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Abstract. In this article, we introduce and investigate the polynomial extensibility of radi-
cals. Also we generalize some results on polynomial extensibility of radicals, semisimple classes
and of the Amitsur property for associative rings as given in [14] to semirings.

1 Introduction

In the literature of theory of semirings, generalized-matrix extensibility has been studied in [7].
However, generalized-polynomial extensibility has not been studied in the theory of radicals of
polynomial semirings. Therefore, in this article, we have introduced and investigated the radicals
of polynomial semirings. The interrelation and independence of polynomial extensibility of
radical and semisimple classes and the Amitsur property are investigated for associative rings
in [14]. In this paper, we generalize results known for rings in [14] to semirings. We have
proved that every A- radical R has the Amitsur property. Throughout this article all semirings
are assumed to be associative, not necessarily with unity, and by a radical we mean a radical
in the sense of Kurosh Amitusar as defined in [11]. The symbol 7→ stands for a surjective
homomorphism and I �A indicates that I is an ideal of a semiring A.

2 Preliminaries

We begin with some useful definitions and preliminaries. The preliminary notions and basic
results are as given in [6]. For details, the readers are requested to see [6].

Definition 2.1. [6] A semiring is a set A together with two binary operations called addition (+)
and multiplication (·) such that (A,+) is a commutative monoid with identity element 0A; (A, ·)
is a monoid with identity element 1; multiplication distributes over addition from either side and
0 is multiplicative absorbing, that is, a · 0 = 0 · a = 0 for each a ∈ A.

Definition 2.2. [6] A semiring is commutative if (A, ·) is a commutative semigroup.

Definition 2.3. [6] A subset I of a semiring A is said to be an ideal of A if I is an additive
subsemigroup of (A,+), IA ⊆ I and AI ⊆ I .

Definition 2.4. [6] An ideal I of a semiring A is called proper if I 6= A and a proper ideal I of
A is called maximal if there is no ideal J of A satisfying I ⊂ J ⊂ A.

Definition 2.5. [6] An ideal I of a semiring A is said to be subtractive (k-ideal) if for a ∈
I, a+ b ∈ I for all b ∈ A imply b ∈ I .

Definition 2.6. The additive semigroup (A,+) of a semiring A is denoted by A+ and for an
abelian semigroup A+, we may define always a semiring A0 with zero multiplication, called a
zero-semiring by the rule xy = 0 for all x, y ∈ A.

Definition 2.7. A radical R is called an A−radical if for any semiring R ∈ R and any additive
homomorphism f : R→ S such that f(R) is a subsemiring of S also f(R) ∈ R.

By Dorroh’s Extension, every semiring A can be embedded as an ideal into a semiring A′

with unity element. The semiring ring A′ is refereed to be the Dorroh’s extension.
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3 Radical Of Polynomial Semirings

In this section, we have introduced and investigated the radicals of polynomial semirings. The
interrelation and independence of polynomial extensibility of radical and semisimple classes and
the Amitsur property are investigated for associative rings in [14]. We have proved that every A-
radical R has the Amitsur property. We begin with some elementary but useful results.

Proposition 3.1. If I is a k-ideal in a semiring A, then I[x] is also a k-ideal in A[x].

Proof. Let f(x) ∈ I[x] and f(x) + g(x) ∈ I[x] for g(x) ∈ A[x], where f(x) =
∑n
i=0 aix

i and
g(x) =

∑n
i=0 bix

i. Now f(x)+g(x) =
∑n
i=0 aix

i+
∑n
i=0 bix

i =
∑∞
i=0(ai+ bi)xi. Since ai ∈ I

and ai + bi ∈ I ⇒ bi ∈ I . This shows that
∑∞
i=0 bix

i ∈ I[x]. Thus I[x] is a k-ideal in A[x].

Proposition 3.2. Let I be a k-ideal of a semiring A. Then A[x]/I[x] ∼= (A/I)[x].

Proof. Let π : A → A/I be a canonical map. Then π is surjective. Define θ : A[x] → (A/I)[x]
by θ(a0 + a1x+ a2x

2 + ...+ anx
n) = (b0 + b1x+ b2x

2 + ...+ bnx
n), where b0 = π(a0), b1 =

π(a1), ..., bn = π(an). It is easy to verify that Kerθ = I[x]. Thus θ is an onto steady semiring
homomorphism. Hence (A/I)[x] ∼= A[x]/I[x].

