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Abstract An operator 7" acting on a Banach space X obeys property (t) if the isolated points
of the spectrum o (7") of T which are eigenvalues of finite multiplicity are exactly those points A
of the spectrum for which 7" — ) is an upper semi-Fredholm with index less than or equal to 0. In
the present paper we examine the stability of property (¢) under perturbations. We show that if
T is an isoloid operator on a Banach space, that obeys property (t), and F is a bounded operator
that commutes with 7" and for which there exists a positive integer n such that F" is finite rank,
then T' + F obeys property (t). Further, we establish that if 7" is finite-isoloid, then property
(t) is transmitted from T to T' + R, for every Riesz operator R commuting with 7". Property (¢)
does not transfer from operators 7" and S to their tensor product 7' ® S; we give necessary and/or
sufficient conditions ensuring the passage of property (¢) from 7" and S to T’ ® S. Moreover,
Perturbations by Riesz operators are considered.

1 Introduction

Throughout this paper, X’ denotes an infinite-dimensional complex Banach space, B(.X') the al-
gebra of all bounded linear operators on X. For T' € B(X), let T*, ker(T), R(T), o(T), 04(T)
and o4(T) denote the adjoint, the null space, the range, the spectrum, the approximate point
spectrum and the surjectivity spectrum of T respectively. Let a(T") and 3(T") be the nullity and
the deficiency of T defined by a(T") = dimker(T") and 3(T) = co — dimR(T). Let SF.(X) =
{T € B(X):a(T) <ocoand R(T) isclosed} and SF_(X) ={T € B(X) : 3(T) < oo} denote
the semigroup of upper semi-Fredholm and lower semi-Fredholm operators on X respectively.
An operator T' € B(X) is said to be semi-Fredholm if T is either upper semi-Fredholm or lower
semi-Fredholm. If both «(7") and 5(T") are finite, then T is called Fredholm operator. If T is
semi-Fredholm operator then index of T is defined by ind (T') = o(T') — 3(T).

A bounded linear operator 7" acting on a Banach space X is Weyl if it is Fredholm of index
zero and Browder if T is Fredholm of finite ascent and descent. Let C denote the set of complex
numbers and let o(T) denote the spectrum of T . The Weyl spectrum o.,(T) and Browder spec-
trum o,(T') of T are defined by 0,,(T) = {A € C : T — X is not Weyl} and 0,(T) = {A € C :
T — X is not Browder } respectively. For T' € B(X), SF_ (X) = {T € SF(X) : ind(T) < 0}.
Then the upper Weyl spectrum of T is defined by og - (T)={ eC:T—-X¢ SF_(X)}.
Let A(T) = o(T) \ 0(T) and A, (T) = 04(T) \ Ogp- (T). Following Coburn [9], we say that
Weyl’s theorem holds for T € B(X) if A(T) = E°(T), where E°(T) = {\ € isoo(T) : 0 <
a(T — X) < oo}. Here and elsewhere in this paper, for K C C, isoK is the set of isolated points
of K.

According to RakoCevié [24], an operator T € B(X) is said to satisfy a-Weyl’s theorem if
0a(T)\ 0gp-(T) = EY(T), where

ENT) = {\ €i500,(T) : 0 < a(T — \) < oc}.

It is known from [24] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but
the converse does not hold in general.
The property (t), which has been recently introduced in [30], is related to the classical Weyl’s
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theorem for bounded linear operators on Banach spaces, in particular this property is related to
a strong variant of Weyl’s theorem, the so-called property (w) introduced by RakoCevi¢ in [23]
and studied extensively in [5, 6, 26, 28]. In this paper we study the stability of property (t)
under perturbations by finite rank operators, by nilpotent operators and, more generally, by Riesz
operators commuting with 7. Moreover, we give necessary and/or sufficient conditions ensuring
the passage of property (¢) from 7" and Sto T ® S.

2 Property (t) for bounded linear operator

Definition 2.1. ([30]) Let 7' € B(X). We say that T' obeys property (¢) if A (T) = o(T) \
sk (T) = E°(T).

Remark 2.2. If T’ € B(X’) has the SVEP, then it is known from [19, Page 35] that o (T') = o5(T).
Moreover, it is known that from [6, Theorem 2.6] that if T* has the SVEP, then ¢(T") = 0,(T)
and 05— (T') = 0 (T') and hence EY(T) = E%T), Au(T) = A(T) and A, (T) = A(T).

Proposition 2.3. [2] Let T € B(X). Then T satisfies Weyl’s theorem if and only if T satisfies
Browder’s theorem and 7°(T) = E°(T).

Proposition 2.4. Let T' € B(X). Then T obeys property (t) if and only if the following conditions
hold:

(i) T satisfies a-Browder’s theorem;
(ii) o(T) = 0o(T);
(i) ©°(T) = E°(T).

