental
forms I, 11 and II1, i.e., their position vector field r(u,v) satisfies the condition A'r = Ar,
J=1,II,11I, where A € Mat(3,3); Kim, Kim, and Kim [34] introduced Cheng-Yau operator
and Gauss map of surfaces of revolution. Recently, Shaikh et. al [42, 43, 44, 45, 46, 47] initiated
the study of surface curves in a different way, especially, rectifying, osculating and normal curves
on a surface by considering isometry and conformal map between two surfaces and investigated
their invariancy under such maps.

In E*; Moore [39, 40] considered general rotational surfaces; Hasanis and Vlachos [31] stud-
ied hypersurfaces with harmonic mean curvature vector field; Cheng and Wan [15] gave com-
plete hypersurfaces with C M C'; Kim and Turgay [35] worked surfaces with L;-pointwise 1-type
Gauss map; Arslan et. al. [3] introduced Vranceanu surface with pointwise 1-type Gauss map;
Arslan et. al. [4] worked generalized rotational surfaces; Aksoyak and Yayh [32] studied flat
rotational surfaces with pointwise 1-type Gauss map; Giiler, Magid, and Yayli [29] introduced
helicoidal hypersurfaces; Giiler, Hacisalihoglu, and Kim [28] worked Gauss map and the third
Laplace-Beltrami operator of the rotational hypersurface; Giiler and Turgay [30] worked Cheng-
Yau operator and Gauss map of rotational hypersurfaces; Altin, Kazan, and Karadag [2] stud-
ied Monge hypersurfaces with density; Giiler [27] obtained rotational hypersurfaces satisfying
A'R = AR, where A € Mat(4,4). He [26] also worked fundamental form /V and curvature
formulas of the hypersphere.
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In Minkowski 4-space E*; Ganchev and Milousheva [23] studied analogue of surfaces of
[39, 40]; Arvanitoyeorgos, Kaimakamais, and Magid [6] indicated that if the mean curvature
vector field of M 13 satisfies the equation AH = aH (« a constant), then M f’ has CMC; Arslan
and Milousheva introduced meridian surfaces of elliptic or hyperbolic type with pointwise 1-
type Gauss map; Turgay considered some classifications of Lorentzian surfaces with finite type
Gauss map; Dursun and Turgay worked space-like surfaces in with pointwise 1-type Gauss map.
Aksoyak and Yayli [33] gave general rotational surfaces with pointwise 1-type Gauss map in
[£3. Bektas, Canfes, and Dursun [9] obtained surfaces in a pseudo-sphere with 2-type pseudo-
spherical Gauss map in [E3.

We consider hypersphere in the four dimensional Euclidean geometry E*. In Section 2, we
give some basic notions of the four dimensional Euclidean geometry. We consider curvature
formulas of a hypersurface in E*, in Section 3. In Section 4, we define hypersphere. Finally, we
study hypersphere satisfying Ax =.Ax for some 4 x 4 matrix A in E* in the last section.

2 Preliminaries

In this section, giving some of basic facts and definitions, we describe notations used whole pa-

per. Let E™ denote the Euclidean m-space with the canonical Euclidean metric tensor given by
m

g=1{(,) =Y dx? where (z1,72,...,2,,) is a rectangular coordinate system in E™. Consider
i=1

an m-dimensional Riemannian submanifold of the space E”. We denote the Levi-Civita con-
nections of E” and M by V and V, respectively. We shall use letters X, Y, Z, W (resp., £,7)
to denote vectors fields tangent (resp., normal) to M. The Gauss and Weingarten formulas are
given, respectively, by

VxY = VxY+h(X,Y), 2.1)
Vxé —A¢(X) + Dx¢, (2.2)

where h, D and A are the second fundamental form, the normal connection and the shape oper-
ator of M, respectively.

Foreach ¢ € T;— M, the shape operator A¢ is a symmetric endomorphism of the tangent space
T,M atp € M. The shape operator and the second fundamental form are related by

(h(X,Y),§) = (A X,Y).
The Gauss and Codazzi equations are given, respectively, by

where R, RP are the curvature tensors associated with connections V and D, respectively, and
Vh is defined by

(Vxh)(Y,Z) = Dxh(Y,Z) — hMVxY,Z) — h(Y,VxZ).

