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Abstract In this paper, we study various algebraic properties of the Lie algebras of vector
fields on the tangent bundle of a differentiable manifold. In addition we particulary think to
investigate the nullity space of the associated curvature to a vector-valued 1-form and the first
space of Chevalley-Eilenberg’s cohomology of these Lie algebras. To avoid the problem of
solving partial differential equations, with superior dimension, related to this subject, we choose
the algebraic approach using the formalism of Frölicher-Nijenhius. We use Maple software as a
computer and resolution tool.

1 Introduction

The theory of the analytical approach oriented by Mathematicians like H. Rund, O. Loos, etc.,
is not satisfactorily established as fundamental tools for solving mathematical problems in dif-
ferential equations. Several attempts were made to build an adequate approach. The only most
interesting in this direction is the theory of the algebraic approach. This theory is based essen-
tially on the formalism of Frölicher-Nijenhuis. This tool uses differential operators called finite
order vector-valued forms on a finite dimension differentiable manifold. Indeed, it is the funda-
mental tool of our work in the case where the vector-valued forms are of degree 1 on a tangent
bundle of a differentiable manifold of finite dimension. Operators called almost tangent struc-
tures, almost produced or complex structures and connections (in other words, connections in
the sense of Grifone) are particular vector-valued forms of degree 1 (or vector-valued 1-forms).
M. Anona in [1] generalized the almost tangent structure by considering a vector-valued 1-form
satisfying certain conditions on a differentiable manifold. He investigated the cohomology in-
duced by a vector-valued 1-form on a manifold and generalized some results of Grifone. N. L.
Youssef adopted from the point of view of M. Anona in [14] a generalization of the results of
J.Grifone on non-linear connections by considering a vector-valued 1-form of constant rank of
zero torsion on a differentiable manifold. He found that this structure has properties similar to
an almost tangent structure. In [9], M. Anona, P. Randriambololondrantomalala and H. S. G.
Ravelonirina studied some properties of a vector-valued 1-form having an almost product struc-
ture in the sense of Grifone on a differentiable manifold. They studied in particular certain Lie
algebras which attach to it. Therefore, some results have not yet been found when considering a
vector-valued 1-form verifying under other conditions. This allowed us to develop, expand and
generalize the studies for a vector-valued 1-form verifying certain conditions on a differentiable
manifold.
Let M be a differentiable manifold of dimension n and class C∞. We define by Γ a vector-
valued 1-form on the tangent fiber TM such that Γ is class C∞ in TM − {0} that JΓ = J
and ΓJ = −J . This vector-valued 1-form is a connection within the sense of Grifone on M
and Γ has a product structure on M . The data of this connection permit us to decompose TTM
of the tangent bundle of TM in a direct sum of horizontal space h (TM) and of vertical space
v (TM) where h and v are respectively the horizontal projector and vertical projector of the cor-
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responding connection Γ to the respective eigenvalues 1 and −1. We see in [9] that in one part,
the Lie algebra AΓ of vector fields on TM − {0} which the corresponding Lie derivative of Γ

is zero and in other part, the Lie algebra of the horizontal nullity space Nh
R of the curvature R.

In addition, they found some properties of the connection from normalizer of Nh
R and the one

of the cohomology space of Chevalley-Eilenberg of AΓ. In this paper, we propose some proper-
ties of a vector-valued 1-form on the tangent bundle TM of M submissive to an almost product
(resp. complex) structure in studying some Lie algebras which is attached to it and the invo-
lution of the nullity space of the associated Nijenhuis torsion R to L. Given L a vector-valued
1-form on the tangent bundle TM of the differentiable manifold M with dimension n, AL a
Lie algebra of the vector fields on TM such that the corresponding Lie derivative to L is zero,
AL,λi , i = 1, . . . , n the corresponding eigen subspaces of AL to eigenvalues λi of L; NR the
space of vector fields X on TM which the interior product in comparison to X of the associated
curvature R is zero. The subspaces AL,λi , i = 1, . . . , n are ideals of AL ∩NR and AL. We prove
that a vector field X on M is an element of AL if and only if X leaves invariant the defined
generalised distributions by the eigen subspaces AL,λi , i = 1, . . . , n of L. If L is diagonalisable
and the eigenvalues λi, i = 1, . . . , n are constants then AL ∩NR constitute a direct product of
ideals AL,λi , i = 1, . . . , n. Consequently, the Lie algebra AL equals to the direct product of
AL,λi , i = 1, . . . , n when the associated curvature R to L is null and all derivation of AL is inner.
In other words, the first space of Chevalley-Eilenberg’s cohomology of AL is null. Moreover,
if the λi, i = 1, . . . , n are functions on M which rank of each λi is constant, the first space of
Chevalley-Eilenberg’s cohomology of AL is null. Otherwise, if all nullity fields of the associated
curvature R to the vector-valued 1-form L are generated by AL ∩NR then the nullity space NR