Proof. The proof follows immediately from Theorem 2.6, Proposition 2.7 and Theorem 2.10 of
[30]. |

The following result is a consequence of Proposition 2.3 and [30, Theorem 2.6, Theorem
2.10].

Proposition 2.5. Let T' € B(X). Then T obeys property (t) if and only if the following conditions
hold:

(i) T satisfies Browder’s theorem;
(ii) 0w (T) = 04uw(T);
(iii) 7r0(T) = EO(T).

Let H,.(c(T)) denote the set of all analytic functions, defined on an open neighborhood of
o(T'), such that f is non-constant on each of the components of its domain. Define, by the clas-
sical calculus, f(T) forevery f € H,.(o(T)).

A bounded operator T € B(X) is said to be polaroid (respectively, a-polaroid) if ¢*°(T) = ()
or every isolated point of o(T') is a pole of the resolvent of T" (respectively, if isoo,(T) = 0 or
every isolated point of o, (7') is a pole of the resolvent of T").

Theorem 2.6. Let T be a bounded linear operator on X satisfying the SVEP. If T — \I has finite
descent at every \ € EO(T), then property (t) holds for f(T*), for every f € H,.(o(T)).

Proof. Let A € E%(T), then X is an isolated of o,(7T) and hence a(T — \) = d(T — \) < oo.
Moreover, a(T — A) < oo, so by [1, Theorem 3.4] it follows that (T — )) is also finite, thus
A € 70(T). This shows that E9(T') C 7°(T). Since the other inclusion is always verified, we
have EO(T) = 7°(T) and hence T is a-polaroid. Therefore, property () holds for T by [30,
Theorem 3.5]. [ ]

The class of operators T' € B(X') for which K(T') = {0} was introduced and studied by M.
Mbekhta in [20]. It was shown that for such operators, the spectrum is connected and the SVEP
holds.
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Theorem 2.7. Let T € B(X). If there exists X such that K(T — \) = {0}, then f(T) € gaB, for
every f € Hy.(o(T)). Moreover, if in addition ker(T — \) = 0, then property (t) holds for f(T')

Proof. Since T has the SVEP, then by [18, Theorem 1.5] , generalized a-Browder’s theorem
holds for f(T') and hence a-Browder’s theorem holds for f(7") for every f € H,.(c(T)). Let
v € oa(f(T)), then

f(z) =1 = P(2)g(2),
where g is complex-valued analytic function on a neighborhood of &(7") without any zeros in
o(T') while P is a complex polynomial of the form P(2) = [}_,(z — A\;I )¥3 with distinct roots
A,y A € a(T). Since g(T) is invertible, then we deduce that

ker(f(T) —~I) =ker(P(T)) = éker(T — Nk
j=1

On the other hand, it follows from [20, Proposition 2.1] that o,,(T') € {\}. If we assume that
ker(T — M) = 0, then T — A is an injective and consequently o, (7) = (). Hence ker(f(T) —
AI) = 0. Therefore, o,,(f(7T")) = 0. Now, we prove that

o (f(T)) = E°(f(T)).
Obviously, the condition o, (f(7")) = 0 entails that

E°(f(T)) = Eq(f(T)) = 0.
On the other hand, the inclusion 7%(f(T)) € E2(f(T)) holds for every operator 7' € B(X). So

a

also 7 (f(T)) = (). Hence property (w) and a-Weyl’s theorem hold for f(7") and so Osp- (f(T)) =
ow(f(T)) = o(T) = 0,(T). It then follows by [30, Theorem 2.10] that f(7") obeys property
(t). |

In [21] Oudghiri introduced the class H(p) of operators on Banach spaces for which there
exists p := p(\) € N such that

Ho(M —T) =ker(T — A\I)P forall A € C.

Let P(X) be the class of all operators T" € B(X) having the property H(p). The class P(X)
contains the classes of subscalar, algebraically wF'(p, q,r) operators with p,» > 0 and ¢ > 1
[29], algebraically w-hyponormal operators [27], algebraically quasi-class (A, k) [26]. It is
known that if Hy(T — M) is closed for every complex number A, then T has the SVEP ( see
[1, 17]). So that, the SVEP is shared by all the operators of P(X). Moreover, T is polaroid, see
[3, Lemma 3.3].

Theorem 2.8. Suppose that T € B(X) is generalized scalar. Then T satisfies property (t) if and
only if T satisfies Weyl’s theorem

Proof. If T is generalized scalar then both 7" and T has SVEP. Moreover, T is polaroid since
every generalized scalar has the property H(p). Then T obeys property (¢) by [30, Theorem
3.4]. The equivalence then follows from [30, Theorem 2.10]. [ |

Example 2.9. Property (¢), as well as Weyl’s theorem, is not transmitted from 7" to its dual T*.
To see this, consider the weighted right shift 7 € B(¢*(N)), defined by

Ty T2

T(Jf],l‘Q,"') = (07?7?7'

) forall (z,) € #(N).
Then

R R
2737
Both 7" and T™ are quasi-nilpotent, and hence are decomposable, T satisfies Weyl’s theorem
since o(T) = 0,(T) = {0} and E°(T) = 7°(T) = () and hence T has property (t). On the
other hand, we have o(T*) = 04(T*) = 0gp— (T*) = Eo(T*) = 0, (T*) = E°%(T*) = {0} and
70 (T*) = ), so T* does not satisfy Weyl’s theorem (and nor a-Weyl’s theorem). Since T* has
SVEP, then T does not satisfy property (¢).

