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Abstract An operator T acting on a Banach space X obeys property (t) if the isolated points
of the spectrum σ(T ) of T which are eigenvalues of finite multiplicity are exactly those points λ
of the spectrum for which T −λ is an upper semi-Fredholm with index less than or equal to 0. In
the present paper we examine the stability of property (t) under perturbations. We show that if
T is an isoloid operator on a Banach space, that obeys property (t), and F is a bounded operator
that commutes with T and for which there exists a positive integer n such that Fn is finite rank,
then T + F obeys property (t). Further, we establish that if T is finite-isoloid, then property
(t) is transmitted from T to T + R, for every Riesz operator R commuting with T. Property (t)
does not transfer from operators T and S to their tensor product T ⊗S; we give necessary and/or
sufficient conditions ensuring the passage of property (t) from T and S to T ⊗ S. Moreover,
Perturbations by Riesz operators are considered.

1 Introduction

Throughout this paper, X denotes an infinite-dimensional complex Banach space, B(X ) the al-
gebra of all bounded linear operators on X . For T ∈ B(X ), let T ∗, ker(T ), <(T ), σ(T ), σa(T )
and σs(T ) denote the adjoint, the null space, the range, the spectrum, the approximate point
spectrum and the surjectivity spectrum of T respectively. Let α(T ) and β(T ) be the nullity and
the deficiency of T defined by α(T ) = dim ker(T ) and β(T ) = co − dim<(T). Let SF+(X ) =
{T ∈ B(X ) : α(T ) <∞ and <(T ) is closed} and SF−(X ) = {T ∈ B(X ) : β(T ) <∞} denote
the semigroup of upper semi-Fredholm and lower semi-Fredholm operators on X respectively.
An operator T ∈ B(X ) is said to be semi-Fredholm if T is either upper semi-Fredholm or lower
semi-Fredholm. If both α(T ) and β(T ) are finite, then T is called Fredholm operator. If T is
semi-Fredholm operator then index of T is defined by ind (T ) = α(T )− β(T ).

A bounded linear operator T acting on a Banach space X is Weyl if it is Fredholm of index
zero and Browder if T is Fredholm of finite ascent and descent. Let C denote the set of complex
numbers and let σ(T ) denote the spectrum of T . The Weyl spectrum σw(T ) and Browder spec-
trum σb(T ) of T are defined by σw(T ) = {λ ∈ C : T − λ is not Weyl} and σb(T ) = {λ ∈ C :
T − λ is not Browder } respectively. For T ∈ B(X ), SF−+ (X ) = {T ∈ SF+(X ) : ind(T) ≤ 0}.
Then the upper Weyl spectrum of T is defined by σSF−

+
(T ) = {λ ∈ C : T − λ /∈ SF−+ (X )}.

Let ∆(T ) = σ(T ) \ σw(T ) and ∆a(T ) = σa(T ) \ σSF−
+
(T ). Following Coburn [9], we say that

Weyl’s theorem holds for T ∈ B(X ) if ∆(T ) = E0(T ), where E0(T ) = {λ ∈ isoσ(T) : 0 <
α(T− λ) <∞}. Here and elsewhere in this paper, for K ⊂ C, isoK is the set of isolated points
of K.

According to Rakočević [24], an operator T ∈ B(X ) is said to satisfy a-Weyl’s theorem if
σa(T ) \ σSF−

+
(T ) = E0

a(T ), where

E0
a(T ) = {λ ∈ isoσa(T) : 0 < α(T− λ) <∞}.

It is known from [24] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but
the converse does not hold in general.

The property (t), which has been recently introduced in [30], is related to the classical Weyl’s
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theorem for bounded linear operators on Banach spaces, in particular this property is related to
a strong variant of Weyl’s theorem, the so-called property (w) introduced by Rakočević in [23]
and studied extensively in [5, 6, 26, 28]. In this paper we study the stability of property (t)
under perturbations by finite rank operators, by nilpotent operators and, more generally, by Riesz
operators commuting with T . Moreover, we give necessary and/or sufficient conditions ensuring
the passage of property (t) from T and S to T ⊗ S.

2 Property (t) for bounded linear operator

Definition 2.1. ([30]) Let T ∈ B(X ). We say that T obeys property (t) if ∆+(T ) = σ(T ) \
σSF−

+
(T ) = E0(T ).

Remark 2.2. If T ∈ B(X ) has the SVEP, then it is known from [19, Page 35] that σ(T ) = σs(T ).
Moreover, it is known that from [6, Theorem 2.6] that if T ∗ has the SVEP, then σ(T ) = σa(T )
and σSF−

+
(T ) = σw(T ) and hence E0

a(T ) = E0(T ), ∆a(T ) = ∆(T ) and ∆+(T ) = ∆(T ).

Proposition 2.3. [2] Let T ∈ B(X ). Then T satisfies Weyl’s theorem if and only if T satisfies
Browder’s theorem and π0(T ) = E0(T ).

Proposition 2.4. Let T ∈ B(X ). Then T obeys property (t) if and only if the following conditions
hold:

(i) T satisfies a-Browder’s theorem;

(ii) σ(T ) = σa(T );

(iii) π0
a(T ) = E0(T ).

Proof. The proof follows immediately from Theorem 2.6, Proposition 2.7 and Theorem 2.10 of
[30]. �

The following result is a consequence of Proposition 2.3 and [30, Theorem 2.6, Theorem
2.10].

