Passage of property (t) from two operators to their tensor product

M.H.M.Rashid
Communicated by Fuad Kittaneh

MSC 2010 Classifications: Primary 47A10, 47A11; Secondary 47A53.
Keywords and phrases: Weyl's theorem, Weyl spectrum, Polaroid operators, Property (w), Property (t), Perturbation, tensor product.

Abstract

An operator T acting on a Banach space \mathcal{X} obeys property (t) if the isolated points of the spectrum $\sigma(T)$ of T which are eigenvalues of finite multiplicity are exactly those points λ of the spectrum for which $T-\lambda$ is an upper semi-Fredholm with index less than or equal to 0 . In the present paper we examine the stability of property (t) under perturbations. We show that if T is an isoloid operator on a Banach space, that obeys property (t), and F is a bounded operator that commutes with T and for which there exists a positive integer n such that F^{n} is finite rank, then $T+F$ obeys property (t). Further, we establish that if T is finite-isoloid, then property (t) is transmitted from T to $T+R$, for every Riesz operator R commuting with T. Property (t) does not transfer from operators T and S to their tensor product $T \otimes S$; we give necessary and/or sufficient conditions ensuring the passage of property (t) from T and S to $T \otimes S$. Moreover, Perturbations by Riesz operators are considered.

1 Introduction

Throughout this paper, \mathcal{X} denotes an infinite-dimensional complex Banach space, $\mathcal{B}(\mathcal{X})$ the algebra of all bounded linear operators on \mathcal{X}. For $T \in \mathcal{B}(\mathcal{X})$, let T^{*}, $\operatorname{ker}(T), \Re(T), \sigma(T), \sigma_{a}(T)$ and $\sigma_{s}(T)$ denote the adjoint, the null space, the range, the spectrum, the approximate point spectrum and the surjectivity spectrum of T respectively. Let $\alpha(T)$ and $\beta(T)$ be the nullity and the deficiency of T defined by $\alpha(T)=\operatorname{dim} \operatorname{ker}(T)$ and $\beta(T)=\mathrm{co}-\operatorname{dim} \Re(\mathrm{T})$. Let $S F_{+}(\mathcal{X})=$ $\{T \in \mathcal{B}(\mathcal{X}): \alpha(T)<\infty$ and $\Re(T)$ is closed $\}$ and $S F_{-}(\mathcal{X})=\{T \in \mathcal{B}(\mathcal{X}): \beta(T)<\infty\}$ denote the semigroup of upper semi-Fredholm and lower semi-Fredholm operators on \mathcal{X} respectively. An operator $T \in \mathcal{B}(\mathcal{X})$ is said to be semi-Fredholm if T is either upper semi-Fredholm or lower semi-Fredholm. If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called Fredholm operator. If T is semi-Fredholm operator then index of T is defined by ind $(T)=\alpha(T)-\beta(T)$.

A bounded linear operator T acting on a Banach space \mathcal{X} is Weyl if it is Fredholm of index zero and Browder if T is Fredholm of finite ascent and descent. Let \mathbb{C} denote the set of complex numbers and let $\sigma(T)$ denote the spectrum of T. The Weyl spectrum $\sigma_{w}(T)$ and Browder spectrum $\sigma_{b}(T)$ of T are defined by $\sigma_{w}(T)=\{\lambda \in \mathbb{C}: T-\lambda$ is not Weyl $\}$ and $\sigma_{b}(T)=\{\lambda \in \mathbb{C}$: $T-\lambda$ is not Browder $\}$ respectively. For $T \in \mathcal{B}(\mathcal{X}), S F_{+}^{-}(\mathcal{X})=\left\{T \in S F_{+}(\mathcal{X}): \operatorname{ind}(\mathrm{T}) \leq 0\right\}$. Then the upper Weyl spectrum of T is defined by $\sigma_{S F_{+}^{-}}(T)=\left\{\lambda \in \mathbb{C}: T-\lambda \notin S F_{+}^{-}(\mathcal{X})\right\}$. Let $\Delta(T)=\sigma(T) \backslash \sigma_{w}(T)$ and $\Delta_{a}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)$. Following Coburn [9], we say that Weyl's theorem holds for $T \in \mathcal{B}(\mathcal{X})$ if $\Delta(T)=E^{0}(T)$, where $E^{0}(T)=\{\lambda \in$ iso $\sigma(\mathrm{T}): 0<$ $\alpha(\mathrm{T}-\lambda)<\infty\}$. Here and elsewhere in this paper, for $K \subset \mathbb{C}$, iso K is the set of isolated points of K.

According to Rakočević [24], an operator $T \in \mathcal{B}(\mathcal{X})$ is said to satisfy a-Weyl's theorem if $\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=E_{a}^{0}(T)$, where

$$
E_{a}^{0}(T)=\left\{\lambda \in \text { iso } \sigma_{\mathrm{a}}(\mathrm{~T}): 0<\alpha(\mathrm{T}-\lambda)<\infty\right\}
$$

It is known from [24] that an operator satisfying a-Weyl's theorem satisfies Weyl's theorem, but the converse does not hold in general.

The property (t), which has been recently introduced in [30], is related to the classical Weyl's
theorem for bounded linear operators on Banach spaces, in particular this property is related to a strong variant of Weyl's theorem, the so-called property (w) introduced by Rakočević in [23] and studied extensively in $[5,6,26,28]$. In this paper we study the stability of property (t) under perturbations by finite rank operators, by nilpotent operators and, more generally, by Riesz operators commuting with T. Moreover, we give necessary and/or sufficient conditions ensuring the passage of property (t) from T and S to $T \otimes S$.

2 Property (\boldsymbol{t}) for bounded linear operator

Definition 2.1. ([30]) Let $T \in \mathcal{B}(\mathcal{X})$. We say that T obeys property (t) if $\Delta_{+}(T)=\sigma(T) \backslash$ $\sigma_{S F_{+}^{-}}(T)=E^{0}(T)$.

Remark 2.2. If $T \in \mathcal{B}(\mathcal{X})$ has the SVEP, then it is known from [19, Page 35] that $\sigma(T)=\sigma_{s}(T)$. Moreover, it is known that from [6, Theorem 2.6] that if T^{*} has the SVEP, then $\sigma(T)=\sigma_{a}(T)$ and $\sigma_{S F_{+}^{-}}(T)=\sigma_{w}(T)$ and hence $E_{a}^{0}(T)=E^{0}(T), \Delta_{a}(T)=\Delta(T)$ and $\Delta_{+}(T)=\Delta(T)$.

Proposition 2.3. [2] Let $T \in \mathcal{B}(\mathcal{X})$. Then T satisfies Weyl's theorem if and only if T satisfies Browder's theorem and $\pi^{0}(T)=E^{0}(T)$.

Proposition 2.4. Let $T \in \mathcal{B}(\mathcal{X})$. Then T obeys property (t) if and only if the following conditions hold:
(i) T satisfies a-Browder's theorem;
(ii) $\sigma(T)=\sigma_{a}(T)$;
(iii) $\pi_{a}^{0}(T)=E^{0}(T)$.

Proof. The proof follows immediately from Theorem 2.6, Proposition 2.7 and Theorem 2.10 of [30].

The following result is a consequence of Proposition 2.3 and [30, Theorem 2.6, Theorem 2.10].

Proposition 2.5. Let $T \in \mathcal{B}(\mathcal{X})$. Then T obeys property (t) if and only if the following conditions hold:
(i) T satisfies Browder's theorem;
(ii) $\sigma_{w}(T)=\sigma_{a w}(T)$;
(iii) $\pi^{0}(T)=E^{0}(T)$.

Let $H_{n c}(\sigma(T))$ denote the set of all analytic functions, defined on an open neighborhood of $\sigma(T)$, such that f is non-constant on each of the components of its domain. Define, by the classical calculus, $f(T)$ for every $f \in H_{n c}(\sigma(T))$.