2.1 Hypersurfaces of Euclidean space

Now, let M be an oriented hypersurface in the Euclidean space E"*!, S its shape operator
(i.e. Weingarten map) and z its position vector. We consider a local orthonormal frame field
{e1,ea,...,e,} of consisting of principal directions of M corresponding from the principal cur-
vature k; for i = 1,2,...n. Let the dual basis of this frame field be {6;,6,,...,0,}. Then the
first structural equation of Cartan is

delzzej/\w’bjﬁ Z'7j:1,2,...7n, (2‘5)

i=1
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where w;; denotes the connection forms corresponding to the chosen frame field. We denote

the Levi-Civita connection of M and E""! by V and v, respectively. Then, from the Codazzi
equation (2.3), we have

ei(k;) = wij(e;)(ki —k;), (2.6)
wij (6[)([6'1 — k]) = wil(ej)(ki — kl) (27)

for distinct 4, 5,0l = 1,2,...,n.
We put s; = o (ki, ka, . .., k), Where o is the j-th elementary symmetric function given by

ojlar,az, ... an) = E i\ Gy - - - Q-
1<41<i2<...,1;<n

We use following notation

’I”g = Uj(kl,kz, Ce aki—laki+l;ki+27 e ,kn)
By the definition, we have r? = 1and sp41 = Spt2 = --- = 0. We call the function s, as the
k-th mean curvature of M. We would like to note that functions H = %51 and K = s,, are called
the mean curvature and Gauss-Kronecker curvature of M, respectively. In particular, M is said
to be j-minimal if s; = 0 on M.

In E**!, to find the i-th curvature formulas €; (Curvature formulas sometimes are represented
as mean curvature H;, and sometimes as Gaussian curvature K; by different writers, such as [1]
and [36]. We will call it just i-th curvature €; in this paper.), where i = 0, .., n, firstly, we use the
characteristic polynomial of S:

Ps(A) =0=det(S — AL,) = > _ (—1)" sp A", (2.8)
k=0

where i = 0,..,n, I,, denotes the identity matrix of order n. Then, we get curvature formulas
(")€; = s4,. Thatis, ({;)€ = so = 1 (by definition), (7)€ = s1,..., ()€, =5, = K.

k-th fundamental form of M is defined by I (S~ (X),Y) = (S*~!(X),Y). So, we have

S (-1y (’Z) ¢,1 (8" (X),Y) =0. (2.9)
=0
In particular, one can get classical result €oI1I — 2,11 4 €, = 0 of surface theory for n = 2.
See [36] for details.

For a Euclidean submanifold z: M — E™, the immersion (M, x) is called finite type, if
x can be expressed as a finite sum of eigenfunctions of the Laplacian A of (M, z), i.e. x =
Ty + Zle x;, where x( is a constant map, zi,...,x; non-constant maps, and Az; = A;z;,
Ai € Ryi=1,... k. If \; are different, M is called k-type. See [11] for details.

2.2 Rotational hypersurfaces

We will obtain a rotational hypersurface (rot-hypface for short) in Euclidean 4-space. Before we
proceed, we would like to note that the definition of rot-hypfaces in Riemannian space forms
were defined in [19]. A rot-hypface M C E"*! generated by a curve C around an axis C that
does not meet C is obtained by taking the orbit of C under those orthogonal transformations of
E™*! that leaves t pointwise fixed (See [19, Remark 2.3]).

Throughout the paper, we shall identify a vector (a, b, ¢, d) with its transpose. Consider the
case n = 3, and let C be the curve parametrized by

Y(w) = (f(w),0,0,¢0 (w)). (2.10)

If v is the z4-axis, then an orthogonal transformations of E"*! that leaves t pointwise fixed has
the form

cosucosv —sinu —cosusinv O
sinucosv cosu —sinusinv O
Z(v,w) = . , u,v €R. (2.11)
sinv 0 cosv 0
0 0 0 1
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Therefore, the parametrization of the rot-hypface generated by a curve C around an axis t is given
by

x(u, v, w) = Z(u,v)y(w). (2.12)
Definition 2.1. Let x = x(u, v, w) be an immersion from M3 C E? to E*. In E*, inner product
is defined by

<?a 7) = Z1Y1 + T2Y2 + T3Y3 + T4Ya,
and triple vector product is given by
er e ez e4

7><7><7:det ot
oy oyous |

Z1 z2 z3 z4

where 7 == ($17$2,£L’3,CE4), 7 - (311792731373/4)’ ? == (Z17Z27Z3724)'

Definition 2.2. For a hypface x in 4-space, we have

E F A L M P
I=| F G B |,II=| M N T |, (2.13)
A B C P T V
and
detl = (EG - F?)C - EB>+2FAB —GA?,
detIl = (LN -M*)V —LT*+2MPT - NP?,

where [ and II are the first and the second fundamental form matrices, respectively, where
E=xy %y, F =%y Xy, G =Xy - Xy A =Xy " Xy, B=Xy - Xy, C = Xy * Xy, L = Xy - €,
M =Xyp e, N =Xyp- € P=Xyy- €T =Xyy- €, V =Xy, - e. Here,

Xy X Xy X Xy

e (2.14)

X X Xy X Xo|
is unit normal (i.e. the Gauss map) of hypface x.

