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Abstract For a simple connected graph G = (V (G), E(G)) where V (G) is the set of vertices
and E(G) is the edge set, the distance between two vertices u and v denoted by dG(u, v) or
simply d(u, v) is the minimum number of edges between u and v. A vertex x resolves two
distinct vertices u and v if d(x, u) 6= d(x, v). An ordered set R is said to be a resolving set for
the graph G if for any two vertices u and v of G there exists atleast one element R such that it
resolves u and v. If the cardinality (the number of elements inR) ofR is minimum thenR is said
to be a metric basis for G and the cardinality of the metric basis is called the metric dimension
of G. Here we study the vulnerability in metric dimension of any tree under an arbitrary edge
contraction.

1 Introduction

We consider a simple, finite and connected graph G = (V (G), E(G)), where V (G) and E(G)
represents the vertex set and the edge set, respectively. The distance between two distinct vertices
say u and v is denoted by dG(u, v) or without ambiguity d(u, v). A set W = {w1, w2, . . . , wk}
on which the ordering (w1, w2, . . . , wk) has been established is referred to as the ordered set of
vertices. A vertex y resolves two distinct vertices u and v if d(u, y) 6= d(v, y). The code of a
vertex u with respect to an ordered set W = {w1, w2, . . . , wk} is denoted by code(u|W ) and is
defined by

code(u|W ) = (d(u,w1), d(u,w2), . . . , d(u,wk)).

If for every pair of arbitrary vertices u and v in V (G) there is a vertex x ∈W such that d(x, u) 6=
d(x, v), then the set W is said to be a resolving set in G. The minimum cardinality (the number
of elements in the set) of the resolving set of G is referred to as the metric dimension of G and it
is denoted by β(G). We observe that there may be many resolving set in V (G) of different sizes
hence it becomes utmost important and interesting to study the minimal one. The resolving set
with minimum cardinality is termed as the metric basis of G[2]. Finding a minimum resolving
set for a graph G is an NP- complete problem [17].

Metric dimension of a general metric space was first introduced in the year 1953 in [6]. Slater
[39, 40] gave the concept of resolving set for a connected graph G, where he referred it to be a
locating set and the minimum resolving set as the reference set for G. The location number of G
was defined as the cardinality of the minimum resolving set. These concepts were well utilized in
sonar stations, robot navigation [30] and also in the different fields of chemistry [27, 28]. These
graph parameters were studied in many research articles like [1, 3, 11, 34, 41, 42, 45]. Harary
and Melter independently worked on these ideas and gave the term metric dimension instead of
locating number. The concept of metric dimension was first analysed taking into consideration
the navigation system in different graphical networks which has a very wide range of applications
in daily life. The robot covers different vertices and the landmark are those vertices which helps
the robot to establish its location in the network [19]. In a network, the problem of determining
the smallest set of landmarks becomes a problem of establishing a smallest resolving set in
a graph [30]. Over the years a complete characterisation of graphs of order n whose metric
dimension are 1, n − 3, n − 2 and n − 1 has been studied and determined in [11, 20, 24]. In
addition to these we have many more particular classes of graphs as for example circulant graphs
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[22], cycles [11], wheels [8, 9, 38], fans [9], unicycle graphs [35], hypercubes [4, 5, 14, 32], grids
[34], honeycomb [33, 44], Jahangir graphs [43], classical binomial random graph [5], Sierpíski
graphs[31] and trees [11, 19, 30].

The metric dimension of graphs which are structured out by some graph operations were
studied as : line graph [16, 29], Cartesian product graphs [10, 30, 34, 36], corona product graphs
[23, 45], joint product graphs [8, 9, 38], lexicographic product graphs [37] and hierarchical
product graphs [15].

Given a tree, a vertex of degree at least 3 is called a core vertex or a core. A vertex of degree
2 is called a path vertex, and a vertex of degree 1 is called a leaf. For a core v, we often consider
the subtrees created by removing v from the tree, and call them the subtrees of its neighbors
or components (one subtree for each neighbour). We sometimes consider the BFS tree that is
created by rooting the tree at v. If u is a vertex in T other than the root, then the parent of u is
the vertex adjacent to u on the path to the root. A subtree of a neighbor of a core v, that is a path
(without any cores), is called a leg (or a standard leg) of v. If a leg consists of a single vertex
(that is, v is connected to a leaf), we call it a short leg, otherwise it is called a long leg. A core
having at least one leg is called a stem vertex. A stem is called major if it has at least two legs
otherwise is called minor stem.

In the view of T as tree rooted at w, we define a level function ` on V (T ) by `w(v) = d(w, v).
We simply denote the level function `w by ` when w is clear in the context. For any two vertices
u, v ∈ V (T ), let φ(u, v) = min{`(x): where x is on the (u, v)-path in T}.