A bounded operator $T \in \mathcal{B}(\mathcal{X})$ is said to be polaroid (respectively, a-polaroid) if $\sigma^{\text {iso }}(T)=\emptyset$ or every isolated point of $\sigma(T)$ is a pole of the resolvent of T (respectively, if iso $\sigma_{a}(T)=\emptyset$ or every isolated point of $\sigma_{a}(T)$ is a pole of the resolvent of T).

Theorem 2.6. Let T be a bounded linear operator on \mathcal{X} satisfying the SVEP. If $T-\lambda I$ has finite descent at every $\lambda \in E_{a}^{0}(T)$, then property (t) holds for $f\left(T^{*}\right)$, for every $f \in H_{n c}(\sigma(T))$.

Proof. Let $\lambda \in E_{a}^{0}(T)$, then λ is an isolated of $\sigma_{a}(T)$ and hence $a(T-\lambda)=d(T-\lambda)<\infty$. Moreover, $\alpha(T-\lambda)<\infty$, so by [1, Theorem 3.4] it follows that $\beta(T-\lambda)$ is also finite, thus $\lambda \in \pi^{0}(T)$. This shows that $E_{a}^{0}(T) \subseteq \pi^{0}(T)$. Since the other inclusion is always verified, we have $E_{a}^{0}(T)=\pi^{0}(T)$ and hence T is a-polaroid. Therefore, property (t) holds for T by [30, Theorem 3.5].

The class of operators $T \in \mathcal{B}(\mathcal{X})$ for which $K(T)=\{0\}$ was introduced and studied by M. Mbekhta in [20]. It was shown that for such operators, the spectrum is connected and the SVEP holds.

Theorem 2.7. Let $T \in \mathcal{B}(\mathcal{X})$. If there exists λ such that $K(T-\lambda)=\{0\}$, then $f(T) \in$ ga \mathfrak{B}, for every $f \in H_{n c}(\sigma(T))$. Moreover, if in addition $\operatorname{ker}(T-\lambda)=0$, then property (t) holds for $f(T)$
Proof. Since T has the SVEP, then by [18, Theorem 1.5], generalized a-Browder's theorem holds for $f(T)$ and hence a-Browder's theorem holds for $f(T)$ for every $f \in H_{n c}(\sigma(T))$. Let $\gamma \in \sigma(f(T))$, then

$$
f(z)-\gamma I=P(z) g(z)
$$

where g is complex-valued analytic function on a neighborhood of $\sigma(T)$ without any zeros in $\sigma(T)$ while P is a complex polynomial of the form $P(z)=\prod_{j=1}^{n}\left(z-\lambda_{j} I\right)^{k_{j}}$ with distinct roots $\lambda_{1}, \cdots, \lambda_{n} \in \sigma(T)$. Since $g(T)$ is invertible, then we deduce that

$$
\operatorname{ker}(f(T)-\gamma I)=\operatorname{ker}(P(T))=\bigoplus_{j=1}^{n} \operatorname{ker}\left(T-\lambda_{j} I\right)^{k_{j}}
$$

On the other hand, it follows from [20, Proposition 2.1] that $\sigma_{p}(T) \subseteq\{\lambda\}$. If we assume that $\operatorname{ker}(T-\lambda I)=0$, then $T-\lambda I$ is an injective and consequently $\sigma_{p}(T)=\emptyset$. Hence $\operatorname{ker}(f(T)-$ $\lambda I)=0$. Therefore, $\sigma_{p}(f(T))=\emptyset$. Now, we prove that

$$
\pi_{a}^{0}(f(T))=E^{0}(f(T))
$$

Obviously, the condition $\sigma_{p}(f(T))=\emptyset$ entails that

$$
E^{0}(f(T))=E_{a}^{0}(f(T))=\emptyset
$$

On the other hand, the inclusion $\pi_{a}^{0}(f(T)) \subseteq E_{a}^{0}(f(T))$ holds for every operator $T \in \mathcal{B}(\mathcal{X})$. So also $\pi_{a}^{0}(f(T))=\emptyset$. Hence property (w) and a-Weyl's theorem hold for $f(T)$ and so $\sigma_{S F_{+}^{-}}(f(T))=$ $\sigma_{w}(f(T))=\sigma(T)=\sigma_{a}(T)$. It then follows by [30, Theorem 2.10] that $f(T)$ obeys property (t.

In [21] Oudghiri introduced the class $H(p)$ of operators on Banach spaces for which there exists $p:=p(\lambda) \in \mathbb{N}$ such that

$$
H_{0}(\lambda I-T)=\operatorname{ker}(T-\lambda I)^{p} \quad \text { for all } \lambda \in \mathbb{C}
$$

Let $P(\mathcal{X})$ be the class of all operators $T \in \mathcal{B}(\mathcal{X})$ having the property $H(p)$. The class $P(\mathcal{X})$ contains the classes of subscalar, algebraically $w F(p, q, r)$ operators with $p, r>0$ and $q \geq 1$ [29], algebraically w-hyponormal operators [27], algebraically quasi-class (A, k) [26]. It is known that if $H_{0}(T-\lambda I)$ is closed for every complex number λ, then T has the SVEP (see [1, 17]). So that, the SVEP is shared by all the operators of $P(\mathcal{X})$. Moreover, T is polaroid, see [3, Lemma 3.3].

Theorem 2.8. Suppose that $T \in \mathcal{B}(\mathcal{X})$ is generalized scalar. Then T satisfies property (t) if and only if T satisfies Weyl's theorem

Proof. If T is generalized scalar then both T and T^{*} has SVEP. Moreover, T is polaroid since every generalized scalar has the property $H(p)$. Then T obeys property (t) by [30, Theorem 3.4]. The equivalence then follows from [30, Theorem 2.10].

Example 2.9. Property (t), as well as Weyl's theorem, is not transmitted from T to its dual T^{*}. To see this, consider the weighted right shift $T \in \mathcal{B}\left(\ell^{2}(\mathbb{N})\right)$, defined by

$$
T\left(x_{1}, x_{2}, \cdots\right):=\left(0, \frac{x_{1}}{2}, \frac{x_{2}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Then

$$
T^{*}\left(x_{1}, x_{2}, \cdots\right):=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) \quad \text { for all }\left(x_{n}\right) \in \ell^{2}(\mathbb{N})
$$

Both T and T^{*} are quasi-nilpotent, and hence are decomposable, T satisfies Weyl's theorem since $\sigma(T)=\sigma_{w}(T)=\{0\}$ and $E^{0}(T)=\pi^{0}(T)=\emptyset$ and hence T has property (t). On the other hand, we have $\sigma\left(T^{*}\right)=\sigma_{a}\left(T^{*}\right)=\sigma_{S F_{+}^{-}}\left(T^{*}\right)=E_{a}\left(T^{*}\right)=\sigma_{w}\left(T^{*}\right)=E^{0}\left(T^{*}\right)=\{0\}$ and $\pi_{a}^{0}\left(T^{*}\right)=\emptyset$, so T^{*} does not satisfy Weyl's theorem (and nor a-Weyl's theorem). Since T^{*} has SVEP, then T^{*} does not satisfy property (t).

3 Property (\boldsymbol{t}) under perturbations

Recall that $T \in \mathcal{B}(\mathcal{X})$ is said to be a Riesz operator if $T-\lambda \in \mathfrak{F}(\mathcal{X})$ for all $\lambda \in \mathbb{C} \backslash\{0\}$. Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the following result may be found in Rakočević [25]:

Lemma 3.1. Let $T \in \mathcal{L}(\mathcal{X})$ and R be a Riesz operator commuting with T. Then
(i) $T \in \mathfrak{B}_{+}(\mathcal{X}) \Leftrightarrow T+R \in \mathfrak{B}_{+}(\mathcal{X})$.
(ii) $T \in \mathfrak{B}_{-}(\mathcal{X}) \Leftrightarrow T+R \in \mathfrak{B}_{-}(\mathcal{X})$.
(iii) $T \in \mathfrak{B}(\mathcal{X}) \Leftrightarrow T+R \in \mathfrak{B}(\mathcal{X})$.