is involutive. A classical result of [9] and [6] prove that all flat vector-valued 1-form L on TM
has an involutive nullity space and we find the same result if L is a projection on TM , that is,
L2 = L. On the one hand, using a result of [10], if the nullity space NR of R is involutive then
the derived ideal of NR is itself and the first spaces of Chevalley-Eilenberg’s cohomology of NR

and its normalizer NR are null. On the other hand, if the nullity space NR of R is involutive
which L is an almost product structure, that is L2 = I , we prove that the image of the bracket
of two nullity fields of the curvature R by L also belongs to NR. Particular, all involutive nullity
space has a nonzero centralizer. We get some examples to illustrate our results.

2 Preliminary

In the next, let M be a differentiable manifold of dimension n and class C∞, TM the tangent
fiber of M . All subjects supposed are class C∞ on M or TM . The set χ(M) (resp. χ(TM))
denotes Lie algebra of vector fields on M (resp. TM ). A distribution on M (resp. TM ) is a
F (M)−submodule of χ(M) (resp. F (TM)−submodule of χ(TM)).

Definition 2.1. [3] A vector-valued 1-form L on TM is a linear application on TM itself, that
is, an endomorphism of TM . Let’s consider L,H two vector-valued 1-forms on TM , we define
the bracket of L with H by [L,H] (X,Y ) = [LX,H]Y − [LY,H]X − L [X,H] + L [Y,H] for
all vector fields X,Y on TM .

Definition 2.2. To the vector-valued 1-form L, we define Lie algebra AL of vector fields on TM
which the corresponding Lie derivative of L is zero. A vector field X is then an element of AL
if and only if [X,LY ] = L [X,Y ] for all Y ∈ χ(TM). Localy, cf. [7], if (xi)i=1,...,2n the local
coordinates on the tangent bundle TM we get X = Xi ∂

∂xi , L = Lijdx
j ⊗ ∂

∂xi . [X,L] = 0 is
equivalent to

Xi ∂L
j
k

∂xi
− Lji

∂Xi

∂xk
+ Lik

∂Xj

∂xi
= 0. (2.1)

The relation (2.1) is a system of 4n2 linear partial differential equations of the first order of
n-unknown functions Xi of C∞ class for i ∈ {1, . . . , 2n}.

Definition 2.3. [3] Let L be a vector-valued 1-form on TM . We define Nijenhuis torsion of L
the vector-valued 2-form noted R by R = 1

2 [L,L] such that for all X,Y ∈ χ(TM), we have
R(X,Y ) = [LX,LY ] + L2 [X,Y ]− L [LX, Y ]− L [X,LY ] . If R = 0 then L is flat. So we can
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define a foliation F with finite dimension. Let’s denote by AF
L the Lie algebra of infinitesimal

automorphisms of the foliation F, that is, X ∈ AF
L ⇐⇒ [X,AL] ⊂ AL. Consequentely, AL is a

Lie subalgebra of AF
L. In local coordinates (xi, yi) of TM , R is written byR = 1

2R
i
jkdx

j∧dxk⊗
∂
∂yi where Rijk = Lil(

∂Llj
∂xk
− ∂Llk

∂xj ) + Llj
∂Lik
∂yl
− Llk

∂Lij
∂yl

. The nullity space of associated curvature
R to L is a set NR = {X ∈ χ(TM) such that iXR = 0} where iX denotes the interior product
in comparison to a vector fields X .

Definition 2.4. [2] Let A be a Lie algebra on manifold M . An ideal I ⊂ A is a submodule of A
stable for all inner derivation.

Proposition 2.5. LAL is an ideal of AL where LAL denotes the image of AL by L. In particular,
if L2 = 0 then LAL is a commutative ideal.

Proof. Let X ∈ AL. By definition of AL, [X,LAL] ⊂ LAL. The nullity of the curvature R is
written by [LX,LY ] = L [LX, Y ] + L [X,LY ] − L2 [X,Y ] ∀X,Y vector fields. If X ∈ AL,
the above relation becomes [LX,LY ] = L [LX, Y ] ∀Y . So LX belongs to AL and we get
LAL. Similarly, if Y ∈ AL we have [LX,LY ] = L [LX, Y ] = L2 [X,Y ] . Which gives us
[LAL, LAL] ⊂ LAL, that is, LAL is stable by bracket. And if L2 = 0, [LX,LY ] = 0 for all
X,Y ∈ AL. Thus LX and LY are commutated.

Proposition 2.6. The Lie algebra AL of L makes stable the nullity space NR of the curvature R.