Proposition 2.5. Let T ∈ B(X ). Then T obeys property (t) if and only if the following conditions
hold:

(i) T satisfies Browder’s theorem;

(ii) σw(T ) = σaw(T );

(iii) π0(T ) = E0(T ).

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an open neighborhood of
σ(T ), such that f is non-constant on each of the components of its domain. Define, by the clas-
sical calculus, f(T ) for every f ∈ Hnc(σ(T )).

A bounded operator T ∈ B(X ) is said to be polaroid (respectively, a-polaroid) if σiso(T ) = ∅
or every isolated point of σ(T ) is a pole of the resolvent of T (respectively, if isoσa(T ) = ∅ or
every isolated point of σa(T ) is a pole of the resolvent of T ).

Theorem 2.6. Let T be a bounded linear operator on X satisfying the SVEP. If T −λI has finite
descent at every λ ∈ E0

a(T ), then property (t) holds for f(T ∗), for every f ∈ Hnc(σ(T )).

Proof. Let λ ∈ E0
a(T ), then λ is an isolated of σa(T ) and hence a(T − λ) = d(T − λ) < ∞.

Moreover, α(T − λ) < ∞, so by [1, Theorem 3.4] it follows that β(T − λ) is also finite, thus
λ ∈ π0(T ). This shows that E0

a(T ) ⊆ π0(T ). Since the other inclusion is always verified, we
have E0

a(T ) = π0(T ) and hence T is a-polaroid. Therefore, property (t) holds for T by [30,
Theorem 3.5]. �

The class of operators T ∈ B(X ) for which K(T ) = {0} was introduced and studied by M.
Mbekhta in [20]. It was shown that for such operators, the spectrum is connected and the SVEP
holds.
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Theorem 2.7. Let T ∈ B(X ). If there exists λ such that K(T − λ) = {0}, then f(T ) ∈ gaB, for
every f ∈ Hnc(σ(T )). Moreover, if in addition ker(T −λ) = 0, then property (t) holds for f(T )

Proof. Since T has the SVEP, then by [18, Theorem 1.5] , generalized a-Browder’s theorem
holds for f(T ) and hence a-Browder’s theorem holds for f(T ) for every f ∈ Hnc(σ(T )). Let
γ ∈ σ(f(T )), then

f(z)− γI = P (z)g(z),

where g is complex-valued analytic function on a neighborhood of σ(T ) without any zeros in
σ(T ) while P is a complex polynomial of the form P (z) =

∏n
j=1(z − λjI)kj with distinct roots

λ1, · · · , λn ∈ σ(T ). Since g(T ) is invertible, then we deduce that

ker(f(T )− γI) = ker(P (T )) =
n⊕
j=1

ker(T − λjI)kj .

On the other hand, it follows from [20, Proposition 2.1] that σp(T ) ⊆ {λ} . If we assume that
ker(T − λI) = 0, then T − λI is an injective and consequently σp(T ) = ∅. Hence ker(f(T ) −
λI) = 0. Therefore, σp(f(T )) = ∅. Now, we prove that

π0
a(f(T )) = E0(f(T )).

Obviously, the condition σp(f(T )) = ∅ entails that

E0(f(T )) = E0
a(f(T )) = ∅.

On the other hand, the inclusion π0
a(f(T )) ⊆ E0

a(f(T )) holds for every operator T ∈ B(X ). So
also π0

a(f(T )) = ∅.Hence property (w) and a-Weyl’s theorem hold for f(T ) and so σSF−
+
(f(T )) =

σw(f(T )) = σ(T ) = σa(T ). It then follows by [30, Theorem 2.10] that f(T ) obeys property
(t). �

In [21] Oudghiri introduced the class H(p) of operators on Banach spaces for which there
exists p := p(λ) ∈ N such that

H0(λI − T ) = ker(T − λI)p for all λ ∈ C.

Let P (X ) be the class of all operators T ∈ B(X ) having the property H(p). The class P (X )
contains the classes of subscalar, algebraically wF (p, q, r) operators with p, r > 0 and q ≥ 1
[29], algebraically w-hyponormal operators [27], algebraically quasi-class (A, k) [26]. It is
known that if H0(T − λI) is closed for every complex number λ, then T has the SVEP ( see
[1, 17]). So that, the SVEP is shared by all the operators of P (X ). Moreover, T is polaroid, see
[3, Lemma 3.3].

Theorem 2.8. Suppose that T ∈ B(X ) is generalized scalar. Then T satisfies property (t) if and
only if T satisfies Weyl’s theorem

Proof. If T is generalized scalar then both T and T ∗ has SVEP. Moreover, T is polaroid since
every generalized scalar has the property H(p). Then T obeys property (t) by [30, Theorem
3.4]. The equivalence then follows from [30, Theorem 2.10]. �

Example 2.9. Property (t), as well as Weyl’s theorem, is not transmitted from T to its dual T ∗.
To see this, consider the weighted right shift T ∈ B(`2(N)), defined by

T (x1, x2, · · · ) := (0,
x1

2
,
x2

3
, · · · ) for all (xn) ∈ `2(N).

Then
T ∗(x1, x2, · · · ) := (

x2

2
,
x3

3
, · · · ) for all (xn) ∈ `2(N).