It is known that if $K \in \mathcal{B}(\mathcal{X})$ is a finite-rank operator commuting with T, then

$$
\begin{equation*}
\lambda \in \operatorname{acc} \sigma_{a}(T) \Leftrightarrow \lambda \in \operatorname{acc} \sigma_{a}(T+K) \tag{3.1}
\end{equation*}
$$

for a proof see Theorem 3.2 of [10].
The classes $\mathcal{W}_{+}(\mathcal{X}), \mathcal{W}_{-}(\mathcal{X})$ and $\mathcal{W}(\mathcal{X})$ are stable under some perturbations. The proof of following result may be found in [4].

Lemma 3.2. Let $T, K \in \mathcal{B}(\mathcal{X})$ be such that K is a compact operator. Then
(i) $T \in \mathcal{W}_{+}(\mathcal{X}) \Leftrightarrow T+K \in \mathcal{W}_{+}(\mathcal{X})$.
(ii) $T \in \mathcal{W}_{-}(\mathcal{X}) \Leftrightarrow T+K \in \mathcal{W}_{-}(\mathcal{X})$.
(iii) $T \in \mathcal{W}(\mathcal{X}) \Leftrightarrow T+K \in \mathcal{W}(\mathcal{X})$.

Define

$$
E^{0 f}:=\left\{\lambda \in \sigma^{\mathrm{iso}}(T): \alpha(T-\lambda)<\infty\right\}
$$

Evidently, $E^{0}(T) \subseteq E^{o f}$ for every operator $T \in \mathcal{B}(\mathcal{X})$.

Lemma 3.3. Let $T \in \mathcal{B}(\mathcal{X})$. If R is a Riesz operator that commutes with T, then

$$
\begin{equation*}
E^{0}(T+R) \cap \sigma(T) \subseteq \sigma^{i s o}(T) \tag{3.2}
\end{equation*}
$$

Proof. By [22, Lemma 2.3] we have

$$
E^{0}(T+R) \cap \sigma(T) \subseteq E^{0 f}(T+R) \cap \sigma(T) \subseteq \sigma^{\text {iso }}(T)
$$

Lemma 3.4. Suppose that $T \in \mathcal{B}(\mathcal{X})$ obeys property (t) and R is a Riesz operator commuting with T such that $\sigma_{a}(T)=\sigma_{a}(T+R)$. Then $\pi_{a}^{0}(T+R) \subseteq E^{0}(T+R)$.

Proof. Let $\lambda \in \pi_{a}^{0}(T+R)$ be arbitrary given. Then $\lambda \in \sigma_{a}^{\text {iso }}(T+R)$ and $T+R-\lambda \in \mathfrak{B}_{+}(\mathcal{X})$, so $\alpha(T+R-\lambda)<\infty$. Since $T+R-\lambda$ has closed range, the condition $\lambda \in \sigma_{a}(T+R)$ entails that $\alpha(T+R-\lambda)>0$. Therefore, in order to show that $\lambda \in E^{0}(T+R)$, we need only to prove that λ is an isolated point of $\sigma(T+R)$.
We know that $\lambda \in \sigma_{a}^{\text {iso }}(T)$. We have from Lemma 3.1 that $(T+R)-\lambda-R=T-\lambda \in \mathfrak{B}_{+}(\mathcal{X})$ so that $\lambda \in \sigma_{a}(T) \backslash \sigma_{u b}(T)=\pi_{a}^{0}(T)$.
Now, by assumption T obeys property (t) so, by [30, Proposition 2.7], $\pi_{a}^{0}(T)=E^{0}(T)$. Moreover, T satisfies Weyl's theorem and hence

$$
E^{0}(T)=\pi^{0}(T)=\sigma(T) \backslash \sigma_{b}(T)
$$

Therefore, $T-\lambda$ is Browder and hence $T+F-\lambda$ is Browder, so

$$
0<a(T+R-\lambda)=d(T+R-\lambda)<\infty
$$

and hence λ is a pole of the resolvent of $T+R$. Consequently, λ is an isolated point of $\sigma(T+$ $R)$.

Lemma 3.5. Suppose that $T \in \mathcal{B}(\mathcal{X})$ obeys property (t). If R is a Riesz operator commuting with T and $\sigma_{a}(T)=\sigma_{a}(T+R)$, then $E^{0}(T) \subseteq E^{0}(T+R)$.
Proof. Suppose that T obeys property (t). Hence we conclude from [30] that

$$
\begin{equation*}
E^{0}(T)=\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T) \backslash \sigma_{S F_{+}^{-}}(T)=\sigma_{a}(T+R) \backslash \sigma_{u b}(T+R)=\pi_{a}^{0}(T+R) \tag{3.3}
\end{equation*}
$$

Let $\lambda \in E^{0}(T)$ be arbitrary given. Set $W:=T+R$ then W commutes with R. By [7, Lemma 2.3] we have

$$
\begin{aligned}
\lambda \in E^{0}(T) \cap \sigma_{a}(T+R) & =E^{0}(W-R) \cap \sigma_{a}(T) \\
& \subseteq \sigma^{\mathrm{iso}}(W)=\sigma^{\mathrm{iso}}(T+R)
\end{aligned}
$$

Moreover, we have from (3.3) that $T+R-\lambda \in \mathfrak{B}_{+}(\mathcal{X})$ and so has closed range. Since $\lambda \in$ $\sigma_{a}(T+R)$ it follows that λ is an eigenvalue and hence $0<\alpha(T+R-\lambda)<\infty$. That is, $\lambda \in E^{0}(T+R)$.

Recall that $T \in \mathcal{B}(\mathcal{X})$ is said to be isoloid if $\sigma^{\text {iso }}(T) \subseteq \sigma_{p}(T)$. As a consequence of [30, Theorem 2.4] and [4, Lemma 2.4] we have

Corollary 3.6. Suppose that $T \in \mathcal{B}(\mathcal{X})$ obeys property (t) and F is a finite rank operator commuting with T such that $\sigma_{a}(T)=\sigma_{a}(T+F)$. Then $\pi_{a}^{0}(T+F) \subseteq E^{0}(T+F)$.

We first recall two well-known results: if R is a Riesz operator commuting with $T \in \mathcal{B}(\mathcal{X})$, then

$$
\begin{equation*}
\sigma_{S F_{+}^{-}}(T+R)=\sigma_{S F_{+}^{-}}(T) \text { and } \sigma_{u b}(T+R)=\sigma_{u b}(T) \tag{3.4}
\end{equation*}
$$

Since $\sigma(T+R)=\sigma(T)$ and $\sigma_{b}(T)=\sigma_{b}(T+R)$, we then have $\pi^{0}(T)=\pi^{0}(T+R)$ and $\pi_{a}^{0}(T)=\pi_{a}^{0}(T+R)$.

Theorem 3.7. Suppose that $T \in \mathcal{B}(\mathcal{X})$ is an isoloid operator for which property (t) holds and F be a bounded operator commuting with T such that F^{n} is a finite rank operator for some $n \in \mathbb{N}$. Then
(i) $E^{0}(T)=E^{0}(T+F)$.
(ii) $T+F$ has property (t).