T*(xy, 20, ) i=( for all (z,,) € /*(N).
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3 Property (t) under perturbations

Recall that 7' € B(X) is said to be a Riesz operator if T — X\ € F(X) for all A € C\ {0}.
Evidently, quasi-nilpotent operators and compact operators are Riesz operators. The proof of the
following result may be found in Rakocevi¢ [25]:

Lemma 3.1. Ler T € L(X) and R be a Riesz operator commuting with T. Then
(i) T € B, (X) & T+ReB.(X)
(i) T€B_(X) =T +ReB_(X)
(iii) T € B(X) = T + R € B(X).
It is known that if K € B(X) is a finite-rank operator commuting with 7', then

A€acco,(T) & A €acco, (T + K), 3.1

for a proof see Theorem 3.2 of [10].
The classes W, (X), W_(X) and W(X) are stable under some perturbations. The proof of
following result may be found in [4].

Lemma 3.2. Let T, K € B(X) be such that K is a compact operator. Then
(i) TeWL(X) e T+KeW,(X).

(i) TeW_(X) T+ KeW_(X).

(iii) T e WX) =T+ K € WX).

Define '
E% = {\ € o™(T) : o(T — \) < o0}.

Evidently, E°(T') C E°/ for every operator T' € B(X).

Lemma 3.3. Let T € B(X). If R is a Riesz operator that commutes with T, then
E%T + R)No(T) C a™(T). (3.2)
Proof. By [22, Lemma 2.3] we have
EYT + R)no(T) C EY(T+ R)No(T) C o™(T).
|

Lemma 3.4. Suppose that T € B(X) obeys property (t) and R is a Riesz operator commuting
with T such that o,(T) = 0(T + R). Then 7%(T + R) C E°(T + R).

Proof. Let \ € (T + R) be arbitrary given. Then A € ¢°(T + R) and T + R — \ € B, (X),
so a(T + R — \) < oo. Since T' + R — X has closed range, the condition A € o,(T + R) entails
that o(T + R — \) > 0. Therefore, in order to show that A € E°(T + R), we need only to prove
that X is an isolated point of o(T + R).

We know that A € 0i5°(T"). We have from Lemma 3.1 that (T + R) —A—R=T -\ € B (X)
so that A € 0,(T) \ ou(T) = 7(T).

Now, by assumption 7 obeys property () so, by [30, Proposition 2.7], 7%(T)) = E°(T'). More-
over, T satisfies Weyl’s theorem and hence

EUT) = n%T) = o(T) \ oy(T).
Therefore, T' — X\ is Browder and hence T' + I’ — X is Browder, so
0<a(T+R—XN)=d(TH+R—-)\) <o

and hence ) is a pole of the resolvent of 7'+ R. Consequently, X is an isolated point of o (T +
R). [
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Lemma 3.5. Suppose that T € B(X) obeys property (t). If R is a Riesz operator commuting
with T and o,(T) = 0(T + R), then E°(T) C E°(T + R).

Proof. Suppose that T obeys property (¢). Hence we conclude from [30] that
E'T) = o(T)\ogp—(T) = 0a(T)\ 0 g~ (T) = 0a(T+R)\0wp(T + R) = mo(T + R). (3.3)

Let A\ € E°(T) be arbitrary given. Set W := T + R then W commutes with R. By [7, Lemma
2.3] we have

A€ ENT)Nao(T+ R) = E°(W — R)N0u(T)
C (W) = o™(T + R).

Moreover, we have from (3.3) that 7+ R — XA € B (X) and so has closed range. Since ) €
o.(T + R) it follows that X is an eigenvalue and hence 0 < «(7 + R — \) < oc. That is,
A€ E%T + R). [

Recall that T € B(X) is said to be isoloid if 0'°(T) C 0,(T'). As a consequence of [30,
Theorem 2.4] and [4, Lemma 2.4] we have

Corollary 3.6. Suppose that T € B(X) obeys property (t) and F is a finite rank operator com-
muting with T such that 0,(T) = oo(T + F). Then n°(T + F) C E%(T + F).

We first recall two well-known results: if R is a Riesz operator commuting with 7' € B(X),
then
Osp- (T+R)= Osp- (T)and oy (T + R) = oup(T). (3.4)

Since o(T + R) = o(T) and 0(T) = o4(T + R), we then have 7°(T) = 7T + R) and
7(T) = 79(T + R).