Both T and T ∗ are quasi-nilpotent, and hence are decomposable, T satisfies Weyl’s theorem
since σ(T ) = σw(T ) = {0} and E0(T ) = π0(T ) = ∅ and hence T has property (t). On the
other hand, we have σ(T ∗) = σa(T ∗) = σSF−

+
(T ∗) = Ea(T ∗) = σw(T ∗) = E0(T ∗) = {0} and

π0
a(T

∗) = ∅, so T ∗ does not satisfy Weyl’s theorem (and nor a-Weyl’s theorem). Since T ∗ has
SVEP, then T ∗ does not satisfy property (t).
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3 Property (t) under perturbations

Recall that T ∈ B(X ) is said to be a Riesz operator if T − λ ∈ F(X ) for all λ ∈ C \ {0}.
Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the
following result may be found in Rakočević [25]:

Lemma 3.1. Let T ∈ L(X ) and R be a Riesz operator commuting with T . Then

(i) T ∈ B+(X )⇔ T +R ∈ B+(X ).

(ii) T ∈ B−(X )⇔ T +R ∈ B−(X ).

(iii) T ∈ B(X )⇔ T +R ∈ B(X ).

It is known that if K ∈ B(X ) is a finite-rank operator commuting with T , then

λ ∈ accσa(T )⇔ λ ∈ accσa(T +K), (3.1)

for a proof see Theorem 3.2 of [10].
The classes W+(X ),W−(X ) and W(X ) are stable under some perturbations. The proof of

following result may be found in [4].

Lemma 3.2. Let T,K ∈ B(X ) be such that K is a compact operator. Then

(i) T ∈ W+(X )⇔ T +K ∈ W+(X ).

(ii) T ∈ W−(X )⇔ T +K ∈ W−(X ).

(iii) T ∈ W(X )⇔ T +K ∈ W(X ).

Define
E0f := {λ ∈ σiso(T ) : α(T − λ) <∞}.

Evidently, E0(T ) ⊆ Eof for every operator T ∈ B(X ).

Lemma 3.3. Let T ∈ B(X ). If R is a Riesz operator that commutes with T , then

E0(T +R) ∩ σ(T ) ⊆ σiso(T ). (3.2)

Proof. By [22, Lemma 2.3] we have

E0(T +R) ∩ σ(T ) ⊆ E0f (T +R) ∩ σ(T ) ⊆ σiso(T ).

�

Lemma 3.4. Suppose that T ∈ B(X ) obeys property (t) and R is a Riesz operator commuting
with T such that σa(T ) = σa(T +R). Then π0

a(T +R) ⊆ E0(T +R).

Proof. Let λ ∈ π0
a(T +R) be arbitrary given. Then λ ∈ σiso

a (T +R) and T +R− λ ∈ B+(X ),
so α(T +R− λ) <∞. Since T +R− λ has closed range, the condition λ ∈ σa(T +R) entails
that α(T +R− λ) > 0. Therefore, in order to show that λ ∈ E0(T +R), we need only to prove
that λ is an isolated point of σ(T +R).
We know that λ ∈ σiso

a (T ). We have from Lemma 3.1 that (T +R)− λ−R = T − λ ∈ B+(X )
so that λ ∈ σa(T ) \ σub(T ) = π0

a(T ).
Now, by assumption T obeys property (t) so, by [30, Proposition 2.7], π0

a(T ) = E0(T ). More-
over, T satisfies Weyl’s theorem and hence

E0(T ) = π0(T ) = σ(T ) \ σb(T ).

Therefore, T − λ is Browder and hence T + F − λ is Browder, so

0 < a(T +R− λ) = d(T +R− λ) <∞

and hence λ is a pole of the resolvent of T + R. Consequently, λ is an isolated point of σ(T +
R). �
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Lemma 3.5. Suppose that T ∈ B(X ) obeys property (t). If R is a Riesz operator commuting
with T and σa(T ) = σa(T +R), then E0(T ) ⊆ E0(T +R).

Proof. Suppose that T obeys property (t). Hence we conclude from [30] that

E0(T ) = σ(T )\σSF−
+
(T ) = σa(T )\σSF−

+
(T ) = σa(T +R)\σub(T +R) = π0

a(T +R). (3.3)

Let λ ∈ E0(T ) be arbitrary given. Set W := T + R then W commutes with R. By [7, Lemma
2.3] we have

λ ∈ E0(T ) ∩ σa(T +R) = E0(W −R) ∩ σa(T )

⊆ σiso(W ) = σiso(T +R).

Moreover, we have from (3.3) that T + R − λ ∈ B+(X ) and so has closed range. Since λ ∈
σa(T + R) it follows that λ is an eigenvalue and hence 0 < α(T + R − λ) < ∞. That is,
λ ∈ E0(T +R). �

Recall that T ∈ B(X ) is said to be isoloid if σiso(T ) ⊆ σp(T ). As a consequence of [30,
Theorem 2.4] and [4, Lemma 2.4] we have

Corollary 3.6. Suppose that T ∈ B(X ) obeys property (t) and F is a finite rank operator com-
muting with T such that σa(T ) = σa(T + F ). Then π0

a(T + F ) ⊆ E0(T + F ).

We first recall two well-known results: if R is a Riesz operator commuting with T ∈ B(X ),
then

σSF−
+
(T +R) = σSF−

+
(T ) andσub(T +R) = σub(T ). (3.4)

Since σ(T + R) = σ(T ) and σb(T ) = σb(T + R), we then have π0(T ) = π0(T + R) and
π0
a(T ) = π0

a(T +R).