Let R be a radical class, define Rx = {A | A[x] ∈ R}.

Theorem 3.3. For every radical class R, the class Rx is a radical class. If R is hereditary, then
so is Rx.

Proof. (1) Let A ∈ Rx and f : A → B be a surjective homomorphism. Then A[x] ∈ Rx and
f : A[x]→ B[x] is surjective, i.e., f(A[x]) = B[x] ∈ R. Hence B ∈ Rx.
(2) Let {Iλ | λ ∈ ∆} be a ascending chain of ideals of a semiring A such that A =

⋃
Iλ and

Iλ ∈ Rx for each λ ∈ ∆. Then {Iλ[x] | λ ∈ ∆} is an ascending chain of ideals of a semiring A[x]
and Iλ[x] ∈ R, for every λ ∈ ∆. Hence A[x] = (

⋃
Iλ)[x] =

⋃
(Iλ[x]) ∈ R that is A ∈ Rx.

(3) Suppose that for a k-ideal I , A/I ∈ Rx, therefore I[x], (A/I)[x] ∈ R. Since I[x] ∈ R and
A[x]/I[x] ∼= (A/I)[x] ∈ R. ⇒ A[x] ∈ R ⇒ A ∈ Rx. Thus Rx is a radical class. If A is a
zero-semiring, so is A[x]. If I � A ∈ Rx, then I[x] � A[x] ∈ R, implies that I[x] ∈ R, implies
that I ∈ Rx.

A radical R has the Amitsur property if for every polynomial semiring A[x] it holds

R(A[x]) = (R(A[x]) ∩A)[x].

The Amitsur property states that the radical of a polynomial semiring is a polynomial semiring.
A radical R has the Amitsur property if and only if R(A[x]) is a polynomial semiring in x.

Lemma 3.4. Let R be a commutative semiring and I , J and K be ideals in R such that K is a
k-ideal in R and I ⊆ K. Then (I + J) ∩K = I + J ∩K.

Proof. Clearly I +K = K since I ⊆ K. Now (J ∩K) + I ⊆ K + I and (J ∩K) + I ⊆ J + I ,
this shows that (J∩K)+I ⊆ (K+I)∩(J+K) = K∩(I+J). Thus (J∩K)+I ⊆ K∩(I+J).
Conversely, let a ∈ K∩(I+J). Then a ∈ K and a ∈ I+J . Now a ∈ I+J ⇒ a = b+c, b ∈ I and
c ∈ J ⇒ b ∈ K and c ∈ J . However, b ∈ K and a ∈ K ⇒ c ∈ K and c ∈ J ⇒ c ∈ J ∩K. Thus
a = b+c ∈ I+J ∩K. Therefore, K∩(I+J) ⊆ I+J ∩K. Hence K∩(I+J) = I+J ∩K.

Note that Lemma 3.4 also holds if I , J and K are k-ideals of a commutative semiring A.

Lemma 3.5. Let R be a radical of semirings. For any element f ∈ N[x], fR(A[x]) ⊆ R(A[x]),
where N is a semiring of non negative integers.

Proof. Clearly fR(A[x]) is an ideal of A[x]. Since R(A[x]) is an ideal in A[x], we have
I = R(A[x]) + fR(A[x]) is an ideal in A[x]. Let φ : I → I/R(A[x]) be the natural homo-
morphism. Define the surjective homomorphism ψ : R(A[x])→ I/R(A[x]) by ψ(a) = φ(f ·a).
Thus I/R(A[x]) ∈ R and, by extension closure, I ∈ R and I ⊆ R(A[x]). This shows that
fR(A[x]) ⊆ R(A[x]).
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Proposition 3.6. If R is a radical, then for any semiring A, (A ∩R(A[x]))[x] ⊆ R(A[x]).

Proof. Since (A ∩ R(A[x]))[x] = (A ∩ R(A[x]))N[x] and (A ∩ R(A[x]))[x] ⊆ R(A[x]). By
above Lemma 3.5, (A ∩R(A[x]))[x] ⊆ R(A[x]).