Proof. (i) Observe first that F is a Riesz operator, so, it follows from Lemma 3.5 that $E^{0}(T) \subseteq$ $E^{0}(T+F)$. Hence it suffices to show that $E^{0}(T+F) \subseteq E^{0}(T)$. Let $\lambda \in E^{0}(T+F)$. Then $\lambda \in \sigma^{\text {iso }}(T+F)$. Since $\alpha(T+F-\lambda)>0$ and $\sigma(T)=\sigma(T+F)$. Therefore, by Lemma 3.3, $\lambda \in E^{0}(T+F) \cap \sigma(T) \subseteq \sigma^{\text {iso }}(T)$. Since T is isoloid then $\alpha(T-\lambda)>0$. We show now $\alpha(T-\lambda)<\infty$. Let $Z=\left.(T+F-\lambda)^{n}\right|_{\operatorname{ker}(T-\lambda)}$. Clearly, if $x \in \operatorname{ker}(T-\lambda)$, then $Z x=(-1)^{n} F^{n} x$ thus Z is a finite rank operator. Moreover, since $\lambda \in E^{0}(T+F)$ we have $\alpha(T+F-\lambda)<\infty$ and hence $\alpha(Z) \leq \alpha(T+F-\lambda)^{n}<\infty$. Then it follows that $\operatorname{ker}(T-\lambda)$ is finite dimensional. Therefore, $\lambda \in E^{0}(T)$.
(ii) As T obeys property (t) and F is a Riesz operator, we have

$$
E^{0}(T+F)=E^{0}(T)=\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=\sigma(T+F) \backslash \operatorname{sfpm}(T+F)
$$

hence $T+F$ obeys property (t).
As an immediate consequence we have:
Corollary 3.8. Let $T \in \mathcal{B}(\mathcal{X})$ be an isoloid operator. If property (t) holds for T then property (t) holds also for $T+F$, for every finite rank operator F commuting with T.

Theorem 3.9. Suppose that $T \in \mathcal{B}(\mathcal{X})$ obeys property (t) and $\sigma^{\text {iso }}(T)=\emptyset$. If F is a finite rank operator commuting with T, then $T+F$ obeys property (t).

Proof. The condition $\sigma^{\text {iso }}(T)=\emptyset$ entails that T is an isoloid. Hence the result follows by Corollary 3.8.
we shall consider nilpotent perturbations of operators satisfying property (t). It easy to check that if N is a nilpotent operator commuting with T, then

$$
\begin{equation*}
\sigma(T)=\sigma(T+N) \sigma_{a}(T)=\sigma_{a}(T+N) \text { and } \sigma_{S F_{+}^{-}}(T)=\sigma_{S F_{+}^{-}}(T+N) \tag{3.5}
\end{equation*}
$$

Hence it follows from Equation (3.5)

$$
\begin{equation*}
E^{0}(T)=E^{0}(T+N), \text { and } E_{a}^{0}(T)=E_{a}^{0}(T+N) \tag{3.6}
\end{equation*}
$$

Theorem 3.10. Suppose that $T \in \mathcal{B}(\mathcal{X})$ and let $N \in \mathcal{B}(\mathcal{X})$ be a nilpotent operator which commutes with T. Then T obeys property (t) if and only if $T+N$ obeys property (t).

Proof. Suppose that T obeys property (t). Then

$$
\begin{aligned}
E^{0}(T+N) & =E^{0}(T)=\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T) \\
& =\sigma(T+N) \backslash \sigma_{S F_{+}^{-}}(T+N)
\end{aligned}
$$

hence $T+N$ obeys property (t). The converse follows by symmetry.
Example 3.11. In general property (t) is not transmitted from an operator to a commuting quasinilpotent perturbation as the following example shows.
If we consider on the Hilbert space $\ell^{2}(\mathbb{N})$ the operators $T=0$ and Q defined by

$$
Q\left(x_{1}, x_{2}, \cdots\right)=\left(\frac{x_{2}}{2}, \frac{x_{3}}{3}, \cdots\right) \quad \text { for all } x_{n} \in \ell^{2}(\mathbb{N})
$$

Then Q is quasinilpotent operator commuting with T. Moreover, we have $\sigma(T)=\{0\}, \sigma_{S F_{+}^{-}}(T)=$ $\emptyset, E(T)=\{0\}$. Hence T obeys property (t). But property (t) fails for $T+Q=Q$. Indeed, $\sigma_{S F_{+}^{-}}(T+Q)=\{0\}, E^{0}(T+Q)=E^{0}(T)=\{0\}$ and $\sigma(T+Q)=\{0\}$.

A bounded linear operator $T \in \mathcal{B}(\mathcal{X})$ is said to be finite-isoloid if every isolated point of $\sigma(T)$ is an eigenvalue of T having finite multiplicity.

Theorem 3.12. Suppose that $T \in \mathcal{B}(\mathcal{X})$ is a finite-isoloid operator which obeys property (t). If R is a Riesz operator which commutes with T, then $E^{0}(T)=E^{0}(T+R)$.

Proof. Suppose that T obeys property (t). Then it follows from [30, Theorem 2.10] that T satisfies Weyl's theorem and $\sigma_{w}(T)=\sigma_{S F_{+}^{-}}(T)$. Since R is a Riesz operator commuting with T then by [22, Theorem 2.7] that $T+R$ satisfies Weyl's theorem. Hence

$$
\begin{aligned}
E^{0}(T+R) & =\sigma(T+R) \backslash \sigma_{w}(T+R)=\sigma(T) \backslash \sigma_{w}(T) \\
& =\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=E^{0}(T)
\end{aligned}
$$

Corollary 3.13. Suppose that $T \in \mathcal{B}(\mathcal{X})$ is a finite-isoloid operator which obeys property (t). If R is a Riesz operator which commutes with T, then $T+R$ obeys property (t).

Proof. As T obeys property (t), we have $E^{0}(T)=\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)$. As we known that the equalities $\sigma(T)=\sigma(T+R)$ and $\sigma_{S F_{+}^{-}}(T)=\sigma_{S F_{+}^{-}}(T+R)$ hold for every Riesz operator commuting with T. So, it follows from Theorem 3.12 that

$$
E^{0}(T+R)=E^{0}(T)=\sigma(T) \backslash \sigma_{S F_{+}^{-}}(T)=\sigma(T+R) \backslash \sigma_{S F_{+}^{-}}(T+R)
$$

That is, $T+R$ obeys property (t).
Corollary 3.14. Suppose that $T \in \mathcal{B}(\mathcal{X})$ is a finite-isoloid operator which obeys property (t).
(i) If Q is a quasi-nilpotent which commutes with T, then $T+Q$ obeys property (t).
(ii) If K is a compact operator which commutes with T and $\sigma_{a}(T)=\sigma_{a}(T+K)$, then $T+K$ obeys property (t).

Proof. (i) This follows immediately from the fact that $\sigma_{a}(T)=\sigma_{a}(T+Q)$ and Theorem 3.12. (ii) It is clear since every compact operator is a Riesz operator.

Theorem 3.15. Let T be an operator on \mathcal{X} that obeys property (t) and such that $\sigma_{p}(T) \cap$ $\sigma^{\text {iso }}(T) \subseteq E^{0}(T)$. If Q is a quasi-nilpotent operator that commutes with T, then $T+Q$ obeys property (t)

Proof. As T obeys property (t), we have by [30, Theorem 2.10] that T satisfies Weyl's theorem and $\sigma_{w}(T)=\sigma_{S F^{-}}(T)$. Hence by [22, Proposition 2.9], we have $T+Q$ satisfies Weyl's theorem. Since $\sigma_{S F_{+}^{-}}(T+Q)=\sigma_{S F_{+}^{-}}(T)$ and $\sigma_{w}(T)=\sigma_{w}(T+Q)$ we have $\sigma_{S F_{+}^{-}}(T+Q)=\sigma_{w}(T+Q)$ and so $T+Q$ obeys property (t).

Definition 3.16. A bounded linear operator T is said to be algebraic if there exists a non-trivial polynomial h such that $h(T)=0$.

From the spectral mapping theorem it easily follows that the spectrum of an algebraic operator is a finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite rank operators K are algebraic; more generally, if K^{n} is a finite rank operator for some $n \in \mathbb{N}$ then K is algebraic. Clearly, if T is algebraic then its dual T^{*} is algebraic, as well as T^{\prime} in the case of Hilbert space operators.