Theorem 3.7. Suppose that T ∈ B(X ) is an isoloid operator for which property (t) holds and F
be a bounded operator commuting with T such that Fn is a finite rank operator for some n ∈ N.
Then

(i) E0(T ) = E0(T + F ).

(ii) T + F has property (t).

Proof. (i) Observe first that F is a Riesz operator, so, it follows from Lemma 3.5 that E0(T ) ⊆
E0(T + F ). Hence it suffices to show that E0(T + F ) ⊆ E0(T ). Let λ ∈ E0(T + F ). Then
λ ∈ σiso(T + F ). Since α(T + F − λ) > 0 and σ(T ) = σ(T + F ). Therefore, by Lemma
3.3, λ ∈ E0(T + F ) ∩ σ(T ) ⊆ σiso(T ). Since T is isoloid then α(T − λ) > 0. We show now
α(T−λ) <∞. Let Z = (T+F−λ)n|ker(T−λ). Clearly, if x ∈ ker(T−λ), then Zx = (−1)nFnx
thus Z is a finite rank operator. Moreover, since λ ∈ E0(T + F ) we have α(T + F − λ) < ∞
and hence α(Z) ≤ α(T + F − λ)n < ∞. Then it follows that ker(T − λ) is finite dimensional.
Therefore, λ ∈ E0(T ).
(ii) As T obeys property (t) and F is a Riesz operator, we have

E0(T + F ) = E0(T ) = σ(T ) \ σSF−
+
(T ) = σ(T + F ) \ sfpm(T + F ),

hence T + F obeys property (t). �

As an immediate consequence we have:

Corollary 3.8. Let T ∈ B(X ) be an isoloid operator. If property (t) holds for T then property
(t) holds also for T + F, for every finite rank operator F commuting with T.

Theorem 3.9. Suppose that T ∈ B(X ) obeys property (t) and σiso(T ) = ∅. If F is a finite rank
operator commuting with T , then T + F obeys property (t).

Proof. The condition σiso(T ) = ∅ entails that T is an isoloid. Hence the result follows by
Corollary 3.8. �
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we shall consider nilpotent perturbations of operators satisfying property (t). It easy to check
that if N is a nilpotent operator commuting with T , then

σ(T ) = σ(T +N) σa(T ) = σa(T +N) and σSF−
+
(T ) = σSF−

+
(T +N). (3.5)

Hence it follows from Equation ( 3.5)

E0(T ) = E0(T +N), and E0
a(T ) = E0

a(T +N). (3.6)

Theorem 3.10. Suppose that T ∈ B(X ) and let N ∈ B(X ) be a nilpotent operator which com-
mutes with T . Then T obeys property (t) if and only if T +N obeys property (t).

Proof. Suppose that T obeys property (t). Then

E0(T +N) = E0(T ) = σ(T ) \ σSF−
+
(T )

= σ(T +N) \ σSF−
+
(T +N),

hence T +N obeys property (t). The converse follows by symmetry. �

Example 3.11. In general property (t) is not transmitted from an operator to a commuting
quasinilpotent perturbation as the following example shows.
If we consider on the Hilbert space `2(N) the operators T = 0 and Q defined by

Q(x1, x2, · · · ) =
(x2

2
,
x3

3
, · · ·

)
for all xn ∈ `2(N).

ThenQ is quasinilpotent operator commuting with T . Moreover, we have σ(T ) = {0}, σSF−
+
(T ) =

∅, E(T ) = {0}. Hence T obeys property (t). But property (t) fails for T + Q = Q. Indeed,
σSF−

+
(T +Q) = {0}, E0(T +Q) = E0(T ) = {0} and σ(T +Q) = {0}.

A bounded linear operator T ∈ B(X ) is said to be finite-isoloid if every isolated point of
σ(T ) is an eigenvalue of T having finite multiplicity.

Theorem 3.12. Suppose that T ∈ B(X ) is a finite-isoloid operator which obeys property (t). If
R is a Riesz operator which commutes with T , then E0(T ) = E0(T +R).

Proof. Suppose that T obeys property (t). Then it follows from [30, Theorem 2.10] that T
satisfies Weyl’s theorem and σw(T ) = σSF−

+
(T ). Since R is a Riesz operator commuting with T

then by [22, Theorem 2.7] that T +R satisfies Weyl’s theorem. Hence

E0(T +R) = σ(T +R) \ σw(T +R) = σ(T ) \ σw(T )

= σ(T ) \ σSF−
+
(T ) = E0(T ).

�

Corollary 3.13. Suppose that T ∈ B(X ) is a finite-isoloid operator which obeys property (t). If
R is a Riesz operator which commutes with T , then T +R obeys property (t).

Proof. As T obeys property (t), we have E0(T ) = σ(T ) \ σSF−
+
(T ). As we known that the

equalities σ(T ) = σ(T + R) and σSF−
+
(T ) = σSF−

+
(T + R) hold for every Riesz operator

commuting with T . So, it follows from Theorem 3.12 that

E0(T +R) = E0(T ) = σ(T ) \ σSF−
+
(T ) = σ(T +R) \ σSF−

+
(T +R).

That is, T +R obeys property (t). �

Corollary 3.14. Suppose that T ∈ B(X ) is a finite-isoloid operator which obeys property (t).

(i) If Q is a quasi-nilpotent which commutes with T , then T +Q obeys property (t).