Theorem 3.7. Suppose that T € B(X) is an isoloid operator for which property (t) holds and F
be a bounded operator commuting with T such that F'™ is a finite rank operator for some n € N.
Then

(i) E%T) = E°(T + F).
(ii) T + F has property (t).

Proof. (i) Observe first that I is a Riesz operator, so, it follows from Lemma 3.5 that EO(T) -
E°%(T + F). Hence it suffices to show that E°(T + F) C E°(T). Let A € E°(T + F). Then
A € o"(T + F). Since o(T + F — A) > 0 and o(T) = o(T + F). Therefore, by Lemma
33, A€ ENT + F)no(T) C ™ (T). Since T is isoloid then (7" — \) > 0. We show now
(T =) <oco.Let Z = (T+F —\)" |xer(r—»)- Clearly, if z € ker(T'—\), then Zz = (—1)"F"x
thus Z is a finite rank operator. Moreover, since A € E°(T + F) we have (T + F — \) < oo
and hence a(Z) < a(T + F — \)™ < oo. Then it follows that ker(7' — \) is finite dimensional.
Therefore, A € E°(T).

(ii) As T obeys property (¢) and F' is a Riesz operator, we have

ENT+F)=ET) = o(T)\ ogp (T) = o(T + F) \ sfpm(T + F),
hence T + F obeys property (¢). [ |
As an immediate consequence we have:

Corollary 3.8. Let T € B(X) be an isoloid operator. If property (t) holds for T then property
(t) holds also for T + F, for every finite rank operator F' commuting with T.

Theorem 3.9. Suppose that T € B(X) obeys property (t) and 0'°(T) = 0. If F is a finite rank
operator commuting with T, then T + F obeys property (t).

Proof. The condition ¢*°(T) = () entails that T is an isoloid. Hence the result follows by
Corollary 3.8. |
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we shall consider nilpotent perturbations of operators satisfying property (¢). It easy to check
that if V is a nilpotent operator commuting with 7", then

o(T)=0c(T+ N) 04(T) =0,(T + N) and Ogp- (T) = Ogp- (T+N). (3.5)
Hence it follows from Equation ( 3.5)
E%T) = E°T + N), and EX(T) = E%(T + N). (3.6)

Theorem 3.10. Suppose that T € B(X) and let N € B(X) be a nilpotent operator which com-
mutes with T. Then T obeys property (t) if and only if T + N obeys property (t).

Proof. Suppose that T' obeys property (¢). Then
ET + N) = E(T) = o(T) \ 05 (T)
=o(T'+N)\ogp-(T +N),

hence T'+ N obeys property (¢). The converse follows by symmetry. ]

Example 3.11.In general property (¢) is not transmitted from an operator to a commuting
quasinilpotent perturbation as the following example shows.
If we consider on the Hilbert space ¢?(N) the operators 7' = 0 and Q defined by

Ty X3

Q(z1, 22, ) = (?, ?,) for all z,, € /*(N).

Then Q is quasinilpotent operator commuting with 7. Moreover, we have o(T') = {0}, 04 Fr (T) =
@, E(T) = {0}. Hence T obeys property (¢). But property (t) fails for T + Q@ = Q. Indeed,
osp- (T +Q) = {0}, E%T + Q) = E°(T) = {0} and o(T + Q) = {0}.

A bounded linear operator T € B(X) is said to be finite-isoloid if every isolated point of
o(T) is an eigenvalue of T having finite multiplicity.

Theorem 3.12. Suppose that T € B(X) is a finite-isoloid operator which obeys property (t). If
R is a Riesz operator which commutes with T, then E°(T) = E°(T + R).

Proof. Suppose that T obeys property (¢). Then it follows from [30, Theorem 2.10] that T
satisfies Weyl’s theorem and o, (T') = o (T'). Since R is a Riesz operator commuting with T’

then by [22, Theorem 2.7] that T+ R satisfies Weyl’s theorem. Hence
EYT+R)=0(T+ R)\ 0w(T+ R) =0c(T)\ 0u(T)
= o(T)\ 05— (T) = E°(T).
[

Corollary 3.13. Suppose that T € B(X) is a finite-isoloid operator which obeys property (t). If
R is a Riesz operator which commutes with T, then T + R obeys property (t).

Proof. As T obeys property (t), we have E*(T) = o(T) \ o4 - (T). As we known that the
equalities 0(T) = o(T + R) and o4y, (T) = ogp- (T + R) hold for every Riesz operator
commuting with 7. So, it follows from Theorem 3.12 that

E(T +R) = E°(T) = o(T) \ ogp- (T) = o(T + R) \ 05 (T + R).
That is, T'+ R obeys property (t). [

Corollary 3.14. Suppose that T € B(X) is a finite-isoloid operator which obeys property (t).
(i) If Q is a quasi-nilpotent which commutes with T, then T + Q obeys property (t).
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(ii) If K is a compact operator which commutes with T and 0,(T) = 0,(T + K), then T + K
obeys property (t).