Lemma 3.7. Let θ be an isomorphism between R and Rθ. Then θ induces one to one correspon-
dence between the R-ideals of R and Rθ.

Proof. Proof is straightforward.

Lemma 3.8. If the kernel θ of the homomorphic mapping of R and Rθ is in the upper R-radical
R(R), then R(Rθ) = R(R)θ.

Proof. Proof is similar to rings.

In Lemma 3.8, upper radical R(R) is a maximal k-ideal of R.

Proposition 3.9. For a radical R to have the Amitsur property a necessary and sufficient condi-
tion is, R(A[x]) ∩A = 0⇒ R(A[x]) = 0 for all semirings A.

Proof. Assume that R has the Amitsur property, that is, R(A[x]) = (R(A[x]) ∩ A)[x]. Then, if
R(A[x]) ∩A = 0, we have that R(A[x]) = (R(A[x]) ∩A)[x] = 0[x] = 0.

Conversely, assume thatR(A[x]) = 0 if (R(A[x])∩A) = 0. Claim that (A∩R(A[x]))[x] =
R(A[x]) for any semiring A. Set J = A ∩ R(A[x]). It should be noted that J is a k−ideal
as R(A[x]) is a maximal k−ideal in A[x] and A/J ∼= (A + J [x])/J [x] as a → a/J [x], where
a = a + J [x] is an onto steady homomorphism with kernel J . Consider the homomorphism
A[x] → A[x]/J [x]. The kernel of this homomorphism is J [x] ⊆ R(A[x]). Hence by Lemma
3.8, for any radical R, R(A[x]/J [x]) = R(A[x])/J [x]. But by Proposition 3.2, R((A/J)[x]) ∼=
R(A[x]/J [x]) = R(A[x])/J [x].

Consider,R((A/J)[x])∩ (A/J) ∼= (R(A[x])/J [x])∩ ((A+J [x])/J [x]) = (R(A[x])∩ (A+
J [x]))/J [x] since by Lemma 3.4⇒ ((R(A[x]) ∩ A) + J [x])/J [x] = J + J [x]/J [x] = 0. Thus
R((A/J)[x])∩ (A/J) = 0⇒ R((A/J)[x]) = 0⇒ R(A[x])/J [x] = 0⇒ R(A[x]) ⊆ J [x]. This
shows that R(A[x]) = J [x] = R(A[x]) ∩A. Hence the Amitsur property.

Let Z(A′) denote the center of the Dorroh’s extension A′ of a semiring A. We say that a
radical R is closed under linear substitution if f(x) ∈ R(A[x]) ⇒ f(ax+ b) ∈ R(A[x]) for all
semirings A and a, b ∈ Z(A′).

Proposition 3.10. If a radical R has the Amitsur-property, then R is closed under linear sub-
stitution. If a radical R is closed under linear substitution then R satisfies condition f(x) ∈
R(A[x])⇒ f(0) ∈ R(A[x]), for all semirings A.

Proof. Suppose that R(A[x]) = (R(A[x]) ∩ A)[x]. Let f(x) =
∑n
i=0 cix

i ∈ R(A[x]) =
(R(A[x])∩A)[x]. Then f(ax+ b) =

∑n
i=0 ci(ax+ b)i = g(x). Since each ci ∈ (R(A[x])∩A),

and a, b ∈ Z(A′), (a = (a, 0) b = (b, 0)), all the coefficient of g(x) are inR(A[x])∩A. Therefore
g(x) ∈ (R(A[x]) ∩ A) = R(A[x]). Thus f(x) ∈ R(A[x])⇒ f(ax + b) ∈ R(A[x]). If f(x) ∈
R(A[x]), then f(ax+ b) ∈ R(A[x]). Substitute a = 0 and b = 0, then f(0) ∈ R(A[x]).

Definition 3.11. The semisimple class SR of a radical class R is polynomially extensible if
A ∈ SR ⇒ A[x] ∈ SR.

Proposition 3.12. Let R be a radical class. Then the radical R is polynomial extensible if and
only if R = Rx.