Proof. It’s immediate. Let X ∈ AL ⇐⇒ [X,L] = 0. According to Jacobi’s identity, we have
[X, [L,L]] = [L, [X,L]] + [L, [X,L]] = 0 because [X,L] = 0. Then we get [X,R] = 0. In
other words, [X,R] (Y,Z) = [X,R(Y,Z)] − R ([X,Y ], Z) − R (Y, [X,Z]) = 0. So X belongs
to NR.

3 Some properties where L is diagonalisable

Let L be a vector-valued 1-form on TM , diagonalisable to constant eigenvalues λ1, . . . , λp where
the reals λi, i = 1, . . . , p are assumed to be two by two distincts. At any point x ∈ M , the
tangent space TxM in x of M is written TxM = Vλ1(x) ⊕ · · · ⊕ Vλp(x) where Vλi(x) denotes
the corresponding vector eigenspace of TxM to the eigenvalue λi.

Proposition 3.1. A vector field X on M is an element of AL if and only if X makes invariant the
generalised distributions defined by the eigen subspaces of L.

Proof. Let’s assumeX ∈ AL and Y ∈ Vλi . We get [X,LY ] = L [X,Y ]. That impliesL [X,Y ] =
λi [X,Y ] because [X,λiY ] = λi [X,Y ]. In other words, [X,Y ] ∈ Vλi . Then X preserves the
subspaces of L, that is, X leaves invariant the generalised distributions defined by the eigen
subspaces of L. Conversely, let Y be a vector field on M . At each point x ∈ M , Y decomposes
in an unique manner on the Vλi(x) and we write Y = Y 1 + · · · + Y p where Y i ∈ Vλi(x), i =
1, . . . , p. Since X preserves the eigen subspaces, we get [X,LY ] − L [X,Y ] = 0 for all Y ∈
χ(M). In other words, X ∈ AL.

Remark 3.2. This proposition generalizes the Proposition 4.1 of [9] within the case of a connec-
tion in the sense of Grifone.

Proposition 3.3. The corresponding eigen subspace AL,λ of AL to the constant eigenvalue λ of
L is an ideal of AL ∩ NR and AL. For an other constant λ

′ 6= λ, we get the direct product
AL,λ ⊗AL,λ′ .

Proof. It’s obvious that AL,λ is a Lie algebra. For X ∈ AL,λ and Y ∈ AL, we have L [Y,X] =
[Y,LX] = [Y, λX] = λ [Y,X]. So [Y,X] ∈ AL,λ. Which proves that AL,λ is an ideal of AL.
Since AL,λ ∈ AL ∩ NR and AL,λ ⊂ AL is an ideal then AL,λ is an ideal of AL ∩ NR. If
we suppose that there is λ

′ 6= λ, it’s immediate that AL,λ ∩ AL,λ′ = {0}. Let’s assume two
eigenvectors X and Y such that X ∈ AL,λ and Y ∈ AL,λ′ . We can write successively that
L [X,Y ] = [LX, Y ] = [X,LY ] = λ [X,Y ] = λ

′
[X,Y ] . So (λ− λ′) [X,Y ] = 0. Which is only

possible if [X,Y ] = 0.
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Remark 3.4. The Proposition 3.10 of [9] is a particular case of the Proposition 3.3.

Lemma 3.5. Let V a subspace of R- vector space W ; k1, . . . , kp the two by two distinct reals;
X1, . . . , Xp the vector fields ofW who verifyX1+· · ·+Xp ∈ V and that k1X

1+· · ·+kpXp ∈ V .
Then every Xi belongs to V for all i ∈ [1, p].

Proof. It’s immediate.

Proposition 3.6. AL ∩NR is a direct product of ideals AL,λi , i = 1, . . . , p. That is,

AL ∩NR = AL,λ1 ⊗ · · · ⊗AL,λp .

Proof. According to Proposition 3.3 for all λi 6= λj with i 6= j (i, j ∈ [1, p]), the direct product
of ideals AL,λi with i = 1, . . . , p, is an ideal of AL∩NR. Then AL,λ1 ⊗· · ·⊗AL,λp ⊂ AL∩NR.
Since X ∈ AL ∩ NR is equivalent to X ∈ AL and LX ∈ AL. By decomposing X on the
eigen subspaces Vλi (i = 1, . . . , p), that X = X1 + · · ·+Xp we get X1 + · · ·+Xp ∈ AL and
λ1X

1+· · ·+λpXp ∈ AL whereXi ∈ Vλi , i = 1, . . . , p. According to the previous Lemma 3.5 we
haveXi ∈ AL for i = 1, . . . , p. ThusXi ∈ AL,λi , i = 1, . . . , p and thatX ∈ AL,λ1⊗· · ·⊗AL,λp .
Hence the reverse inclusion.