Proof. (i) This follows immediately from the fact that 0, (7") = 0,(T + Q) and Theorem 3.12.
(ii) It is clear since every compact operator is a Riesz operator. |

Theorem 3.15. Let T be an operator on X that obeys property (t) and such that o,(T) N
o(T) C E%T). If Q is a quasi-nilpotent operator that commutes with T, then T + Q obeys

property (t)

Proof. As T obeys property (), we have by [30, Theorem 2.10] that T satisfies Weyl’s theorem
and o, (T) =04 - (T). Hence by [22, Proposition 2.9], we have T+ Q) satisfies Weyl’s theorem.

Since o g - (T+Q) = Osp- (T) and 0, (T') = 0, (T + Q) we have Osp- (T+Q) =0,(T+Q)
and so T + @ obeys property (t). [ |

Definition 3.16. A bounded linear operator 7 is said to be algebraic if there exists a non-trivial
polynomial A such that h(7") = 0.

From the spectral mapping theorem it easily follows that the spectrum of an algebraic oper-
ator is a finite set. A nilpotent operator is a trivial example of an algebraic operator. Also finite
rank operators K are algebraic; more generally, if K™ is a finite rank operator for some n € N
then K is algebraic. Clearly, if T is algebraic then its dual T* is algebraic, as well as 7" in the
case of Hilbert space operators.

Theorem 3.17. Suppose that T € B(X) and K € B(X) is an algebraic operator which com-
mutes with T.

(i) If T* is hereditarily polaroid and has SVEP, then T + K obeys property (t).
(ii) If T is hereditarily polaroid and has SVEP, then T* + K* obeys property (t).

Proof. (i) Obviously, K* is algebraic and commutes with 7. Moreover, by [7, Theorem 2.15],
we have T + K™ is polaroid, or equivalently, 7'+ K is polaroid. Since 7 has SVEP then by
[6, Theorem 2.14], we have T* + K* has SVEP . Therefore, T + K obeys property (¢) by [30,
Theorem 3.4 (i)].

(ii) It follows from the proof of Theorem 2.15 of [7] that 7'+ K is polaroid and hence by duality
T* 4+ K* is polaroid. Since 7" has SVEP then it follows from [6, Theorem 2.14] that T+ K has
SVEP. Therefore, T* + K* obeys property (¢) by [30, Theorem 3.4 (ii)]. [ |

Theorem 3.18. Suppose that T € B(X) and K € B(X) is an algebraic operator which com-
mutes with T

(i) If T* is hereditarily polaroid and has SVEP, then f(T + K) obeys property (t) for all
f € Hye(o(T)).

(ii) If T is hereditarily polaroid and has SVEP, then f(T* + K*) obeys property (t) for all
f € Hye(o(T)).

Proof. (i) We conclude from [7, Theorem 2.15] that 7'+ K is polaroid and hence by [8, Lemma
3.11], we have f(T + K) is polaroid and from [6, Theorem 2.14] that 7* + K* has SVEP. The
SVEP of T* + K* entails the SVEP for f(7* + K*) by [1, Theorem 2.40]. So, f(T + K) obeys
property (t) by [30, Theorem 3.6 (i)].

(i1) The proof of part (ii) is analogous. [ |

4 Property (t) and tensor product

The problem of transferring Weyl’s theorem, property (w) and property (b) from operators A
and B to their tensor product A ® B was considered in [16], [12] and [31]. The main objective
of this section is to study the transfer of property (¢) from a bounded linear operator A acting on
a Banach space X’ and a bounded linear operator B acting on a Banach space ) to their tensor
product A ® B.
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Example 4.1. Let U € B(f?) denote the forward unilateral shift, and let A, B € B(£* @ (?) be
the operators

A—(l—UU*)@(éU—l), B=—(1—-UU" (;U*—1>.

Then A and B* have SVEP, so A, B € a®8. Furthermore, 1 € 0(A® B) \ 0,(A ® B). However,
since

o(A® B) = {{o, l}u{%ﬂ)— 1}} . {{o,_1} U {%DJF 1}},

where D is the closed unit disc in the complex plane C, 1 € acco(A® B) = 1 € 0,(A ® B).
Then A ® B ¢ B, and hence A ® B does not obey property ().

The following example shows that property (¢) does not transfer from A € B(X') and B €
B(Y)to A® B.