Definition 2.3. Product matrices I~'-IT gives the matrix of the shape operator S of hypface x in
4-space as follows
1 S11 812 813
S = sl R E (2.15)
531 832 833
where
detI = (EG — F*)C — A*G + 2ABF — B’E,

si1 = ABM —CFM — AGP 4+ BFP + CGL — B?L,

s = ABN —CFN — AGT + BFT + CGM — B*M,
s;3 = ABT —CFT — AGV + BFV + CGP — B*P,

$51 = ABL—CFL+ AFP — BPE+CME — A>M,
$;» = ABM —CFM + AFT — BTE + CNE — A%N,
s53 = ABP —CFP+ AFV — BVE 4 CTE — A°T,

s33 = —AGL+ BFL+ AFM — BME + GPE — F*P,
sy2 = —AGM + BFM + AFN — BNE + GTE — F*T,
s33 = —AGP+ BFP+ AFT — BTE +GVE — F*V.

See [28, 29, 30] for details.
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3 i-th Curvatures

To compute the i-th mean curvature formula ¢;, where ¢ = 0, .., 3, we use characteristic polyno-
mial Ps(\) = aX® +bA* + cA + d = 0:

Ps(X\) = det(S — AI3) = 0.

Then, obtain € = 1 (by definition), )&, = )H = -2, 3)¢, = ¢, ()& = K = <.

Therefore, we find i-th curvature folmulas depends on the coefficients of the fundamental
forms I and IT in 4-space. See [26] for details.

Theorem 3.1. Any hypface x in E* has following curvature formulas, €y = 1 (by definition),

{ (EN + GL — 2FM)C + (EG — F?)V — LB* — N A? }
—2(APG — BPF — ATF + BTE — ABM)

& = 3[(EG — F2)C — EB? + 2FAB — GA] ’ -1
{ (EN +GL —2FM)V + (LN — M?) C — ET? — GP® }
—2(APN — BPM — ATM + BTL — PTF)

3[(EG — F2)C — EB? + 2FAB — GA?] ’
(LN —M?*)V — LT*+2MPT — NP?

© = (BGC_F)0_EB {2FAB _GAT (33)

& o= (3.2)

Proof. Solving det(S — AI3) = 0 with some algebraic computations, we obtain coefficients
a, b, c, d of polynomial Ps()\). O

A hypersurface x in E* is €;—minimal, when ¢; = 0 identically on x.

4 Hypersphere

In this section, we define hypersphere, then find its differential geometric properties in E*.
For an open interval I C R, let v : I — Il be a curve in a plane IT in E*, and let ¢ be a
straight line in IT.

Definition 4.1. A rotational hypersurface in E* is called hypersphere, when a curve
y(w) = (rcosw,0,0,rsinw)

rotates by (2.11) around a line £ = (0,0,0, 1) (these are called the profile curve and the axis,
respectively).

So, the hypersphere which is spanned by the vector /, is as follows
x(u, v, w) = Z(u,v)7y(w) @.1)
in E*, where u, v, w € [0,27] . Therefore, more clear form of (4.1) is as follows

7 COS U COS U COS W
7 81N 14 COS U COS W
x(u,v,w) = rsinv cos w ’ (4.2)

rsinw

where 7 € R\{0} and 0 < u,v,w < 27. When w = 0, we have a sphere in E*.
Next, we obtain the curvatures and the Gaussian curvature of the hypersphere (4.2).
We get the first differentials of (4.2) with respect to u, v, w, respectively,

—r 8iN % COS ¥ COS W —7 COS U Sin v COS W
7 COS 1 COS U COS W —7 COS u Sin v COS w
Xu = b) X’U = b
0 7 COS U COS W

0 0
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and
—7 COS U COS v Sinw

—r Sin u COS v Sin w

Xw = . .
—rsinvsinw
T COS W
The first quantities of (4.2) are as follows
72 cos? v cos® w 0 0
1= 0 rfcostw 0O |. 4.3)
0 0 r?

We have detI = 7% cos? v cos* w. The line element of the hypersphere is given by
ds* = 1r* [(cos? vdu® + dv?) cos® w + dw?] .
Using (2.14), we get the Gauss map of the hypersphere (4.2) as follows

COS u COS v COS w

sin u cos v Cos w
e= ] . 4.4)
sin v cos w

sin w

The second differentials of (4.2) with respect to u, v, w, and the Gauss map (4.4) of the hyper-
sphere (4.2) , we have the second quantities as follows

—rcos? vcos?w 0 0
I = 0 —rcos2w O ) 4.5)
0 0 —r
32 4

So, we get detII = —r° cos® v cos™ w.
We calculate the shape operator matrix of the hypersphere (4.2) , using (2.15), as follows

0
L0

Finally, using

(3.1), (3.2) and (3.3) , with (4.3), (4.5), respectively, we find the curvatures of the
hypersphere (4.