Corollary 3.7. If L is flat then we get AL = AL,λ1 ⊗ · · · ⊗AL,λp

Proof. Immediate.

Definition 3.8. Let A be a Lie algebra on M . We define the centralizer C of A the set of vector
fields X ∈ A such that [X,Y ] = 0 for all Y ∈ χ(M).

Proposition 3.9. We get the following assertions:

(i) The centralizer of AL ∩ NR(resp. AL) in χ(M) is the direct sum of centralizers of AL ∩
NR(resp. AL) in χ(M) contained in eigen subspaces of L.

(ii) The center of AL ∩NR is the direct product of centers of AL,λi , i = 1, . . . , p.

(iii) The center of AL commutes with all projection of AL on the eigen subspaces of L.

Proof. (i) Let Y be an element of the centralizer of AL ∩NR (resp. of AL) in χ(M). For all
X ∈ AL ∩ NR (resp. X ∈ AL) we have [Y,X] = 0. By decomposing Y on the eigen
subspaces of L we have Y = Y 1 + · · ·+ Y p. We get[

Y 1, X
]
+ · · ·+ [Y p, X] = 0, where Y i ∈ Vλi , i = 1, . . . , p. (3.1)

Applying L to the relation (3.1) we obtain

L(
[
Y 1, X

]
+ · · ·+ L [Y p, X]) = λ1

[
Y 1, X

]
+ · · ·+ λp [Y

p, X] = 0 (3.2)

According to Lemma 3.5, two relations (3.1) and (3.2) give [Y i, X] = 0 (here V = {0}) for
all X ∈ AL ∩NR (resp. X ∈ AL) with i ∈ [1, p]. Hence the first assertion.

(ii) Given Y i an element of the center AL ∩ NR. By definition Y i commutes with AL,λi ,
i = 1, . . . , p and an element of AL,λi . For each j 6= i, AL,λj is to direct product with
AL,λi ( according to Proposition 3.3). Therefore Y i commutes with AL,λj , j 6= i. Then
Y i commutes with the direct product AL,λi ⊗ AL,λj . According to Propostion 3.6, Y i
commutes with AL ∩NR. In other words, Y i, i = 1, . . . , p, is an element of the center of
AL ∩NR. If Y is an element of the center of AL ∩NR, Y commutes with AL ∩NR. But,
AL ∩NR is to direct product of AL,λi for i = 1, . . . , p. The component Y i of Y commutes
with AL,λi . We get the second assertion.

(iii) Let Y be an element of the center of AL and X the one that of AL, we have [Y,X] = 0. In
writing X = X1 + · · ·+Xp where Xi ∈ Vλi , we obtain[

Y,X1]+ · · ·+ [Y,Xp] = 0 (3.3)

Applying L to the relation (3.3) and taking into account Y is an element to AL, we get

λ1
[
Y,X1]+ · · ·+ λp [Y,X

p] = 0. (3.4)

According to Lemma 3.5, [Y,Xi] = 0 for i ∈ [1, p] and for all X ∈ AL. The center of AL
commutes therefore with all projection Xi of AL on the eigen subspaces of L.
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Definition 3.10. Let A be a Lie algebra. We define the normalizerN of A the set of vector fields
X ∈ A such that [X,A] ⊂ A.

Proposition 3.11. We suppose NL,λi (resp. CL,λi) the normalizer (resp. centralizer) of AL,λi in
χ(M), N j

L,λi
= NL,λi ∩ Vλj , C

j
L,λi

= CL,λi ∩ Vλj with i, j ∈ [1, p]. Then we have

(i) NL,λi = N i
L,λi

+
∑p
j 6=i C

j
L,λi

;

(ii) ∩pi=1NL,λi =
∑p
i=1N i

L,λi
(∩pj 6=iC

j
L,λi

);

(iii) if ∩pi=1CL,λi = {0} , so we get ∩pi=1NL,λi = Π
p
i=1N i

L,λi
(∩pj 6=iC

j
L,λi

) and AL = Π
p
i=1AL,λi .

Proof. (i) We consider Xi0 ∈ AL,λi0 and Y ∈ NL,λi0 for an i0 ∈ [1, p] we obtain [Y,Xi0 ] ∈
AL,λi0 . By decomposing Y on the eigen subspaces of L we have Y = Y 1 + · · ·+ Y p with
Y i ∈ Vki , i = 1, . . . , p. We get[

Y 1, Xi0
]
+ · · ·+

[
Y p, Xi0

]
∈ AL,λi0 . (3.5)

Applying L to the relation (3.5), we have

λ1
[
Y 1, Xi0

]
+ · · ·+ λp

[
Y p, Xi0

]
∈ AL,λi0 . (3.6)