Example 4.2. Let Q € B(¢?) be an injective quasi-nilpotent, and let
A=B=(I+Q)@ad®pfck(P)aCaC,
where o = 1 # «a. Then
a(4) = o(B) = {1,a, 8}, 0aw(4) = 04u(B) = {1},0(A® B) = {1,a, 8, 0%, 5}

The operators A, B have SVEP, hence a-Browder’s theorem transfers from A and B to A ® B,
which implies that

Oaw(A® B)={1,0,8}, 1 ¢ 6(A® B) \ 04 (A® B) and 1 = aff € E°(A® B).
Note that the operators A and B are not isoloid.

Example 4.3. Choose A = (I+Q)®a® B € B(¢?) @ C @ C as in the previous example, and let
B = %U@l@ﬂ € B(f*)@CaC, where U is the forward unilateral shift and o = ? <p= %

Let D be the closed unit disc in C and 9D denote the boundary of the closed unit disc D in C.
Then A and B have SVEP, and it follows that

— {La.B}, o(B) =+ o - L pu{t,asp
J(A)_{la 7ﬁ}7 (B) 4]D)U{lvﬁ}v (A®B) Z\EDU{L aﬂaﬁ },
and . .
Oaw(A) = {1}, 04w(B) = Z@]D), Oaw(A® B) = 2\—@3DU {1,a, B}.

Evidently, 1 ¢ 0(A® B) \ 04uw(A® B) and 1 € E°(A ® B). Here the operator B is isoloid but
A is not isoloid.

The following theorem gives a necessary and sufficient condition for the transference of prop-
erty () from isoloid A and B to A® B. Let A € B(X) and B € B(Y). Then 0'*°(A ® B) C
01%°(A).0'°(B) U {0}. If 0 is in the point spectrum of either of A and B, then a(4 ® B) = oc;
in particular, 0 ¢ E°(A ® B). Itis easily seen, see the argument of the proof of [16, Proposition
2], that E°(A ® B) C E°(A)E°(B).

Theorem 4.4. If A € B(X) and B € B(Y) are isoloid operators which satisfy property (t) and
0 ¢ 0°(A ® B), then the following conditions are equivalent:

(i) A ® B satisfies property (t).
(ii) The a-Weyl spectrum equality 4., (A @ B) = 0(A)0aw(B) U 04w (A)o(B) is satisfied.

(iii) A ® B satisfies a-Browder’s theorem.
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Proof. Since property (¢) implies a-Browder’s theorem, the equivalence (ii)<(iii) and (i)=(iii)
follows from [11, Theorem 3]. We prove (iii)=>(i). The hypothesis A and B satisfy property ()
implies

o(A) \ oaw(A) = E%(4),  o(B)\0aw(B) = E°(B).

Observe that (iii) implies a-Browder’s theorem transfers from A and B to A® B : hence Oaw (A®
B) = 04(A)04u(B)U0uw(A)oe(B). Let A € E°(A® B); then A # 0 and there exist yu € 0™°(A)

and v € ¢"°(B) such that A = pv. By hypothesis, A and B are isoloid; hence 1 is an eigenvalue
of A and v is an eigenvalue of B. Since A® B — (ul @ vl) = (A—u) @ B+ p(I @ (B —v)), if
either of (A — p) or a(B — v) is infinite then so is «(A® B — (uI ® vI)). Hence pu € E°(A) =
o(A)\ 0uw(A) and v € E°(B) = o(B) \ 04w (B), consequently, A € 0(A ® B) \ 04(A ® B);
hence E°(A® B) C 0(A® B) \ 04w (A® B). Conversely, if A € 0(A® B) \ 04w (A ® B), then
A # 0, and there exist p € 0(A) \ 04w (A) = E°(A) and v € 0(B) \ 044,(B) = E°(B) such that
A = pv. But then \ € E°(A ® B). Therefore, 0(A® B) \ 04 (A® B) C E°(A® B). |

Let
os(T)={A€o(T): T — Xisnotonto},
osp = {A € 05(T) : T — X is not lower semi-Fredholm or d(T — \) = oo}

and
0sw(T) = {X € 05(T) : T — X is not lower semi-Fredholm or ind(7" — \) < 0

denote, respectively, the surjectivity spectrum, the Browder essential surjectivity spectrum and
the Weyl essential surjectivity spectrum of 7" € B(X). Then T satisfies s-Browder’s theorem
(T € $B) if 05,(T) = 050 (T). Apparently, T satisfies s-Browder’s theorem if and only if 7*
satisfies a-Bt. A necessary and sufficient condition for T to satisfy a-Browder’s theorem is that
T has SVEP at every A € 0,(T) \ 0aw(T); by duality, T satisfies s-Browder’s theorem if and
only if 7* has SVEP at every A € o4(T) \ 050 (7).

T € B(X) is polaroid implies T* polaroid. It is well known that if 7" or T* has SVEP and T
is polaroid, then 7" and 7™ satisfy Weyl’s theorem. Note as well known is the fact, [30, Theorem
3.4], that if T is polaroid and T* (resp., T') has SVEP, then T (resp., T*) satisfies property (gt).
The following theorem is the tensor product analogue of this result.