Observation 1.1. Let u and v be two vertices of a tree T . Then the following hold:
(a) d(u, v) = `(u) + `(v)− 2φ(u, v).
(b) u and v are in different branches if and only if φ(u, v) = 0.

An edge contraction is an operation that removes an edge from a graph while simultaneously
merging the two vertices that it previously joined. In this article, we study the vulnerability in
metric dimension of any tree under an arbitrary edge contraction.

2 Main Results

Lemma 2.1. The number of legs and leaves in a tree T are same provided the tree has at least
three leaves.

Proposition 2.2. For any tree T having at least three leaves, the following are true :
(a) For every leaf u, there exists a unique leg adjacent to some stem vertex.
(b) The legs, which are adjacent to two distinct stems, are disjoint.

Lemma 2.3. Let R(T ) be a resolving set of T . Then for every vertex w ∈ V (T ), R(T ) contains
at least one vertex from each component of T \ {w} with at most one exception.

Proof. Let NT (w) be the set of all neighbours of w of T and NT (w) contains m vertices, where
m ≥ 2. Then T \ {w} has m components, let they be C1, C2, . . . , Cm. If possible, assume
there to be at least two components Ci and Cj such that R(T ) ∩ Ci = ∅ and R(T ) ∩ Cj = ∅.
Then R(T ) ⊆ V (T ) \ (Ci ∪ Cj). Let u ∈ NT (w) ∩ Ci and v ∈ NT (w) ∩ Cj . We prove that
dT (x, u) = dT (x, v) for every vertex x ∈ V (T )\ (Ci ∪ Cj). Since x 6∈ Ci∪Cj and u, v ∈ N(w),
both the shortest paths between x to u and x to v must be via the point w because in a tree be-
tween every pair of vertices there exists a unique path. Thus dT (x, u) = dT (x,w)+1 = dT (x, v)
when x ∈ V (T ) \ (Ci ∪ Cj). Therefore there exists no vertices in R(T ) that resolve u and v,
which is a contradiction. Hence we get the result. 2

Corollary 2.4. Let s be a stem vertex of T having m legs L1, L2, . . . , Lm. Then for every
resolving set R of T the following are true :

(a) R ∩ Li 6= ∅ for all i ∈ {1, 2, . . . ,m} with at most one exception.
(b) R contains at least m− 1 vertices from the legs adjacent to s.

Theorem 2.5. For any tree T , β(T ) ≥ nl(T )−ns(T ), where nl(T ) and ns(T ) denote the sets of
all leaves and all stem vertices in T , respectively.
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Proof. Let R be an arbitrary resolving set of T . Assume T has m stem vertices and they are
s1, s2, . . . , sm, i.e., S = {s1, s2, . . . , sm}. Let ni denotes the number of legs adjacent to si.Then
m∑
i=1

ni = nl(T ). By using Corollary 2.4, for each i ∈ {1, 2, . . . ,m}, R contains at least ni − 1

vertices from the legs hanged on si.Again Proposition 2.2 2.2, gives that the legs adjacent to

different stem vertices are disjoint and so R contains at least
m∑
i=1

(ni − 1) vertices. Therefore,

|R| ≥
m∑
i=1

ni −m = nl(T )− ns(T )

and this is true for every resolving set R of T . Thus we obtain the result. 2

Lemma 2.6. Every tree with at least one core vertex must contains a major stem vertex.

Proof. Let T be a tree and v be a core vertex (i.e., deg(v) ≥ 3) in T . Root the tree at v. If every
component of T \ {v}, does not contains any core vertex, then v itself a major stem vertex. Thus
we assume at least one component, say, C, of T \ {v} must contains a core vertex. Let w be a
core vertex in C which is at largest distance from v. Since deg(w) ≥ 3, so it has at least two
children, say w1 and w2. Then the components Cw(w1) and Cw(w2) of T \ {w} containing w1
and w2, respectively, do not contain a core vertex, otherwise it would give w is not a core vertex
of maximum depth. Therefore, Cw(w1) and Cw(w2) are legs of w and consequently w is a major
stem vertex of T . 2

Corollary 2.7. Let T be a tree and v be a core which is not a major stem. Each component of
T \ {v} contains at least one major stem vertex of T with at most one exception.

Proof. Let deg(v) = m. Then T \ {v} has m components, say, T1, T2, . . . , Tm. Since v is not a
major stem, so each component of T \ {v} contains at least one core vertex except one (say Tm).
Since each T`, 1 ≤ ` ≤ m−1 contains core vertices, applying Lemma 2.6 each of these subtrees
must contains major stem vertices and hence we obtain our result. 2

Lemma 2.8. Let T be a tree with at least one core vertex and R(T ) be a collection of vertices of
T by taking exactly one from each of leg(s) − 1, where leg(s) is the number of legs at s. Then
R(T ) is a resolving set of T with cardinality nl(T ) and ns(T ).