Theorem 3.17. Suppose that $T \in \mathcal{B}(\mathcal{X})$ and $K \in \mathcal{B}(\mathcal{X})$ is an algebraic operator which commutes with T.
(i) If T^{*} is hereditarily polaroid and has SVEP, then $T+K$ obeys property (t).
(ii) If T is hereditarily polaroid and has SVEP, then $T^{*}+K^{*}$ obeys property (t).

Proof. (i) Obviously, K^{*} is algebraic and commutes with T^{*}. Moreover, by [7, Theorem 2.15], we have $T^{*}+K^{*}$ is polaroid, or equivalently, $T+K$ is polaroid. Since T^{*} has SVEP then by [6, Theorem 2.14], we have $T^{*}+K^{*}$ has SVEP . Therefore, $T+K$ obeys property (t) by [30, Theorem 3.4 (i)].
(ii) It follows from the proof of Theorem 2.15 of [7] that $T+K$ is polaroid and hence by duality $T^{*}+K^{*}$ is polaroid. Since T has SVEP then it follows from [6, Theorem 2.14] that $T+K$ has SVEP. Therefore, $T^{*}+K^{*}$ obeys property (t) by [30, Theorem 3.4 (ii)].

Theorem 3.18. Suppose that $T \in \mathcal{B}(\mathcal{X})$ and $K \in \mathcal{B}(\mathcal{X})$ is an algebraic operator which commutes with T.
(i) If T^{*} is hereditarily polaroid and has SVEP, then $f(T+K)$ obeys property (t) for all $f \in H_{n c}(\sigma(T))$.
(ii) If T is hereditarily polaroid and has SVEP, then $f\left(T^{*}+K^{*}\right)$ obeys property (t) for all $f \in H_{n c}(\sigma(T))$.

Proof. (i) We conclude from [7, Theorem 2.15] that $T+K$ is polaroid and hence by [8, Lemma 3.11], we have $f(T+K)$ is polaroid and from [6, Theorem 2.14] that $T^{*}+K^{*}$ has SVEP. The SVEP of $T^{*}+K^{*}$ entails the SVEP for $f\left(T^{*}+K^{*}\right)$ by [1, Theorem 2.40]. So, $f(T+K)$ obeys property (t) by [30, Theorem 3.6 (i)].
(ii) The proof of part (ii) is analogous.

4 Property (t) and tensor product

The problem of transferring Weyl's theorem, property (w) and property (b) from operators A and B to their tensor product $A \otimes B$ was considered in [16], [12] and [31]. The main objective of this section is to study the transfer of property (t) from a bounded linear operator A acting on a Banach space \mathcal{X} and a bounded linear operator B acting on a Banach space \mathcal{Y} to their tensor product $A \otimes B$.

Example 4.1. Let $U \in \mathcal{B}\left(\ell^{2}\right)$ denote the forward unilateral shift, and let $A, B \in \mathcal{B}\left(\ell^{2} \otimes \ell^{2}\right)$ be the operators

$$
A=\left(1-U U^{*}\right) \oplus\left(\frac{1}{2} U-1\right), B=-\left(1-U U^{*}\right)\left(\frac{1}{2} U^{*}-1\right)
$$

Then A and B^{*} have SVEP, so $A, B \in a \mathfrak{B}$. Furthermore, $1 \in \sigma(A \otimes B) \backslash \sigma_{w}(A \otimes B)$. However, since

$$
\sigma(A \otimes B)=\left\{\{0,1\} \cup\left\{\frac{1}{2} \mathbb{D}-1\right\}\right\} \cdot\left\{\{0,-1\} \cup\left\{\frac{1}{2} \mathbb{D}+1\right\}\right\}
$$

where \mathbb{D} is the closed unit disc in the complex plane $\mathbb{C}, 1 \in \operatorname{acc} \sigma(A \otimes B) \Longrightarrow 1 \in \sigma_{b}(A \otimes B)$. Then $A \otimes B \notin \mathfrak{B}$, and hence $A \otimes B$ does not obey property (t).

The following example shows that property (t) does not transfer from $A \in \mathcal{B}(\mathcal{X})$ and $B \in$ $\mathcal{B}(\mathcal{Y})$ to $A \otimes B$.

Example 4.2. Let $Q \in \mathcal{B}\left(\ell^{2}\right)$ be an injective quasi-nilpotent, and let

$$
A=B=(I+Q) \oplus \alpha \oplus \beta \in Ł\left(\ell^{2}\right) \oplus \mathbb{C} \oplus \mathbb{C}
$$

where $\alpha \beta=1 \neq \alpha$. Then

$$
\sigma(A)=\sigma(B)=\{1, \alpha, \beta\}, \sigma_{a w}(A)=\sigma_{a w}(B)=\{1\}, \sigma(A \otimes B)=\left\{1, \alpha, \beta, \alpha^{2}, \beta^{2}\right\} .
$$

The operators A, B have SVEP, hence a-Browder's theorem transfers from A and B to $A \otimes B$, which implies that

$$
\sigma_{a w}(A \otimes B)=\{1, \alpha, \beta\}, 1 \notin \sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B) \text { and } 1=\alpha \beta \in E^{0}(A \otimes B)
$$

Note that the operators A and B are not isoloid.
Example 4.3. Choose $A=(I+Q) \oplus \alpha \oplus \beta \in \mathcal{B}\left(\ell^{2}\right) \oplus \mathbb{C} \oplus \mathbb{C}$ as in the previous example, and let $B=\frac{1}{4} U \oplus 1 \oplus \beta \in B\left(\ell^{2}\right) \oplus \mathbb{C} \oplus \mathbb{C}$, where U is the forward unilateral shift and $\alpha=\frac{\sqrt{3}}{2}<\beta=\frac{2}{\sqrt{3}}$. Let \mathbb{D} be the closed unit disc in \mathbb{C} and $\partial \mathbb{D}$ denote the boundary of the closed unit disc \mathbb{D} in \mathbb{C}. Then A and B have SVEP, and it follows that

$$
\sigma(A)=\{1, \alpha, \beta\}, \sigma(B)=\frac{1}{4} \mathbb{D} \cup\{1, \beta\}, \sigma(A \otimes B)=\frac{1}{2 \sqrt{3}} \mathbb{D} \cup\left\{1, \alpha, \beta, \beta^{2}\right\}
$$

and

$$
\sigma_{a w}(A)=\{1\}, \sigma_{a w}(B)=\frac{1}{4} \partial \mathbb{D}, \sigma_{a w}(A \otimes B)=\frac{1}{2 \sqrt{3}} \partial \mathbb{D} \cup\{1, \alpha, \beta\}
$$

Evidently, $1 \notin \sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B)$ and $1 \in E^{0}(A \otimes B)$. Here the operator B is isoloid but A is not isoloid.

The following theorem gives a necessary and sufficient condition for the transference of property (t) from isoloid A and B to $A \otimes B$. Let $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$. Then $\sigma^{\text {iso }}(A \otimes B) \subseteq$ $\sigma^{\text {iso }}(A) \cdot \sigma^{\text {iso }}(B) \cup\{0\}$. If 0 is in the point spectrum of either of A and B, then $\alpha(A \otimes B)=\infty$; in particular, $0 \notin E^{0}(A \otimes B)$. It is easily seen, see the argument of the proof of [16, Proposition 2], that $E^{0}(A \otimes B) \subseteq E^{0}(A) E^{0}(B)$.

Theorem 4.4. If $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$ are isoloid operators which satisfy property (t) and $0 \notin \sigma^{i s o}(A \otimes B)$, then the following conditions are equivalent:
(i) $A \otimes B$ satisfies property (t).
(ii) The a-Weyl spectrum equality $\sigma_{a w}(A \otimes B)=\sigma(A) \sigma_{a w}(B) \cup \sigma_{a w}(A) \sigma(B)$ is satisfied.
(iii) $A \otimes B$ satisfies a-Browder's theorem.