Theorem 4.5. Suppose that the operators A € B(X) and B € B(Y) are polaroid.
(i) If A* and B* have SVEP, then A ® B satisfies property (t).
(ii) If A and B have SVEP, then A* ® B* satisfies property (t).

Proof. (i) The hypotheses A* and B* have SVEP implies
a(A) = 0,(4), o(B) = 04(B), Oaw(A) = oy (4), Oaw(B) = 0,4(B)

and
A*, B* and A* ® B* satisfy s-Browder’s theorem.

Thus s-Browder’s theorem and Browder’s theorem (s = *B) transfer from A* and B* to
A* ® B*. Hence

Oaw(A® B) = 04y (A* ® B*) = 04(A*) 05 (B*) U 05 (A*)os(B*)
= 04(A)04w(B) U 0gy(A)oa(B) = c(A)ow(B) Uoy,(A)a(B),

and

ow(A® B) = 0y,(A* ® B*) = 0, (A*)o(B*) Uy (B*)o(A*)
=0(A)ow(B) Ua(B)oy(A).

Consequently,
Oaw(A® B) = 0,(A® B).
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Evidently, A ® B is polaroid [12, Lemma 2]; combining this with A ® B satisfies Browder’s
theorem, it follows that A® B satisfies Weyl’s theorem, i.e., 0 (A®@ B)\ 0, (A® B) = E°(A®B).
But then

0(A® B)\ 04w(A® B) =0(A® B)\ 0,(A® B) = E°(A® B),
i.e., A ® B satisfies property (t).
(ii) In this case o(A) = 04,(A4%),0(B) = 04(B*), 0w (A*) = 0aw(4*),00(B*) = caw(B*),
o(A* @ B*) = 0,(A* ® B*), polaroid property transfer from A and B to A* ® B*, and both
s-Browder’s theorem and Browder’s theorem transfer from A and B to A ® B. Hence

Oaw(A* @ B*) = 05,(A® B) = 05(A)050(S) Uosw(A)os(B)
= 04(A")0qu(B*) U 0gw(A")o.(BY)
=o0(A)o,(B)Uoy,(A)o(B)
=0y (A® B) = 0,,(A* @ B*).

Thus, since A* ® B* polaroid and A ® B satisfies Browder’s theorem imply A* @ B* satisfies
Weyl’s theorem,

0(A* ® B*)\ 0aw(A* ® B*) = 0(A* © B*) \ 0u(A* @ B*) = E°(A* ® BY),

i.e., A* @ B* satisfies property (¢). [

5 Perturbations and Tensor Product

Let [4,Q] = AQ — QA denote the commutator of the operators A and Q. If @; € B(X) and
Q> € B(Y) are quasinilpotent operators such that [Q;, A] = [Q2, B] = 0 for some operators
A € B(X)and B € B()), then

(A+Q1)®(B+Q2)=(A®B) +Q,

where Q = Q@ B+ A® Q2+ Q1 ® Qy € B(X ®Y) is a quasinilpotent operator. If in the
above, Q1 and @, are nilpotents then (A + Q1) ® (B + Q3) is the perturbation of A ® B by a
commuting nilpotent operator.

Theorem 5.1. Let Q, € B(X) and Q2 € B(Y) be quasinilpotent operators such that [Q, A] =
[Q2, B] = 0 for some operators A € B(X) and B € B(Y). If A® B is finitely isoloid, then
A ® B satisfies property (t) implies (A + Q1) ® (B + Q) satisfies property (t).

Proof. Start by recalling that o ((A+ Q1) ® (B+Q2)) = 0(A®B), 0,((A+Q1)®(B+Q7)) =
0a(A® B), 04uw((A+ Q1) ® (B+ Q2)) = 0aw(A® B) and that the perturbation of an operator
by a commuting quasinilpotent has SVEP if and only if the operator has SVEP. If A ® B satisfies
property (), then

E°(A® B) = 0(A® B) \ 04uw(A® B)
=0((A+ Q1) ® (B+Q2)\ 0aw((A+ Q1) ® (B+ Q2)).

We prove that E°(A ® B) = E°((A+ Q1) ® (B + Q3)). Observe that if A € ¢%*°(A ® B), then
A*® B* has SVEP at \; equivalently, (A*+Q})®(B*+Q3) has SVEP at \. Let A € E°(A® B),
then A € o((A+Q1)®(B+Q2))\ 0w ((A+Q1) @ (B+Q2)). Since (A+Q1)* @ (B+Q2)* has
SVEP at \, it follows that A ¢ 04, ((A+ Q1) ® (B+Q2)) and A € 6"*°((A+ Q1) ® (B+ Q2)).
Thus A € E°((A+Q1)®(B+Q,)). Hence E°(A® B) C E°((A+Q1)® (B+Q>)). Conversely,
if A€ E%(A+Q1)®(B+Q,)), then A € 0*°(A® B), and this, since A® B is finitely isoloid,
implies that A € E°(A ® B). Therefore, E°((A+ Q1) ® (B +Q»)) € E°(A® B). So, the proof
of the theorem is achieved. u