1
2) as follows:

Corollary 4.2. Let x : M3 — E* be an immersion given by (4.2). Then M?> has constant
(mean) 1-curvature

¢ =H=—-.
T

Corollary 4.3. Let x : M3 — E* be an immersion given by (4.2). Then M?> has constant

2-curvature

1
& =—.
2 7"2

Corollary 4.4. Let x : M3 — E* be an immersion given by (4.2). Then M?> has negative
constant (Gaussian) 3-curvature
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5 Hypersphere satisfying Ax =.A4x

In this section, we give the Laplace-Beltrami operator of a smooth function, then calculate it
using hypersphere.
The inverse of the matrix

gin g1z 913
(95) = 921 G222 923
g31 932 933

is as follows

922933 — §23932
— (921933 — 931923)
921932 — 922931

- (912933 - 913932)
911933 — 913931
- (911932 - 912931)

912923 — g13922

— (91923 — 921913)
911922 — g12921

b
where

Q
\

det (gij)
= 911922933 — 911923932 + 912931923 — 912921933 T 921913932 — 913922931
Definition 5.1. The Laplace-Beltrami operator of a smooth function ¢ = ¢(z!,22,23) |p (D C

R?) of class C3 with respect to the first fundamental form of a hypersurface M is the operator A
which is defined by as follows

1 3
N

and g = det (g;5) .

<\[9” 6:1:1) ; (5.1)
where (¢7) = (gkl)fl

Clearly, we can write (5.1) as follows

1 ai(fgnw)

) )
(fgIZ ¢)+8(Zl (fg]3 ¢)
21 04 22 0¢ 1é) 23 0¢
Ap = NG 3962 V99 Fr +83:2 V99757 ) — 52 (V997 5.3 . (5.2)
) 310 320 ) 330
+w\f91¢**\f937?3+w\/§93%

So, we get the inverse of (4.3) as follows

. CG-B2 AB-CF BF - AG
*lzﬁ AB—-CF CE-A* AF-BE |,
BF — AG AF — BE EG — F?

where detI = (EG — F?)C — A%G + 2ABF — B*E. Hence, more clear notation of (5.2) for a
smooth function ¢ = ¢(u, v, w) is as follows

9 (CG-B*)¢u—(AB—CF)¢,+(BF—AG)$
du /ldetI|
B 1 o [ (AB—CF)p,—(CE—A?)$,+(AF—BE)¢u,
A= e ( ] (5.3)
L0 (BF—AG)¢y—(AF—BE)py+(EG—F)$u,
ow V/]det ]

We continue our calculations to find the Laplace-Beltrami operator Ax of the hypersphere x
using (4.2) and (5.3).

The Laplace-Beltrami operator of the hypersphere (4.2) is given by

1 0 0 0
=— | =—U-=—V+—W|, 5.4
\/|det I <8u ov ow ) 54
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where

(CG— BZ) xy — (AB — CF)x, + (BF — AG) x4

u = ’
\/|detI]

v o_ (AB—-CF)x, — (CE — A?)x, + (AF — BE) %,
\/|detI] ’

W o= (BF — AG)x, — (AF — BE)x, + (EG — F?) x,

/|det]I]

Here, A = B = F = 0. Hence, we briefly can write U, )W, WV, as follows

u—_%¢ oy __CE o _EG
VdetT] " VldetT] " VdetT]

Finally, substituting 24, 2V, 2 (W) into (5.4) , we get

Axy —%cosucosvcosw

Ax, —3 sinwucosvcosw
Ax = = "y

Ax; —=sinvcosw

AX4 —% sin w

Therefore, we have following results:

Corollary 5.2. Let x : M3 — E* be an immersion given by (4.2). Then x has
Ax = 3¢e,

where € and e are the mean 1-curvature and the Gauss map, respectively.

Corollary 5.3. Let x : M3 — E* be an immersion given by (4.2). Then x has
Ax = =3 () e,
where €, and e are the 2-curvature and the Gauss map, respectively.
Corollary 5.4. Let x : M> — E* be an immersion given by (4.2). Then x has
Ax =3 (@3)1/3 e,
where €3 and e are the 3-curvature and the Gauss map, respectively.
Corollary 5.5. Let x : M> — E* be an immersion given by (4.2). Then x has
Ax = Ax,

where s
A= =3O I =-38L = -3(€) &l =-3((©) ' &) L,
and A € Mat (4,4), Iy = diag(1,1,1,1).

Acknowledgement. The authors would like to thank the referees for their valuable sugges-
tions and critical remarks for improving this paper.
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