Proof. Since θ : A[x] → A, defined by θ(f(x)) = f(0) is an onto homomorphism. i.e.
θ(A[x]) = A, and R is a radical class. Therefore A[x] ∈ R ⇒ A ∈ R. Shows that for any
semiring A ∈ Rx, A ∈ R i.e. Rx ⊆ R, for every radical class R. If R is polynomially extensi-
ble, then Rx = R and conversely.

Proposition 3.13. Let R be a hereditary radical class. Then R(A[x]) ∩ A ⊆ R(A), for all
semirings A.
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Proof. Let A′ be the Dorroh’s extension of a semiring A and let σ(A) = R(A[x]) ∩ A. Then
σ(A′) = R(A′[x]) ∩ A′ ⊂ R(A′[x]) = A′[x] and x ∈ A′[x], we have σ(A′)[x] ⊆ R(A′[x]). But
σ(A′) � A′, so that σ(A′)[x] � R(A′[x]) and thus σ(A′)[x] ∈ R by the hereditary of R. This
shows that σ(A′) ∈ Rx. Hence σ(A′) ⊆ Rx(A′).

Moreover,Rx(A′)[x]�A′[x] andRx(A′)[x] ∈ R, soRx(A′) = Rx(A′)[x]∩A′ ⊆ R(A′[x])∩
A′ = σ(A′). The hereditary ofR gives,Rx(A) = Rx(A′)∩A= σ(A′)∩A= R(A′[x])∩A′∩A
= R(A′[x]) ∩ A = R(A′[x]) ∩ A ∩ A[x] = R(A[x]) ∩ A = σ(A). Thus Rx(A) = σ(A). But
Rx ⊆ R, hence Rx(A) ⊆ R(A).

We say that the radical R has the intersection property relative to the classM of semirings,
if R(A) = ∩{I �A | 0 6= A/I ∈M, I is k − ideal} for all semirings A.

In this case the classM is regular and R = UM = {A | 0 6= A/I /∈M}.

Theorem 3.14. LetR be a radical which has the intersection property relative to a classM of ad-
ditively cancellative and semisubtractive semirings. If bothM andR are polynomial extensible,
then R has the Amitsur property.

Proof. In view of Proposition 3.9, we have to prove thatR(A[x])∩A = 0 implies thatR(A[x]) =
0. Since R is polynomial extensible, we have R(A) = Rx(A) = R(A[x]) ∩A = 0. Thus by the
intersection property there exist k-ideals Iλ, λ ∈ ∆ ofA such thatA/Iλ ∈ M and ∩Iλ = 0 for all
λ. Since alsoM is polynomial extensible, we have A[x]/Iλ[x] ∼= (A/Iλ)[x] ∈ M, λ ∈ ∆. From
∩Iλ = 0, it follows that ∩Iλ[x] = 0, so A[x] is a subdirect sum the semirings A[x]/Iλ[x] ∈ M.
Thus A[x] ∈ SR.

Given two radicals R1 and R2, the radical R1 is polynomially extensible to R2 whenever

A[x] ∈ R2 for all A ∈ R1. (A)

Obiviously R1 ⊆ R2.

Corollary 3.15. If a radical R and its semisimple class SR are polynomially extensible, then R
has the Amitsur property.

Proposition 3.16. If R1 and R are radicals satisfying condition (A) then,

A ∈ SR1 for all A[x] ∈ SR. (B)

In particular, A ∈ SRx for all A[x] ∈ SR. If R1 ⊆ R and R has the Amitsur property, then
condition (B) implies (A).

Proof. Suppose that A[x] ∈ SR but A /∈ SR1 . Then 0 6= R1(A) � A, and so by (A) we have
R1(A)[x] ∈ R. Hence by R1(A)[x] � A[x]. We conclude that 0 6= R1(A)[x] ⊆ R(A[x]),
contradicting A[x] ∈ SR. This proves the validity of (B).
Now assume that R1 ⊆ R and R has the Amitsur property. For any A ∈ R1, we have

A[x]/R(A[x]) = A[x]/(R(A[x]) ∩A)[x] ∼= (A/(R(A[x]) ∩A)[x]....... (C)

and by A[x]/R(A[x]) ∈ SR also (A/(R(A[x]) ∩ A)[x] ∈ SR. Hence by condition (B) it
follows that A/(R(A[x]) ∩ A) ∈ SR1 . But A ∈ R1 and so A/(R(A[x]) ∩ A) ∈ R1. Thus
A = R(A[x])∩A, and so by condition (C), we have A[x]/R(A[x]) = 0, that is, A[x] ∈ R. Thus
conditions (A) is satisfied.