Proof. To prove R(T ) is a resolving set, we have to show for every pair of vertices u and v in T ,
there exists at least one element, say x, in R(T ) such that dT (x, u) 6= dT (x, v). Let x ∈ R(T )
be a fixed element and u, v be two arbitrary vertices of T that are not resolved by x. Then
dT (x, u) = dT (x, v). We consider the following two cases

Case-I: x, u and v all lie on a same path. Since x ∈ R(T ), so x lies on a leg L of some major
stem, say s. Let T be rooted at s. Since dT (x, u) = dT (x, v) and x, u and v are lie on a same
path, it follows that at least one of u and v must be on the leg L and exactly one vertex will be at
deeper level than x along the path L. With no loss of generality, we assume that u lies on a path
L which is deeper level than the level of v. Then dT (s, u) > dT (s, v). Let w ∈ L be a vertex
adjacent to s. Since T is not a path, R(T ) consists a vertex y from T − {sw}. In the following
we calculate the distances of u and v from y by using Observation 1.1.

dT (y, u) = dT (y, s) + dT (s, u)

dT (y, v) = dT (y, s) + dT (s, v)− 2φ(y, v).

Since dT (s, u) > dT (s, v), from the above equations we have dT (y, u) 6= dT (y, v), i.e., y resolve
u and v.

Case-II: x, u and v are in different path. Since dT (x, u) = dT (x, v) and x, u and v are in
different paths, it follows that the xu-path and xv-path intersect to a vertex (unique vertex), say
w. Then w is core vertex and dT (w, u) = dT (w, v). Let Tu and Tv be two components of T \{w}
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containing u and v, respectively. From the construction of R and Lemma 2.6, for every core w,
R contains at least one element from each component of T − {v} with one exception. With no
loss of generality, we assume R(T ) contains an element z from the component Tu. Our claim, z
resolve u and v. In view of Observation 1.1, the distances of u and v from z are given by

dT (z, u) = dT (z, w) + dT (w, u)− 2φ(z, u)

dT (z, v) = dT (z, w) + dT (w, v).

Since the vertex z lies on a leg of t and both the vertices z and u lie in the component of Tu,
φ(z, u) ≥ 1. Also dT (w, u) = dT (w, v). Thus the above two equations show that dT (z, u) 6=
dT (z, v), i.e., z resolve u and v. On account of Case-I and Case-II, we get R(T ) is a resolving
set of T . 2

Theorem 2.9. For a tree T with at least one core, β(T ) = nl(T ) − ns(T ), where nl(T ) and
ns(T ) denote the number of legs and stem vertices in T , respectively.

Proof. The result follows immediately from Theorem 2.5 and Lemma 2.8. 2

Theorem 2.10. Let T be a tree and e = (u, v) be an edge in T . Then

β(T · e) =


β(T · e), if both u and v are stem vertices;
β(T )− 1, if one of u and v is a leaf and other one is minor stem;
β(T ), otherwise.

Proof. For a tree T , let n`(T ) and ns(T ) be the number of leaves and stems in T . Then applying
Theorem 2.9, we have β(T ) = n`(T ) − ns(T ). Since e = (u, v) be an edge in T , so both the
vertices u and v can not be leaf of T , i.e., at most one of u and v can be a leaf. For x ∈ {u, v},
let nx be the number of legs hanging at x. Let w be the merging vertex in T · e. Then the total
legs at w in T · e is nu + nv, provided no one of u and v is a leaf. Moreover, if no one of u and v
is a leaf, then T · e and T have same number of leaves, indeed they are same leaves. Thus if both
u and v are stem vertices, then n`(T · e) = n`(T ) and ns(T · e) = ns(T )− 1 and hence applying
Theorem 2.9, we have β(T · e) = n`(T · e)−ns(T · e) = n`(T )−ns(T )+ 1 = β(T )+ 1. Again
if one of u and v, say u, is a stem and v is neither a stem nor a leaf, then n`(T · e) = n`(T ) and
ns(T · e) = ns(T ) (here the merging vertex w will be a stem in place of v with same number of
legs). Thus in this case, we have β(T · e) = β(T ). Now we assume one of u and v, say v, is a
leaf. Then the number of leafs and stem vertices in T · e are given by

ns(T · e) =

{
ns(T )− 1, if u is a minor stem;
ns(T ), otherwise.

and
n`(T · e) = n`(T )− 1.

Thus if one of u and v is a leaf, then β(T · e) = β(T ) when the other is a minor stem; and
β(T · e) = β(T )− 1 if the other is not a minor stem. This completes the proof of the result. 2
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