Proof. Since property (t) implies a-Browder's theorem, the equivalence (ii) \Leftrightarrow (iii) and (i) \Rightarrow (iii) follows from [11, Theorem 3]. We prove (iii) \Rightarrow (i). The hypothesis A and B satisfy property (t) implies

$$
\sigma(A) \backslash \sigma_{a w}(A)=E^{0}(A), \quad \sigma(B) \backslash \sigma_{a w}(B)=E^{0}(B)
$$

Observe that (iii) implies a-Browder's theorem transfers from A and B to $A \otimes B$: hence $\sigma_{a w}(A \otimes$ $B)=\sigma_{a}(A) \sigma_{a w}(B) \cup \sigma_{a w}(A) \sigma_{a}(B)$. Let $\lambda \in E^{0}(A \otimes B)$; then $\lambda \neq 0$ and there exist $\mu \in \sigma^{\text {iso }}(A)$ and $\nu \in \sigma^{\text {iso }}(B)$ such that $\lambda=\mu \nu$. By hypothesis, A and B are isoloid; hence μ is an eigenvalue of A and ν is an eigenvalue of B. Since $A \otimes B-(\mu I \otimes \nu I)=(A-\mu) \otimes B+\mu(I \otimes(B-\nu))$, if either of $\alpha(A-\mu)$ or $\alpha(B-\nu)$ is infinite then so is $\alpha(A \otimes B-(\mu I \otimes \nu I))$. Hence $\mu \in E^{0}(A)=$ $\sigma(A) \backslash \sigma_{a w}(A)$ and $\nu \in E^{0}(B)=\sigma(B) \backslash \sigma_{a w}(B)$, consequently, $\lambda \in \sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B) ;$ hence $E^{0}(A \otimes B) \subseteq \sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B)$. Conversely, if $\lambda \in \sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B)$, then $\lambda \neq 0$, and there exist $\mu \in \sigma(A) \backslash \sigma_{a w}(A)=E^{0}(A)$ and $\nu \in \sigma(B) \backslash \sigma_{a w}(B)=E^{0}(B)$ such that $\lambda=\mu \nu$. But then $\lambda \in E^{0}(A \otimes B)$. Therefore, $\sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B) \subseteq E^{0}(A \otimes B)$.

Let

$$
\begin{gathered}
\sigma_{s}(T)=\{\lambda \in \sigma(T): T-\lambda \text { is not onto }\} \\
\sigma_{s b}=\left\{\lambda \in \sigma_{s}(T): T-\lambda \text { is not lower semi-Fredholm or } d(T-\lambda)=\infty\right\}
\end{gathered}
$$

and

$$
\sigma_{s w}(T)=\left\{\lambda \in \sigma_{s}(T): T-\lambda \text { is not lower semi-Fredholm or } \operatorname{ind}(T-\lambda)<0\right.
$$

denote, respectively, the surjectivity spectrum, the Browder essential surjectivity spectrum and the Weyl essential surjectivity spectrum of $T \in \mathcal{B}(\mathcal{X})$. Then T satisfies s-Browder's theorem $(T \in s \mathfrak{B})$ if $\sigma_{s b}(T)=\sigma_{s w}(T)$. Apparently, T satisfies s-Browder's theorem if and only if T^{*} satisfies a-Bt. A necessary and sufficient condition for T to satisfy a-Browder's theorem is that T has SVEP at every $\lambda \in \sigma_{a}(T) \backslash \sigma_{a w}(T)$; by duality, T satisfies s-Browder's theorem if and only if T^{*} has SVEP at every $\lambda \in \sigma_{s}(T) \backslash \sigma_{s w}(T)$.
$T \in \mathcal{B}(\mathcal{X})$ is polaroid implies T^{*} polaroid. It is well known that if T or T^{*} has SVEP and T is polaroid, then T and T^{*} satisfy Weyl's theorem. Note as well known is the fact, [30, Theorem 3.4], that if T is polaroid and T^{*} (resp., T) has SVEP, then T (resp., T^{*}) satisfies property $(g t)$. The following theorem is the tensor product analogue of this result.

Theorem 4.5. Suppose that the operators $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$ are polaroid.
(i) If A^{*} and B^{*} have $S V E P$, then $A \otimes B$ satisfies property (t).
(ii) If A and B have SVEP, then $A^{*} \otimes B^{*}$ satisfies property (t).

Proof. (i) The hypotheses A^{*} and B^{*} have SVEP implies

$$
\sigma(A)=\sigma_{a}(A), \quad \sigma(B)=\sigma_{a}(B), \quad \sigma_{a w}(A)=\sigma_{w}(A), \quad \sigma_{a w}(B)=\sigma_{w}(B)
$$

and

$$
A^{*}, B^{*} \quad \text { and } A^{*} \otimes B^{*} \text { satisfy } s \text {-Browder's theorem. }
$$

Thus s-Browder's theorem and Browder's theorem $(s \mathfrak{B} \Longrightarrow \mathfrak{B})$ transfer from A^{*} and B^{*} to $A^{*} \otimes B^{*}$. Hence

$$
\begin{aligned}
\sigma_{a w}(A \otimes B) & =\sigma_{s w}\left(A^{*} \otimes B^{*}\right)=\sigma_{s}\left(A^{*}\right) \sigma_{s w}\left(B^{*}\right) \cup \sigma_{s w}\left(A^{*}\right) \sigma_{s}\left(B^{*}\right) \\
& =\sigma_{a}(A) \sigma_{a w}(B) \cup \sigma_{a w}(A) \sigma_{a}(B)=\sigma(A) \sigma_{w}(B) \cup \sigma_{w}(A) \sigma(B)
\end{aligned}
$$

and

$$
\begin{aligned}
\sigma_{w}(A \otimes B) & =\sigma_{w}\left(A^{*} \otimes B^{*}\right)=\sigma_{w}\left(A^{*}\right) \sigma\left(B^{*}\right) \cup \sigma_{w}\left(B^{*}\right) \sigma\left(A^{*}\right) \\
& =\sigma(A) \sigma_{w}(B) \cup \sigma(B) \sigma_{w}(A)
\end{aligned}
$$

Consequently,

$$
\sigma_{a w}(A \otimes B)=\sigma_{w}(A \otimes B)
$$

Evidently, $A \otimes B$ is polaroid [12, Lemma 2]; combining this with $A \otimes B$ satisfies Browder's theorem, it follows that $A \otimes B$ satisfies Weyl's theorem, i.e., $\sigma(A \otimes B) \backslash \sigma_{w}(A \otimes B)=E^{0}(A \otimes B)$. But then

$$
\sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B)=\sigma(A \otimes B) \backslash \sigma_{w}(A \otimes B)=E^{0}(A \otimes B)
$$

i.e., $A \otimes B$ satisfies property (t).
(ii) In this case $\sigma(A)=\sigma_{a}\left(A^{*}\right), \sigma(B)=\sigma_{a}\left(B^{*}\right), \sigma_{w}\left(A^{*}\right)=\sigma_{a w}\left(A^{*}\right), \sigma_{w}\left(B^{*}\right)=\sigma_{a w}\left(B^{*}\right)$, $\sigma\left(A^{*} \otimes B^{*}\right)=\sigma_{a}\left(A^{*} \otimes B^{*}\right)$, polaroid property transfer from A and B to $A^{*} \otimes B^{*}$, and both s-Browder's theorem and Browder's theorem transfer from A and B to $A \otimes B$. Hence

$$
\begin{aligned}
\sigma_{a w}\left(A^{*} \otimes B^{*}\right) & =\sigma_{s w}(A \otimes B)=\sigma_{s}(A) \sigma_{s w}(S) \cup \sigma_{s w}(A) \sigma_{s}(B) \\
& =\sigma_{a}\left(A^{*}\right) \sigma_{a w}\left(B^{*}\right) \cup \sigma_{a w}\left(A^{*}\right) \sigma_{a}\left(B^{*}\right) \\
& =\sigma(A) \sigma_{w}(B) \cup \sigma_{w}(A) \sigma(B) \\
& =\sigma_{w}(A \otimes B)=\sigma_{w}\left(A^{*} \otimes B^{*}\right)
\end{aligned}
$$

Thus, since $A^{*} \otimes B^{*}$ polaroid and $A \otimes B$ satisfies Browder's theorem imply $A^{*} \otimes B^{*}$ satisfies Weyl's theorem,

$$
\sigma\left(A^{*} \otimes B^{*}\right) \backslash \sigma_{a w}\left(A^{*} \otimes B^{*}\right)=\sigma\left(A^{*} \otimes B^{*}\right) \backslash \sigma_{w}\left(A^{*} \otimes B^{*}\right)=E^{0}\left(A^{*} \otimes B^{*}\right)
$$

i.e., $A^{*} \otimes B^{*}$ satisfies property (t).