Corollary 3.17. Let R1 and R be radicals such that R1 ⊆ R and R has the Amitsur property.
Then conditions (A) and (B) are equivalent. In particular, a radical R with Amitsur property is
polynomially extensible if and only if it satisfies A ∈ SR for all A[x] ∈ SR.

Proposition 3.18. Let R and R1 be radicals. The relation Rx ⊆ R1 is equivalent to A ∈ R1 for
all A[x] ∈ R. ∆

Proof. Straightforward.
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Proposition 3.19. Let R and R1 be radicals such that Rx ⊆ R1 ⊆ R. If R has the Amitsur
property, then the semisimple class SR1 is polynomially extensible: A ∈ SR1 implies A[x] ∈
SR1 .

Proof. Assume that A ∈ SR1 . Since R has the Amitsur property, we have (R(A[x]) ∩ A)[x] =
R(A[x]) ∈ R and so R(A[x]) ∩ A ∈ R1 by condition (∆). Hence R(A[x]) ∩ A ⊆ R1(A) = 0.
Therefore by Proposition 3.9 we conclude that R(A[x]) = 0, that is, A[x] ∈ SR. Taking into
account that R1 ⊆ R it follows that A[x] ∈ SR1 .

The next theorem characterizes the Amitsur property of a radical in terms of semisimple
classes.

Theorem 3.20. A radical R has the Amitsur property if and only if

A[x] ∈ SR for all A ∈ SRx
. (D)

Proof. Assume that R has the Amitsur property, and let A ∈ SRx
Since R has the Amitsur

property, we have (R(A[x]) ∩ A)[x] = R(A[x]) ∈ R. Hence by the definition of Rx we infer
thatR(A[x])∩A ∈ Rx and soR(A[x])∩A ⊆ Rx(A) = 0. Thus by Proposition 3.9 we conclude
that R(A[x]) = 0, that is, A[x] ∈ SR. Thus condition (D) is satisfied.

Conversely, assume the validity of condition (D). Suppose thatR(A[x])∩A = 0 for a semir-
ing A. Since Rx(A) ∈ Rx it follows that Rx(A)[x] ∈ R. This implies Rx(A)[x] ⊆ R(A[x]),
and so Rx(A) ⊆ Rx(A)[x] ∩ A ⊆ R(A[x]) ∩ A = 0. Hence A ∈ SRx

. Applying condition (D)
we have R(A[x]) = 0. Now Proposition 3.9 yields that R has the Amitsur property.

Proposition 3.21. If a radicalR has the Amitsur property, then the semisimple class SR is poly-
nomially extensible.

Proof. Claim that SR is polynomially extensible. Assume thatA ∈ SR. SinceR has the Amitsur
property, we have (R(A[x]) ∩ A)[x] = R(A[x]) ∈ R. Therefore R(A[x]) ∩ A ⊂ R(A) = 0.
Therefore R(A[x]) = 0. Thus A ∈ R ⇒ R(A[x]) = 0⇒ A[x] ∈ SR.

Proposition 3.22. For a hereditary radical R, the following conditions are equivalent:

(i) (f(x))A[x] ∈ R ⇒ (f(0))A[x] ∈ R.

(ii) f(x) ∈ R(A[x])⇒ f(0) ∈ R(A[x]), for all semiring A.

Proposition 3.23. For any semiring A and any A-radical R, we have R(A[x]) = R(A)[x].

Proof. Let θ : (A[x])+ →
⊕∑∞

k=i Fk, where each Fk ' A+ be the isomorphism defined as
θ(a0 + a1x+ a2x

2 + a3x
3 + ...) = (a0, a1, a2, a3, ...). Then R(A[x]) = R(A)[x].

Proposition 3.24. Every A- radical R has the Amitsur property.

Proof. By above Proposition 3.23, R(A[x]) = R(A)[x]. Also, we know that a radical R has
Amitsur property if and only if R(A[x]) is a polynomial semiring in x. Hence the Proposition.
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