According to Lemma 3.5, [Y j , Xi0 ] ∈ AL,λi0 for i ∈ [1, p] and for an i0 ∈ [1, p]. In other
words, the component of Y belongs to NL,λi0 . Since the components of Y are elements of
Vλi , i = 1, . . . , p then they belong to N i0

L,λi0
as well as Y . The relation (3.6) is the image

of (3.5). Taking into account that Xi0 ∈ AL, we get L
[
Y 1, Xi0

]
+ · · · + L [Y p, Xi0 ] =

λi0
([
Y 1, Xi0

]
+ · · ·+ [Y p, Xi0 ]

)
. So we have equality λ1

[
Y 1, Xi0

]
+ · · ·+λp [Y p, Xi0 ] =

λi0(
[
Y 1, Xi0

]
+ · · ·+

+ [Y p, Xi0 ]) for i 6= i0. We derive the following equation

p∑
i 6=i0

(λi − λi0)
[
Y i, Xi0

]
= 0. (3.7)

Applying L back to the relation (3.7), we have

p∑
i 6=i0

(ki − ki0)L
[
Y i, Xi0

]
= 0 =

p∑
i 6=i0

(ki − ki0)ki
[
Y i, Xi0

]
. (3.8)

Thus
p∑
i6=i0

λi(λi − λi0)
[
Y i, Xi0

]
= 0. (3.9)

According to Lemma 3.5, the relations (3.7) and (3.9) give (ki − ki0) [Y i, Xi0 ] = 0 for all
i 6= i0. For i 6= i0, [Y i, Xi0 ] = 0. The components Y i, i 6= i0, of Y , belong to CL,λi0 . Since
Y i ∈ Vλi , i = 1, . . . , p, so we have Y i ∈ CiL,λi0 , i 6= i0. Hence Y ∈ N i0

L,λi0
+
∑p
i6=i0 C

i
L,λi0

.
Reverse inclusion is obvious.

(ii) This is an immediate consequence of the first assertion.

(iii) We suppose that ∩pi=1CL,λi = 0. We consider Y i ∈ N i
L,λi

(∩pj 6=iC
j
L,λi

) and
Y 1 ∈ N 1

L,λ1
(∩pj 6=1C

j
L,λ1

) with i 6= 1. According to Jacobi’s identity, we have[[
Y i, Y 1] , Xi0

]
=
[[
Xi0 , Y 1] , Y i]+ [[Y i, Xi0

]
, Y 1] . (3.10)

Taking into account that i 6= 1, two terms of second member of the equality (3.10) are
nulls. So

[
Y i, Y 1

]
∈ CL,λi0 for i0 ∈ [1, p] and thus

[
Y i, Y 1

]
∈ ∩pi0=1CL,λi0 . If ∩pi0=1CL,λi0 =

{0}, we have
[
Y i, Y 1

]
= 0 for i 6= 1. In other words we get the direct product of
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N i
L,λi

(∩pj 6=iC
j
L,λi

) with N 1
L,λ1

(∩pj 6=1C
j
L,λ1

). We suppose Y i, Zi ∈ N i
L,λi

(∩pj 6=iC
j
L,λi

), we
have [Y i, Zi] ∈ N i

L,λi
(∩pj 6=iC

j
L,λi

). And [Y i, Zi] also belongs to the eigen subspace Vλi .
Hence the result ∩pi=1NL,λi = Π

p
i=1N i

L,λi
(∩pj 6=iC

j
L,λi

). Finally, it’s obvious that AL ⊂
∩pi=1NL,λi . By definition, AL,λi = AL ∩ Vλi . By the expression of ∩pi=1NL,λi ,that is,
∩pi=1NL,λi = Π

p
i=1N i

L,λi
(∩pj 6=iC

j
L,λi

) and AL ⊂ ∩pi=1NL,λi . We obtain AL ⊂ Π
p
i=1AL,λi .

Hence AL = Π
p
i=1AL,λi .

Theorem 3.12. If L is flat, diagonalizable, with constant eigenvalues λi, i = 1, . . . , p such that
the multiplicity order of λi was constant. Then AL = AL,λ1 ⊗ · · · ⊗ AL,λp and all derivation of
AL is inner. So the first space of Chevalley-Eilenberg’s cohomology AL is null.