5 Perturbations and Tensor Product

Let $[A, Q]=A Q-Q A$ denote the commutator of the operators A and Q. If $Q_{1} \in \mathcal{B}(\mathcal{X})$ and $Q_{2} \in \mathcal{B}(\mathcal{Y})$ are quasinilpotent operators such that $\left[Q_{1}, A\right]=\left[Q_{2}, B\right]=0$ for some operators $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$, then

$$
\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)=(A \otimes B)+Q
$$

where $Q=Q_{1} \otimes B+A \otimes Q_{2}+Q_{1} \otimes Q_{2} \in \mathcal{B}(\mathcal{X} \otimes \mathcal{Y})$ is a quasinilpotent operator. If in the above, Q_{1} and Q_{2} are nilpotents then $\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)$ is the perturbation of $A \otimes B$ by a commuting nilpotent operator.

Theorem 5.1. Let $Q_{1} \in \mathcal{B}(\mathcal{X})$ and $Q_{2} \in \mathcal{B}(\mathcal{Y})$ be quasinilpotent operators such that $\left[Q_{1}, A\right]=$ $\left[Q_{2}, B\right]=0$ for some operators $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$. If $A \otimes B$ is finitely isoloid, then $A \otimes B$ satisfies property (t) implies $\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)$ satisfies property (t).

Proof. Start by recalling that $\sigma\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)=\sigma(A \otimes B), \sigma_{a}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)=$ $\sigma_{a}(A \otimes B), \sigma_{a w}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)=\sigma_{a w}(A \otimes B)$ and that the perturbation of an operator by a commuting quasinilpotent has SVEP if and only if the operator has SVEP. If $A \otimes B$ satisfies property (t), then

$$
\begin{aligned}
E^{0}(A \otimes B) & =\sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B) \\
& =\sigma\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) \backslash \sigma_{a w}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)
\end{aligned}
$$

We prove that $E^{0}(A \otimes B)=E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Observe that if $\lambda \in \sigma^{i s o}(A \otimes B)$, then $A^{*} \otimes B^{*}$ has SVEP at λ; equivalently, $\left(A^{*}+Q_{1}^{*}\right) \otimes\left(B^{*}+Q_{2}^{*}\right)$ has SVEP at λ. Let $\lambda \in E^{0}(A \otimes B)$, then $\lambda \in \sigma\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) \backslash \sigma_{a w}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Since $\left(A+Q_{1}\right)^{*} \otimes\left(B+Q_{2}\right)^{*}$ has SVEP at λ, it follows that $\lambda \notin \sigma_{a w}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$ and $\lambda \in \sigma^{i s o}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Thus $\lambda \in E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Hence $E^{0}(A \otimes B) \subseteq E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$. Conversely, if $\lambda \in E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right)$, then $\lambda \in \sigma^{i s o}(A \otimes B)$, and this, since $A \otimes B$ is finitely isoloid, implies that $\lambda \in E^{0}(A \otimes B)$. Therefore, $E^{0}\left(\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)\right) \subseteq E^{0}(A \otimes B)$. So, the proof of the theorem is achieved.

Corollary 5.2. If $Q_{1} \in \mathcal{B}(\mathcal{X})$ and $Q_{2} \in \mathcal{B}(\mathcal{Y})$ are nilpotent operators such that $\left[Q_{1}, A\right]=$ $\left[Q_{2}, B\right]=0$ for some operators $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$, then $A \otimes B$ satisfies property (t) implies $\left(A+Q_{1}\right) \otimes\left(B+Q_{2}\right)$ satisfies property (t).

The situation for perturbations by commuting Riesz operators is a bit more delicate. The equality $\sigma_{a}(T)=\sigma_{a}(T+R)$ does not always hold for operators $T, R \in \mathcal{B}(\mathcal{X})$ such that R is Riesz and $[T, R]=0$; the tensor product $T \otimes R$ is not a Riesz operator (the Fredholm spectrum $\sigma_{e}(T \otimes R)=\sigma(T) \sigma_{e}(R) \cup \sigma_{e}(T) \sigma(R)=\sigma_{e}(T) \sigma(R)=\{0\}$ for a particular choice of T only). However, σ_{w} (also, σ_{b}) is stable under perturbation by commuting Riesz operators [32], and so T satisfies Browder's theorem if and only if $T+R$ satisfies Browder's theorem. Thus, if $\sigma(T)=\sigma(T+R)$ for a certain choice of operators $T, R \in \mathcal{B}(\mathcal{X})$ (such that R is Riesz and $[T, R]=0)$, then

$$
\pi^{0}(T)=\sigma(T) \backslash \sigma_{w}(T)=\sigma(T+R) \backslash \sigma_{w}(T+R)=\pi^{0}(T+R)
$$

where $\pi^{0}(T)$ is the set of $\lambda \in \sigma^{i s o}(T)$ which are finite rank poles of the resolvent of T. If we now suppose additionally that T satisfies property (t), then

$$
\begin{equation*}
E^{0}(T)=\sigma(T) \backslash \sigma_{a w}(T)=\sigma(T+R) \backslash \sigma_{a w}(T+R) \tag{5.1}
\end{equation*}
$$

and a necessary and sufficient condition for $T+R$ to satisfy property (t) is that $E^{0}(T+R)=$ $E^{0}(T)$. One such condition, namely T is finitely isoloid.

Theorem 5.3. Let $A \in \mathcal{B}(\mathcal{X})$ and $B \in \mathcal{B}(\mathcal{Y})$ be finitely isoloid operators which satisfy property (t). If $R_{1} \in \mathcal{B}(\mathcal{X})$ and $R_{2} \in \mathcal{B}(\mathcal{Y})$ are Riesz operators such that $\left[A, R_{1}\right]=\left[B, R_{2}\right]=0$, $\sigma_{a}\left(A+R_{1}\right)=\sigma_{a}(A)$ and $\sigma_{a}\left(B+R_{2}\right)=\sigma_{a}(B)$, then $A \otimes B$ satisfies property (t) implies $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$ satisfies property (t) if and only if Browder's theorem transforms from $A+R_{1}$ and $B+R_{2}$ to their tensor product.