Passage of property (t) 243

(ii) If K is a compact operator which commutes with T and σa(T ) = σa(T +K), then T +K
obeys property (t).

Proof. (i) This follows immediately from the fact that σa(T ) = σa(T +Q) and Theorem 3.12.
(ii) It is clear since every compact operator is a Riesz operator. �

Theorem 3.15. Let T be an operator on X that obeys property (t) and such that σp(T ) ∩
σiso(T ) ⊆ E0(T ). If Q is a quasi-nilpotent operator that commutes with T, then T + Q obeys
property (t)

Proof. As T obeys property (t), we have by [30, Theorem 2.10] that T satisfies Weyl’s theorem
and σw(T ) = σSF−

+
(T ). Hence by [22, Proposition 2.9], we have T+Q satisfies Weyl’s theorem.

Since σSF−
+
(T +Q) = σSF−

+
(T ) and σw(T ) = σw(T +Q) we have σSF−

+
(T +Q) = σw(T +Q)

and so T +Q obeys property (t). �

Definition 3.16. A bounded linear operator T is said to be algebraic if there exists a non-trivial
polynomial h such that h(T ) = 0.

From the spectral mapping theorem it easily follows that the spectrum of an algebraic oper-
ator is a finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite
rank operators K are algebraic; more generally, if Kn is a finite rank operator for some n ∈ N
then K is algebraic. Clearly, if T is algebraic then its dual T ∗ is algebraic, as well as T ′ in the
case of Hilbert space operators.

Theorem 3.17. Suppose that T ∈ B(X ) and K ∈ B(X ) is an algebraic operator which com-
mutes with T .

(i) If T ∗ is hereditarily polaroid and has SVEP, then T +K obeys property (t).

(ii) If T is hereditarily polaroid and has SVEP, then T ∗ +K∗ obeys property (t).

Proof. (i) Obviously, K∗ is algebraic and commutes with T ∗. Moreover, by [7, Theorem 2.15],
we have T ∗ +K∗ is polaroid, or equivalently, T +K is polaroid. Since T ∗ has SVEP then by
[6, Theorem 2.14], we have T ∗ +K∗ has SVEP . Therefore, T +K obeys property (t) by [30,
Theorem 3.4 (i)].
(ii) It follows from the proof of Theorem 2.15 of [7] that T +K is polaroid and hence by duality
T ∗ +K∗ is polaroid. Since T has SVEP then it follows from [6, Theorem 2.14] that T +K has
SVEP. Therefore, T ∗ +K∗ obeys property (t) by [30, Theorem 3.4 (ii)]. �

Theorem 3.18. Suppose that T ∈ B(X ) and K ∈ B(X ) is an algebraic operator which com-
mutes with T .

(i) If T ∗ is hereditarily polaroid and has SVEP, then f(T + K) obeys property (t) for all
f ∈ Hnc(σ(T )).

(ii) If T is hereditarily polaroid and has SVEP, then f(T ∗ + K∗) obeys property (t) for all
f ∈ Hnc(σ(T )).

Proof. (i) We conclude from [7, Theorem 2.15] that T +K is polaroid and hence by [8, Lemma
3.11], we have f(T +K) is polaroid and from [6, Theorem 2.14] that T ∗ +K∗ has SVEP. The
SVEP of T ∗+K∗ entails the SVEP for f(T ∗+K∗) by [1, Theorem 2.40]. So, f(T +K) obeys
property (t) by [30, Theorem 3.6 (i)].
(ii) The proof of part (ii) is analogous. �

4 Property (t) and tensor product

The problem of transferring Weyl’s theorem, property (w) and property (b) from operators A
and B to their tensor product A ⊗ B was considered in [16], [12] and [31]. The main objective
of this section is to study the transfer of property (t) from a bounded linear operator A acting on
a Banach space X and a bounded linear operator B acting on a Banach space Y to their tensor
product A⊗B.
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Example 4.1. Let U ∈ B(`2) denote the forward unilateral shift, and let A,B ∈ B(`2 ⊗ `2) be
the operators

A = (1− UU∗)⊕
(

1
2
U − 1

)
, B = −(1− UU∗)

(
1
2
U∗ − 1

)
.

Then A and B∗ have SVEP, so A,B ∈ aB. Furthermore, 1 ∈ σ(A⊗B) \ σw(A⊗B). However,
since

σ(A⊗B) =
{
{0, 1} ∪ {1

2
D− 1}

}
.

{
{0,−1} ∪ {1

2
D+ 1}

}
,

where D is the closed unit disc in the complex plane C, 1 ∈ accσ(A⊗ B) =⇒ 1 ∈ σb(A⊗ B).
Then A⊗B /∈ B, and hence A⊗B does not obey property (t).

The following example shows that property (t) does not transfer from A ∈ B(X ) and B ∈
B(Y) to A⊗B.

Example 4.2. Let Q ∈ B(`2) be an injective quasi-nilpotent, and let

A = B = (I +Q)⊕ α⊕ β ∈ Ł(`2)⊕C⊕C,

where αβ = 1 6= α. Then

σ(A) = σ(B) = {1, α, β}, σaw(A) = σaw(B) = {1}, σ(A⊗B) = {1, α, β, α2, β2}.

The operators A,B have SVEP, hence a-Browder’s theorem transfers from A and B to A ⊗ B,
which implies that

σaw(A⊗B) = {1, α, β}, 1 /∈ σ(A⊗B) \ σaw(A⊗B) and 1 = αβ ∈ E0(A⊗B).