Corollary 5.2.If Q| € B(X) and Q, € B(Y) are nilpotent operators such that [Q, A]
[Q2, B] = 0 for some operators A € B(X) and B € B(Y), then A ® B satisfies property (t)
implies (A4 Q1) ® (B + Q») satisfies property (t).
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The situation for perturbations by commuting Riesz operators is a bit more delicate. The
equality 0,(T) = 0,(T + R) does not always hold for operators 7, R € B(X) such that R is
Riesz and [T, R] = 0; the tensor product 7' ® R is not a Riesz operator (the Fredholm spectrum
0e(T®R) =0(T)o.(R)Uo(T)o(R) = c.(T)o(R) = {0} for a particular choice of T" only).
However, o, (also, o}) is stable under perturbation by commuting Riesz operators [32], and
so T satisfies Browder’s theorem if and only if 7" + R satisfies Browder’s theorem. Thus, if
o(T) = o(T + R) for a certain choice of operators 7, R € B(X) (such that R is Riesz and
[T, R] = 0), then

(T) = o(T) \ 0w(T) = o(T + R) \ 0(T + R) = 7°(T + R),

where 7°(T) is the set of A € ¢%*°(T') which are finite rank poles of the resolvent of 7'. If we
now suppose additionally that T satisfies property (), then

E%T) = o(T) \ 0au(T) = o(T 4+ R) \ 04u(T + R), 5.1

and a necessary and sufficient condition for 7 + R to satisfy property (¢) is that E°(T + R) =
E°(T). One such condition, namely 7" is finitely isoloid.

Theorem 5.3. Let A € B(X) and B € B(Y) be finitely isoloid operators which satisfy property
(t). If Ry € B(X) and R, € B(Y) are Riesz operators such that [A,R,] = [B,Ry] = 0,
0u(A+ Ry) = 04,(A) and 6,(B + Ry) = 0,(B), then A ® B satisfies property (t) implies
(A+ Ry) ® (B + Ry) satisfies property (t) if and only if Browder’s theorem transforms from
A+ Ry and B + R, to their tensor product.

Proof. The hypotheses imply (by Corollary 3.13) that both A + R; and B + R, satisfy property
(t). Suppose that A ® B satisfies property (t). Then 0(A ® B) \ 04,(A ® B) = E°(A ® B).
Evidently A ® B satisfies a-Browder’s theorem, and so the hypothesis A and B satisfy property
(t) implies that a-Browder’s theorem transfers from A and B to A ® B. Furthermore, since ,
04(A+Ry) = 04(A), 04 (B+Ry) = 04(B), and 0, is stable under perturbations by commuting
Riesz operators,

Oaw(A® B) = 04(A)0aw(B) Uqw(A)o(B)
= 0a(A+ Ri)0aw(B + R2) U0aw(A+ Ry)oa(B + Ry)
=0(A+ Ri)oqw(B + Ry) Uogw(A+ Ri)o(B+ Ry)

Suppose now that a-Browder’s theorem transfers from A+ R, and B+ R, to (A+R;)®(B+R,).
Then
Taw(A® B) = 0auw((A + R1) ® (B + R2))

and
E'(A®B)=0((A+ Ri) ® (B+ R2)) \ 0uw((A+ R1) ® (B + Ry)).

Let A € E°(A ® B). Then A # 0, and hence there exist 1 € o(A + Ry) \ 04w(A + Ry) and
v € og(B+ Ry) \ 04w (B + Ry) such that A = pv. As observed above, both A + R; and B + R,
satisfy property (t); hence u € E9(A+ R;) and v € E9(B + Ry). This, since A € 0(A ® B) =
o((A+R))®(B+R,)), implies A € E°((A+R;)®(B+R;)). Conversely, if A € E°((A+R)®
(B+Ry)), then \ # 0 and there exist u € E°(A+R;) C 0i%°(A) and v € E°(B+R;) C 0*°(B)
such that A\ = pv. Recall that E°((A+R;)®(B+R,)) € E°(A+R,)E°(B+R,). Since A and B
are finite isoloid, 4 € E°(A) and v € E°(B). Hence, since o ((A+ R1)®(B+ Ry)) = 0(A®B),
A= pv € E°(A® B). To complete the proof, we observe that if the implication of the statement
of the theorem holds, then (necessarily) (A + R;) ® (B + R;) satisfies Browder’s theorem. This,
since A+ R; and B + R, satisfy Browder’s theorem, implies Browder’s theorem transfers from
A+ Riand B+ Ryto (A+ Ry) ® (B+ Ry). [ |
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