Proof. The hypotheses imply (by Corollary 3.13) that both $A+R_{1}$ and $B+R_{2}$ satisfy property (t). Suppose that $A \otimes B$ satisfies property (t). Then $\sigma(A \otimes B) \backslash \sigma_{a w}(A \otimes B)=E^{0}(A \otimes B)$. Evidently $A \otimes B$ satisfies a-Browder's theorem, and so the hypothesis A and B satisfy property (t) implies that a-Browder's theorem transfers from A and B to $A \otimes B$. Furthermore, since, $\sigma_{a}\left(A+R_{1}\right)=\sigma_{a}(A), \sigma_{a}\left(B+R_{2}\right)=\sigma_{a}(B)$, and $\sigma_{a w}$ is stable under perturbations by commuting Riesz operators,

$$
\begin{aligned}
\sigma_{a w}(A \otimes B) & =\sigma_{a}(A) \sigma_{a w}(B) \cup \sigma_{a w}(A) \sigma_{a}(B) \\
& =\sigma_{a}\left(A+R_{1}\right) \sigma_{a w}\left(B+R_{2}\right) \cup \sigma_{a w}\left(A+R_{1}\right) \sigma_{a}\left(B+R_{2}\right) \\
& =\sigma\left(A+R_{1}\right) \sigma_{a w}\left(B+R_{2}\right) \cup \sigma_{a w}\left(A+R_{1}\right) \sigma\left(B+R_{2}\right)
\end{aligned}
$$

Suppose now that a-Browder's theorem transfers from $A+R_{1}$ and $B+R_{2}$ to $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$. Then

$$
\sigma_{a w}(A \otimes B)=\sigma_{a w}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)
$$

and

$$
E^{0}(A \otimes B)=\sigma\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right) \backslash \sigma_{a w}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)
$$

Let $\lambda \in E^{0}(A \otimes B)$. Then $\lambda \neq 0$, and hence there exist $\mu \in \sigma\left(A+R_{1}\right) \backslash \sigma_{a w}\left(A+R_{1}\right)$ and $\nu \in \sigma\left(B+R_{2}\right) \backslash \sigma_{a w}\left(B+R_{2}\right)$ such that $\lambda=\mu \nu$. As observed above, both $A+R_{1}$ and $B+R_{2}$ satisfy property (t); hence $\mu \in E_{a}^{0}\left(A+R_{1}\right)$ and $\nu \in E_{a}^{0}\left(B+R_{2}\right)$. This, since $\lambda \in \sigma(A \otimes B)=$ $\sigma\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)$, implies $\lambda \in E^{0}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)$. Conversely, if $\lambda \in E^{0}\left(\left(A+R_{1}\right) \otimes\right.$ $\left.\left(B+R_{2}\right)\right)$, then $\lambda \neq 0$ and there exist $\mu \in E^{0}\left(A+R_{1}\right) \subseteq \sigma_{a}^{i s o}(A)$ and $\nu \in E^{0}\left(B+R_{2}\right) \subseteq \sigma_{a}^{i s o}(B)$ such that $\lambda=\mu \nu$. Recall that $E^{0}\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right) \subseteq E^{0}\left(A+R_{1}\right) E^{0}\left(B+R_{2}\right)$. Since A and B are finite isoloid, $\mu \in E^{0}(A)$ and $\nu \in E^{0}(B)$. Hence, since $\sigma\left(\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)\right)=\sigma(A \otimes B)$, $\lambda=\mu \nu \in E^{0}(A \otimes B)$. To complete the proof, we observe that if the implication of the statement of the theorem holds, then (necessarily) $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$ satisfies Browder's theorem. This, since $A+R_{1}$ and $B+R_{2}$ satisfy Browder's theorem, implies Browder's theorem transfers from $A+R_{1}$ and $B+R_{2}$ to $\left(A+R_{1}\right) \otimes\left(B+R_{2}\right)$.

References

[1] P. Aiena, Fredholm and local spectral theory with applications to multipliers,Kluwer Acad. Publishers, Dordrecht, 2004.
[2] P. Aiena, Classes of operators satisfying a-Weyl's theorem, Studia Math. 169, 105-122 (2005).
[3] P. Aiena, C. Carpintero, Weyl's theorem, a-Weyl's theorem and single-valued extension property, Extracta Math. 20, 25-41 (2005).
[4] P. Aiena, M.T. Biondi, Property (w) and perturbations, J. Math. Anal. Appl. 336, 683-692 (2007).
[5] P. Aiena and P. Peña, Variations on Weyl's theorem, J. Math. Anal. Appl. 324, 566-579 (2006).
[6] P. Aiena, J. R. Guillen and P. Peña, Property (w) for perturbations of polaroid operators, Linear Alg. Appl. 428, 1791-1802 (2008).
[7] P. Aiena, E. Aponte, J. R. Guillen and P. Peña, Property (R) under perturbations, Mediterr. J. Math. 10 (1), 367-382 (2013).
[8] P. Aiena, E. Aponte, Polaroid type operators under perturbations, Studia Math. 214 (2), 121-136 (2013).
[9] L. A. Coburn, Weyl's theorem for nonnormal operators, Michigan Math. J. 13, 285-288 (1966).
[10] D.S. Djordjević, Operators obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (3), 283-298 (1999).
[11] B.P. Duggal, S.V. Djordjevic̀ and C.S. Kubrusly, On the a-Browder and a-Weyl spectra of tensor products. Rend. Circ. Mat. Palermo 59, 473-481 (2010).
[12] B.P. Duggal, Tensor product and property (w), Rend. Circ. Mat. Palermo 60 (1), 23-30 (2011).
[13] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58, 61-69 (1975).
[14] R. Harte and W.Y. Lee, Another note on Weyl's theorem, Trans. Amer. Math. Soc. 349, 2115-2124 (1997).
[15] H. Heuser, Functional analysis, Marcel Dekker, New York (1982).
[16] C.S. Kubrusly and B.P. Duggal,On Weyl and Browder spectra of tensor product, Glasgow Math. J. 50, 289-302 (2008).
[17] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152, 323-336 (1992).
[18] M. Lahrouz and M. Zohry, Weyl type theorems and the approximate point spectrum, Irish Math. Soc. Bulletin 55, 41-51 (2005).
[19] K. B. Laursen, M. M. Neumann, An introduction to local spectral theory, Oxford. Clarendon (2000).
[20] M. Mbekhta, Sur la th'eorie spectrale locale et limite de nilpotents, Proc. Amer. Math. Soc. 3, 621-631 (1990).
[21] M. Oudghiri, Weyl's and Browder's theorem for operators satysfying the SVEP, Studia Math. 163, 85-101 (2004).
[22] M. Oudghiri, Weyl's Theorem and perturbations, Integral Equations Operator Theory 53, 535-545 (2005).
[23] V. Rakočević, On a class of operators, Math. Vesnik 37, 423-426 (1985).
[24] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 10, 915-919 (1986).
[25] V. Rakoc̃ević, Semi-Browder operators and perturbations, Studia Math. 122, 131-137 (1997).
[26] M.H.M.Rashid, Property (w) and quasi-class (A, k) operators, Revista De Le Unión Math. Argentina 52, 133-142 (2011).
[27] M.H.M.Rashid and M.S.M.Noorani, Weyl's type theorems for algebraically w-hyponormal operators, Arab. J. Sci. Eng. 35,103-116 (2010).
[28] M.H.M.Rashid, Property $(g w)$ and perturbations, Bull. Belg. Math. Soc. Simon Stevin 18, 635-654 (2011).
[29] M.H.M.Rashid, Weyl's theorem for algebraically $w F(p, r, q)$ operators with $p, r>0$ and $q \geq 1$, Ukrainian Math. J. 63 (8), 1256-1267 (2011).
[30] M.H.M. Rashid, Properties (t) and ($g t)$ For Bounded Linear Operators, Mediterr. J. Math. 11, 729-744 (2014).
[31] M.H.M. Rashid, Tensor product and property (b), Periodica Math. Hungarica 75, 376-386 (2017).
[32] M. Schechter and R. Whitley, Best Fredholm perturbation theorems, Stud. Math. 90, 175-190 (1988).

Author information

M.H.M.Rashid, Department of Mathematics\& Statistics, Faculty of Science P.O.Box(7)-Mu'tah University-Al-Karak, Jordan.
E-mail: malik_okasha@yahoo.com
Received: May 11, 2021
Accepted: February 14, 2022