Note that the operators A and B are not isoloid.

Example 4.3. Choose A = (I+Q)⊕α⊕β ∈ B(`2)⊕C⊕C as in the previous example, and let
B = 1

4U⊕1⊕β ∈ B(`2)⊕C⊕C, where U is the forward unilateral shift and α =
√

3
2 < β = 2√

3
.

Let D be the closed unit disc in C and ∂D denote the boundary of the closed unit disc D in C.
Then A and B have SVEP, and it follows that

σ(A) = {1, α, β}, σ(B) = 1
4
D ∪ {1, β}, σ(A⊗B) = 1

2
√

3
D ∪ {1, α, β, β2},

and

σaw(A) = {1}, σaw(B) =
1
4
∂D, σaw(A⊗B) =

1
2
√

3
∂D ∪ {1, α, β}.

Evidently, 1 /∈ σ(A⊗B) \ σaw(A⊗B) and 1 ∈ E0(A⊗B). Here the operator B is isoloid but
A is not isoloid.

The following theorem gives a necessary and sufficient condition for the transference of prop-
erty (t) from isoloid A and B to A ⊗ B. Let A ∈ B(X ) and B ∈ B(Y). Then σiso(A ⊗ B) ⊆
σiso(A).σiso(B) ∪ {0}. If 0 is in the point spectrum of either of A and B, then α(A ⊗ B) = ∞;
in particular, 0 /∈ E0(A⊗B). It is easily seen, see the argument of the proof of [16, Proposition
2], that E0(A⊗B) ⊆ E0(A)E0(B).

Theorem 4.4. If A ∈ B(X ) and B ∈ B(Y) are isoloid operators which satisfy property (t) and
0 /∈ σiso(A⊗B), then the following conditions are equivalent:

(i) A⊗B satisfies property (t).

(ii) The a-Weyl spectrum equality σaw(A⊗B) = σ(A)σaw(B) ∪ σaw(A)σ(B) is satisfied.

(iii) A⊗B satisfies a-Browder’s theorem.
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Proof. Since property (t) implies a-Browder’s theorem, the equivalence (ii)⇔(iii) and (i)⇒(iii)
follows from [11, Theorem 3]. We prove (iii)⇒(i). The hypothesis A and B satisfy property (t)
implies

σ(A) \ σaw(A) = E0(A), σ(B) \ σaw(B) = E0(B).

Observe that (iii) implies a-Browder’s theorem transfers fromA andB toA⊗B : hence σaw(A⊗
B) = σa(A)σaw(B)∪σaw(A)σa(B). Let λ ∈ E0(A⊗B); then λ 6= 0 and there exist µ ∈ σiso(A)
and ν ∈ σiso(B) such that λ = µν. By hypothesis, A and B are isoloid; hence µ is an eigenvalue
of A and ν is an eigenvalue of B. Since A⊗B− (µI ⊗ νI) = (A−µ)⊗B+µ(I ⊗ (B− ν)), if
either of α(A−µ) or α(B− ν) is infinite then so is α(A⊗B− (µI ⊗ νI)). Hence µ ∈ E0(A) =
σ(A) \ σaw(A) and ν ∈ E0(B) = σ(B) \ σaw(B), consequently, λ ∈ σ(A⊗B) \ σaw(A⊗B);
hence E0(A⊗B) ⊆ σ(A⊗B) \ σaw(A⊗B). Conversely, if λ ∈ σ(A⊗B) \ σaw(A⊗B), then
λ 6= 0, and there exist µ ∈ σ(A) \ σaw(A) = E0(A) and ν ∈ σ(B) \ σaw(B) = E0(B) such that
λ = µν. But then λ ∈ E0(A⊗B). Therefore, σ(A⊗B) \ σaw(A⊗B) ⊆ E0(A⊗B). �

Let
σs(T ) = {λ ∈ σ(T ) : T − λ is not onto},

σsb = {λ ∈ σs(T ) : T − λ is not lower semi-Fredholm or d(T − λ) =∞}

and
σsw(T ) = {λ ∈ σs(T ) : T − λ is not lower semi-Fredholm or ind(T − λ) < 0

denote, respectively, the surjectivity spectrum, the Browder essential surjectivity spectrum and
the Weyl essential surjectivity spectrum of T ∈ B(X ). Then T satisfies s-Browder’s theorem
(T ∈ sB) if σsb(T ) = σsw(T ). Apparently, T satisfies s-Browder’s theorem if and only if T ∗
satisfies a-Bt. A necessary and sufficient condition for T to satisfy a-Browder’s theorem is that
T has SVEP at every λ ∈ σa(T ) \ σaw(T ); by duality, T satisfies s-Browder’s theorem if and
only if T ∗ has SVEP at every λ ∈ σs(T ) \ σsw(T ).

T ∈ B(X ) is polaroid implies T ∗ polaroid. It is well known that if T or T ∗ has SVEP and T
is polaroid, then T and T ∗ satisfy Weyl’s theorem. Note as well known is the fact, [30, Theorem
3.4], that if T is polaroid and T ∗ (resp., T ) has SVEP, then T (resp., T ∗) satisfies property (gt).
The following theorem is the tensor product analogue of this result.

Theorem 4.5. Suppose that the operators A ∈ B(X ) and B ∈ B(Y) are polaroid.

(i) If A∗ and B∗ have SVEP, then A⊗B satisfies property (t).