Proof. If L is flat, we have AL = AL,λ1 ⊗ · · · ⊗ AL,λp according to Corollary 3.7. Then every
AL,λi , i = 1, . . . , p, is a characteristic ideal of AL. In other words, the AL,λi , i = 1, . . . , p, are
the submodules of AL stables for all derivation of AL.
Let X be an eigenfield of L associated to the eigenvalue λi, i = 1 . . . p, on M such that X = 0
on a domain U of the adapted chart to the foliation. We denote D the derivation of AL,λi , i =
1, . . . , p. D is a local derivation on the adapted chart of domain U to the foliation, that is,
D(X) = 0 on U . We say that AL,λi is a characteristic ideal of AL. There is Z ∈ AL,λi such
that D|AL,λi

(X) = [Z,X] for all X ∈ AL,λi . Let’s consider Y ∈ AL we have D [X,Y ] =

[D (X) , Y ] + [X,D (Y )]. Since [X,Y ] ∈ AL,λi and D|AL,λi
is a derivation of AL,λi then

we get D [X,Y ] = D|AL,λi
[X,Y ] = [Z, [X,Y ]]. The field X belongs to AL,λi so we obtain

D (X) = D|AL,λi
(X) = [Z,X]. And [Z, [X,Y ]] = [[Z,X] , Y ] + [X,D (Y )], that is

[Z, [X,Y ]] + [Y, [Z,X]] = − [D (Y ) , X] (3.11)

But according to Jacobi’s identity, we have

[Z, [X,Y ]] + [Y, [Z,X]] = [[Y,Z] , X] . (3.12)

The relations (3.11) and (3.12) give − [D (Y ) , X] = [[Y, Z] , X], which is equivalent to
[D (Y ) , X] + [[Y, Z] , X] = 0. We get [D (Y )− [Z, Y ] , X] = 0 for X ∈ AL,λi . But the bracket
is distributive with respect to + then D (Y )− [Z, Y ] ∈ CL,λi , i = 1, . . . , p. Which gives D (Y )−
[Z, Y ] ∈ ∩pi=1CL,λi (and here ∩pi=1CL,λi = {0}). So, D (Y ) = [Z, Y ] for all Y ∈ AL, that
is, D is inner. Consequentely, all derivation of AL is inner. In other words, its first space of
Chevalley-Eilenberg’s cohomology is null.

The nullity space NR of the curvature R is a distribution of TM . In general, this space NR

is not involutive.

4 On involution of the nullity space NR of the associated curvature R to L

4.1 Case where L assumes an almost product structure

In the next, we suppose that L defines an almost product structure on the tangent bundle TM of
M , that is, L2 = I .

Definition 4.1. [1] A distribution Ω is said involutive if [Ω,Ω] ⊂ Ω. In other words, for all
X,Y ∈ Ω we have [X,Y ] ∈ Ω.

Proposition 4.2. If all elements of the nullity space NR are generated by the elements of AL∩NR

then NR is involutive.

Proof. Let X,Y be the nullity fields generated by AL∩NR. For X,Y ∈ NR, we get R(X,Z) =
0 = R(Y,Z) for all Z ∈ χ(TM). If X ∈ AL ⇔ [X,L] = 0; which implies that [X,R] = 0.
Similarly for Y ∈ AL ⇔ [Y,L] = 0 implies that [Y,R] = 0. And for all Z ∈ χ(TM), we obtain
[X,R] (Y, Z) = 0 = [X,R(Y,Z)]−R([X,Y ] , Z)−R(Y, [X,Z]). Therefore R([X,Y ] , Z) = 0.
In other words [X,Y ] ∈ NR. In a similar way, we have [Y,R] = 0.
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Remark 4.3. The Proposition 3.2 of [9] is obtained by Proposition 4.2 in the case where L is a
connection in the sense of Grifone.

Proposition 4.4. If L is flat then the nullity space NR of the associated curvature R to L is
involutive.

Proof. This result is classic.

Definition 4.5. A vector-valued 1-form L of TM is a projection if L2 = L.

Theorem 4.6. If L is a projection of TM then the nullity space NR of the associated curvature
R to L is involutive.

Proof. Let’s consider X,Y ∈ NR and for Z ∈ χ(TM). By decomposition,
R([X,Y ] , Z) = [L[X,Y ], LZ]+L [[X,Y ], Z]−L [L[X,Y ], LZ]−L [[X,Y ], Z] = [L[X,Y ], LZ]+
L [[X,Y ], Z]−L [[X,Y ], L] .Z−L [[X,Y ], Z]−L [L[X,Y ], Z] = [L[X,Y ], LZ]−L [[X,Y ], L] .Z−
L [L[X,Y ], Z] = [L[X,Y ], LZ]−L [[X,Y ], L] .Z−[L[X,Y ], LZ]+L [[X,Y ], L] .Z = 0. In other
words, [X,Y ] ∈ NR.

Corollary 4.7. If L is a projection on TM , AL ∩NR defines a Lie algebra on M .

Proof. Immediate.

Definition 4.8. Every R of L, we associate a vector-valued 2-form R defined by R (X,Y ) =
L2R (X,Y ) +R (LX,LY )− LR (LX, Y )− LR (X,LY ) for all X,Y ∈ χ (M).