(ii) If A and B have SVEP, then A∗ ⊗B∗ satisfies property (t).

Proof. (i) The hypotheses A∗ and B∗ have SVEP implies

σ(A) = σa(A), σ(B) = σa(B), σaw(A) = σw(A), σaw(B) = σw(B)

and
A∗, B∗ and A∗ ⊗B∗ satisfy s-Browder’s theorem.

Thus s-Browder’s theorem and Browder’s theorem (sB =⇒ B) transfer from A∗ and B∗ to
A∗ ⊗B∗. Hence

σaw(A⊗B) = σsw(A
∗ ⊗B∗) = σs(A

∗)σsw(B
∗) ∪ σsw(A∗)σs(B∗)

= σa(A)σaw(B) ∪ σaw(A)σa(B) = σ(A)σw(B) ∪ σw(A)σ(B),

and

σw(A⊗B) = σw(A
∗ ⊗B∗) = σw(A

∗)σ(B∗) ∪ σw(B∗)σ(A∗)
= σ(A)σw(B) ∪ σ(B)σw(A).

Consequently,
σaw(A⊗B) = σw(A⊗B).
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Evidently, A ⊗ B is polaroid [12, Lemma 2]; combining this with A ⊗ B satisfies Browder’s
theorem, it follows thatA⊗B satisfies Weyl’s theorem, i.e., σ(A⊗B)\σw(A⊗B) = E0(A⊗B).
But then

σ(A⊗B) \ σaw(A⊗B) = σ(A⊗B) \ σw(A⊗B) = E0(A⊗B),

i.e., A⊗B satisfies property (t).
(ii) In this case σ(A) = σa(A∗), σ(B) = σa(B∗), σw(A∗) = σaw(A∗), σw(B∗) = σaw(B∗),
σ(A∗ ⊗ B∗) = σa(A∗ ⊗ B∗), polaroid property transfer from A and B to A∗ ⊗ B∗, and both
s-Browder’s theorem and Browder’s theorem transfer from A and B to A⊗B. Hence

σaw(A
∗ ⊗B∗) = σsw(A⊗B) = σs(A)σsw(S) ∪ σsw(A)σs(B)

= σa(A
∗)σaw(B

∗) ∪ σaw(A∗)σa(B∗)
= σ(A)σw(B) ∪ σw(A)σ(B)
= σw(A⊗B) = σw(A

∗ ⊗B∗).

Thus, since A∗ ⊗ B∗ polaroid and A ⊗ B satisfies Browder’s theorem imply A∗ ⊗ B∗ satisfies
Weyl’s theorem,

σ(A∗ ⊗B∗) \ σaw(A∗ ⊗B∗) = σ(A∗ ⊗B∗) \ σw(A∗ ⊗B∗) = E0(A∗ ⊗B∗),

i.e., A∗ ⊗B∗ satisfies property (t). �

5 Perturbations and Tensor Product

Let [A,Q] = AQ − QA denote the commutator of the operators A and Q. If Q1 ∈ B(X ) and
Q2 ∈ B(Y) are quasinilpotent operators such that [Q1, A] = [Q2, B] = 0 for some operators
A ∈ B(X ) and B ∈ B(Y), then

(A+Q1)⊗ (B +Q2) = (A⊗B) +Q,

where Q = Q1 ⊗ B + A ⊗ Q2 + Q1 ⊗ Q2 ∈ B(X ⊗ Y) is a quasinilpotent operator. If in the
above, Q1 and Q2 are nilpotents then (A + Q1) ⊗ (B + Q2) is the perturbation of A ⊗ B by a
commuting nilpotent operator.

Theorem 5.1. Let Q1 ∈ B(X ) and Q2 ∈ B(Y) be quasinilpotent operators such that [Q1, A] =
[Q2, B] = 0 for some operators A ∈ B(X ) and B ∈ B(Y). If A ⊗ B is finitely isoloid, then
A⊗B satisfies property (t) implies (A+Q1)⊗ (B +Q2) satisfies property (t).

Proof. Start by recalling that σ((A+Q1)⊗(B+Q2)) = σ(A⊗B), σa((A+Q1)⊗(B+Q2)) =
σa(A⊗B), σaw((A+Q1)⊗ (B +Q2)) = σaw(A⊗B) and that the perturbation of an operator
by a commuting quasinilpotent has SVEP if and only if the operator has SVEP. If A⊗B satisfies
property (t), then

E0(A⊗B) = σ(A⊗B) \ σaw(A⊗B)
= σ((A+Q1)⊗ (B +Q2)) \ σaw((A+Q1)⊗ (B +Q2)).

We prove that E0(A⊗B) = E0((A+Q1)⊗ (B +Q2)). Observe that if λ ∈ σiso(A⊗B), then
A∗⊗B∗ has SVEP at λ; equivalently, (A∗+Q∗1)⊗(B∗+Q∗2) has SVEP at λ. Let λ ∈ E0(A⊗B),
then λ ∈ σ((A+Q1)⊗(B+Q2))\σaw((A+Q1)⊗(B+Q2)). Since (A+Q1)∗⊗(B+Q2)∗ has
SVEP at λ, it follows that λ /∈ σaw((A+Q1)⊗ (B+Q2)) and λ ∈ σiso((A+Q1)⊗ (B+Q2)).
Thus λ ∈ E0((A+Q1)⊗(B+Q2)).Hence E0(A⊗B) ⊆ E0((A+Q1)⊗(B+Q2)). Conversely,
if λ ∈ E0((A+Q1)⊗ (B+Q2)), then λ ∈ σiso(A⊗B), and this, since A⊗B is finitely isoloid,
implies that λ ∈ E0(A⊗B). Therefore, E0((A+Q1)⊗ (B+Q2)) ⊆ E0(A⊗B). So, the proof
of the theorem is achieved. �

Corollary 5.2. If Q1 ∈ B(X ) and Q2 ∈ B(Y) are nilpotent operators such that [Q1, A] =
[Q2, B] = 0 for some operators A ∈ B(X ) and B ∈ B(Y), then A ⊗ B satisfies property (t)
implies (A+Q1)⊗ (B +Q2) satisfies property (t).
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The situation for perturbations by commuting Riesz operators is a bit more delicate. The
equality σa(T ) = σa(T + R) does not always hold for operators T,R ∈ B(X ) such that R is
Riesz and [T,R] = 0; the tensor product T ⊗ R is not a Riesz operator (the Fredholm spectrum
σe(T ⊗ R) = σ(T )σe(R) ∪ σe(T )σ(R) = σe(T )σ(R) = {0} for a particular choice of T only).
However, σw (also, σb) is stable under perturbation by commuting Riesz operators [32], and
so T satisfies Browder’s theorem if and only if T + R satisfies Browder’s theorem. Thus, if
σ(T ) = σ(T + R) for a certain choice of operators T,R ∈ B(X ) (such that R is Riesz and
[T,R] = 0), then

π0(T ) = σ(T ) \ σw(T ) = σ(T +R) \ σw(T +R) = π0(T +R),

where π0(T ) is the set of λ ∈ σiso(T ) which are finite rank poles of the resolvent of T . If we
now suppose additionally that T satisfies property (t), then

E0(T ) = σ(T ) \ σaw(T ) = σ(T +R) \ σaw(T +R), (5.1)

and a necessary and sufficient condition for T + R to satisfy property (t) is that E0(T + R) =
E0(T ). One such condition, namely T is finitely isoloid.

Theorem 5.3. Let A ∈ B(X ) and B ∈ B(Y) be finitely isoloid operators which satisfy property
(t). If R1 ∈ B(X ) and R2 ∈ B(Y) are Riesz operators such that [A,R1] = [B,R2] = 0,
σa(A + R1) = σa(A) and σa(B + R2) = σa(B), then A ⊗ B satisfies property (t) implies
(A + R1) ⊗ (B + R2) satisfies property (t) if and only if Browder’s theorem transforms from
A+R1 and B +R2 to their tensor product.

Proof. The hypotheses imply (by Corollary 3.13) that both A+R1 and B +R2 satisfy property
(t). Suppose that A ⊗ B satisfies property (t). Then σ(A ⊗ B) \ σaw(A ⊗ B) = E0(A ⊗ B).
Evidently A⊗B satisfies a-Browder’s theorem, and so the hypothesis A and B satisfy property
(t) implies that a-Browder’s theorem transfers from A and B to A ⊗ B. Furthermore, since ,
σa(A+R1) = σa(A), σa(B+R2) = σa(B), and σaw is stable under perturbations by commuting
Riesz operators,

σaw(A⊗B) = σa(A)σaw(B) ∪ σaw(A)σa(B)
= σa(A+R1)σaw(B +R2) ∪ σaw(A+R1)σa(B +R2)

= σ(A+R1)σaw(B +R2) ∪ σaw(A+R1)σ(B +R2)

Suppose now that a-Browder’s theorem transfers fromA+R1 andB+R2 to (A+R1)⊗(B+R2).
Then

σaw(A⊗B) = σaw((A+R1)⊗ (B +R2))

and
E0(A⊗B) = σ((A+R1)⊗ (B +R2)) \ σaw((A+R1)⊗ (B +R2)).

Let λ ∈ E0(A ⊗ B). Then λ 6= 0, and hence there exist µ ∈ σ(A + R1) \ σaw(A + R1) and
ν ∈ σ(B +R2) \ σaw(B +R2) such that λ = µν. As observed above, both A+R1 and B +R2
satisfy property (t); hence µ ∈ E0

a(A+R1) and ν ∈ E0
a(B +R2). This, since λ ∈ σ(A⊗B) =

σ((A+R1)⊗(B+R2)), implies λ ∈ E0((A+R1)⊗(B+R2)). Conversely, if λ ∈ E0((A+R1)⊗
(B+R2)), then λ 6= 0 and there exist µ ∈ E0(A+R1) ⊆ σisoa (A) and ν ∈ E0(B+R2) ⊆ σisoa (B)
such that λ = µν. Recall thatE0((A+R1)⊗(B+R2)) ⊆ E0(A+R1)E0(B+R2). SinceA andB
are finite isoloid, µ ∈ E0(A) and ν ∈ E0(B).Hence, since σ((A+R1)⊗(B+R2)) = σ(A⊗B),
λ = µν ∈ E0(A⊗B). To complete the proof, we observe that if the implication of the statement
of the theorem holds, then (necessarily) (A+R1)⊗ (B+R2) satisfies Browder’s theorem. This,
since A+R1 and B +R2 satisfy Browder’s theorem, implies Browder’s theorem transfers from
A+R1 and B +R2 to (A+R1)⊗ (B +R2). �
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