Remark 4.9. We notice that if L2 = I then by simple calculation we have R = 1
4R. Similarly,

for L2 = −I , we findR = − 1
4R. Finally, the nullity space NR of the curvatureR is the subspace

of the one of curvature R.

Proposition 4.10. If the nullity space NR of the associated curvature R to L is involutive, the
nullity space NR of the curvature R is also.

Proof. We just use the above relation.

Theorem 4.11. Let NR be the normalizer of NR. If NR is involutive then it coincides with NR.

Proof. It’s obvious that NR ⊂ NR. It remains to prove the reverse inclusion.
We consider X ∈ NR, we have [X,NR] ⊂ NR. That is, [X,Y ] ⊂ NR for all Y ∈ NR. Since
NR is involutive then X ∈ NR. Thus NR ⊂ NR.

Definition 4.12. [8] We call first space of Chevalley-Eilenberg cohomology of A the quotient
vector space H1(A) = Der(A)/adA where Der(A) (resp. adA) is Lie algebra of derivations
(resp. inner derivations) of A.

Theorem 4.13. If the nullity space NR is involutive, and if we denote by NR its normalizer in
χ(TM\{0}) then

• The derivative ideal of NR coincides with NR,

• The first space of Chevalley-Eilenberg cohomology respectively of NR andNR are reduced
to zero.

Proof. The first assertion results by the Theorem 4.11. For the second assertion, if NR is invo-
lutive then it is a Lie algebra on χ(M).
According to Theorem 2.32 de [10], we obtain that the first space of Chevalley-Eilenberg coho-
mology of NR is isomorphic to the quotient spaceNR/NR

. From hypothesis, the spacesNR and
NR coincide. The first space of Chevalley-Eilenberg cohomology of NR is therefore reduced to
zero.

Corollary 4.14. If the nullity space NR of the associated curvature R to L is involutive then the
first space of Chevalley-Eilenberg cohomology of AL ∩NR is null.
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Theorem 4.15. Any vectors fields X,Y ∈ AL ∩ NR if and only if R([X,Y ] , Z) = 0 for all
Z ∈ χ(TM).

Proof. We consider X,Y ∈ AL ∩NR, that is, LX,LY ∈ AL. According to the expression of
R in the almost product structure, we get R([X,Y ] , Z) = 0 for all Z ∈ χ (M). Conversely, we
suppose that R([X,Y ] , Z) = 0, that is, [X,Y ] ∈ NR. It remains to prove that [X,Y ] ∈ AL.
By absurd, supposing that [X,Y ] /∈ AL and by definition L [[X,Y ], Z] 6= [[X,Y ], LZ] then
R([X,Y ] , Z) 6= 0, which contradicts to the hypothesis. Necessarily, [X,Y ] ∈ AL.

Theorem 4.16. Let CR be the centralizer of the nullity space NR of R. If the nullity space NR is
involutive then its centralizer CR is not null.

Proof. Let X be a vector field on M such that [X,χ(M)] ≡ {0}. Since NR is involutive then
[NR,NR] ≡ NR (by adapting theorem 4.13). We obtain [X,χ(M)] ⊂ [NR,NR] ≡ NR. A
nullity field allows us to have X 6= 0 because X ∈ NR. Hence the result.

Example 4.17. Let M = R3 be a manifold of local coordinates (xi, yi)i=1,...,3 on the tangent
bundle TR3, L the following vector-valued 1-form: L1

2 = x1, L2
3 = x1x2 and Lij = 0 otherwise.

So, L is written by L = x1dx2⊗ ∂
∂x1 +x1x2dx3⊗ ∂

∂x2 . A vector field X = Xi ∂
∂xi belongs to AL

if and only if X can be written under form X = 1
x1

∂
∂x1 +

(
x2

x1 + P
(
x2, x3

))
∂
∂x2 +k

∂
∂x3 +Y

i ∂
∂yi ,

where k is a constant. The components of associated curvature R to L are: R1
12 = −1 =

−R1
21, R1

13 = −x1x2 = −R1
31; R1

23 = −x2 = −R1
32 and; other are null. The nullity space

NR ofR can to define as follow NR = {(x1)2P (xi) ∂
∂x1 +x

1x2Q(xi) ∂
∂x2 +Z(x

i) ∂
∂x3 +Y

i ∂
∂yi , i =

1, . . . , 3}. We obtain AL ∩NR = {(x1)2P 1(xi, i 6= 3) ∂
∂x1 + x1x2Q2(xi) ∂

∂x2 + x1x2Z3(xi) ∂
∂x3 +

Y i ∂
∂yi , i = 1, . . . , 3}, that is a generator of the nullity space. The space NR is thus involutive.

Example 4.18. Let M = R3 be a manifold; (xi, yi)i=1...3 the local coordinates of tangent fiber
TR3. We define L by: L3

3 = 1, L1
2 = ex

1y1
, L2

1 = e−x
1y1

and that Lij = 0 otherwise. And the
associated curvature R to L is null. In other words, L is flat. Thus NR = χ(R3). Hence NR is
then involutive.

Example 4.19. Case where M = R3, let (xi, yi)i=1,...,3 be local coordinates of TR3. We define
L by: L1

1 = 1, L2
1 = x1y2 and Lij = 0 otherwise. We have L2 = L. All components of the

associated curvature R to L are nulls, that is R = 0. Then NR = χ(R3). Thus NR is involutive.

Example 4.20. We assume M = R2; (xi, yj)i,j=1,2 the local coordinates of the tangent space
TR2. The components of L are: L1

2 = ex
2
, L2

1 = e−x
2

and others are null. We have L2 = I
and the coefficients of the associated curvature R to L are null. In other words, R = 0 and
NR = χ(R2) which is involutive. Thus its normalizer is generated by vector fields xk ∂

∂xi and
the ∂

∂xi + Y i(xl, ym) ∂
∂yj , i, j, k, l,m = 1, 2.

Example 4.21. We take the previous example 4.18 in the case of M = R3 by considering
(x, y, z, u, v, w) the local coordinates of the tangent bundle TR3. We get L2 = I and the nullity
space NR of the associated curvature R to L equals to χ(M). Consider NR = {X(x, y, z) ∂∂x +

Y (x, y, z) ∂∂y + Z(x, y, z) ∂∂z}. Thus the centralizer CR of NR is generated by vector fields ∂
∂x ,

∂
∂y ,

∂
∂z and ∂

∂u ,
∂
∂v ,

∂
∂w .

4.2 Case where L defines an almost complex structure

In the next, we suppose that L defines an almost complex structure on the tangent bundle TM of
M , that is, L2 = −I .

Proposition 4.22. [1] A vector field X is an infinitesimal automorphism of L if and only if we
have [X,L] = 0.

Proposition 4.23. If there is a subset of infinitesimal automorphism fields of L generating the
nullity space NR of the curvature R then the space NR is involutive.
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Proof. Let’s consider X,Y two nullity fields of curvature R, we have R(X,Z) = 0 = R(Y, Z)
for all Z ∈ χ(M). According to expression of R, taking into account that fields X and Y
are infinitesimal automorphisms of L and the Proposition 4.22, we obtain R ([X,Y ], Z) =
[L[X,Y ], LZ] − [[X,Y ], Z] − L [[X,Y ], LZ] − L [L[X,Y ], Z] = 0 for all Z ∈ χ(M). Thus
the bracket [X,Y ] belongs to the space NR. Hence the result.

Remark 4.24. The Proposition 3.2 of [9] is a particular case of the previous Proposition in the
case of L is a connection of Grifone.

Proposition 4.25. If the nullity space NR is generated by infinitesimal automorphism fields then

• [NR,AL] ⊂ AL,

• NR is a Lie algebra of the nullity fields of R.

Proof. • We consider X ∈ NR and Y ∈ AL, we get [[X,Y ] , L] = − [[Y, L] , X]+[[X,L] , Z]
according to Jacobi’s identity. So we have [[X,Y ] , L] = [[X,L] , Z] = 0 because X is an
infinitesimal automorphism nullity field of L. Thus [X,Y ] ⊂ AL.

• Since all nullity fields are infinitesimal automorphism nullity fields then NR is involutive,
that is, [X,Y ] ∈ NR for X,Y ∈ NR.

Remark 4.26. This Proposition contains a result of [9] in the case where L is a connection within
the sense of Grifone that has an almost product structure while its Lie algebra is generated by
projectable fields.

Proposition 4.27. We denote by AF
L the set of infinitesimal automorphism fields of L on TM .

The nullity space NR is involutive if and only if NR = AF
L ∩ χ(TM).

Proof. If NR is involutive then all nullity fields are generated by elements of AF
L according to

Proposition 4.23. Thus NR ⊂ AF
L. Hence the inclusion NR ⊂ χ(TM) ∩ AF

L. We consider
X ∈ AF

L ∩χ(TM) then this vector field X verifies [X,L] = 0 and for all Y vectors field of TM ,
we have R (X,Y ) = 0. Therefore X ∈ NR, hence the reverse inclusion. Conversely, supposing
that NR = AF

L ∩ χ(TM) then NR is involutive.

Proposition 4.28. We suppose that the nullity space NR is involutive and if we denote by CR its
centralizer. The intersection of NR with its centralizer CR is not reduced to zero.

Proof. If NR is involutive then CR is not reduced to zero according to Theorem 4.16. So the
vectors field belonging to CR generates the nullity fields of R.
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