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Abstract In this paper, we introduce a new topological index for graphs called ‘Peripheral
Harary Index’. The peripheral Harary index PH(G) of a graph G is defined as the sum of
the reciprocals of the distances between all unordered pairs of distinct peripheral vertices of
G. We prove that PH(G) = PH(G − v) and PW (G) = PW (G − v), for any graph G with
a pendant vertex v that is not in P (G), where PW (G) is the peripheral Wiener index. We
compute PH(G), obtain some bounds for some standard graphs and graph operations. Further,
we establish a formula for computation of PH(G) and present an algorithm for its computation
using adjacency matrix.

1 Introduction

For standard terminology and notion in graph theory, we follow the text-book of Harary [5].
The non-standard ones will be given in this paper as and when required.

Let G = (V,E) be a graph (finite, simple, connected and undirected). The distance between
two vertices u and v in G, denoted by dG(u, v) (or simply d(u, v)) is the number of edges in
a shortest path (also called a graph geodesic) connecting them. We write u ∼ v to denote two
vertices u and v are adjacent in G.

The eccentricity of a vertex v in G, denoted by eG(v) (or simply e(v)), is the maximum dis-
tance between v and any other vertex in G. The maximum eccentricity of all the vertices in G is
called the diameter of G and is denoted by d(G). A vertex with maximum eccentricity in G is
called a peripheral vertex in G. So, vertices whose eccentricities are equal to diameter of G are
the peripheral vertices of G. The set of all peripheral vertices of G is denoted by P (G).

If P (G) = V (G), then G is called a peripheral graph(self-centered graph). The pair {u, v}
denotes the unordered pair of vertices u, v with u 6= v. A vertex with minimum eccentricity
in G is called a center of G. The set of all center vertices of G is denoted by C(G). A graph
G is almost self-centered if every vertex in G is a center except for two. A graph G is almost
peripheral if every vertex in G is a peripheral vertex except for one (the exceptional vertex is
nothing but the center of G).

Wiener index, Harary index (Reciprocal Wiener index), and peripheral Wiener index are
some important distance based topological indices defined for graphs having applications in
Chemistry (see [3], [6], [8], [10], [11], [12] and [13]). The Wiener index W (G) of a graph G is
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defined as

W (G) =
∑

{u,v}⊂V (G)

d(u, v) (1.1)

The Harary index (or Reciprocal Wiener index) H(G) of a graph G is defined as

H(G) =
∑

{u,v}⊂V (G)

1
d(u, v)

(1.2)

The peripheral Wiener index PW (G) (see [10]) of a graph G is defined as

PW (G) =
∑

{u,v}⊂P (G)

d(u, v) (1.3)

Motivated by the above mentioned indices, we introduce a new topological index called the
peripheral Harary index. The peripheral Harary index PH(G) of a graph G is defined as the
sum of the reciprocals of the distances between all unordered pairs of distinct peripheral vertices
of G. In section 2, we give an example and make some observations. In section 3, we present
some important results on computing PH(G), obtain some bounds for some standard graphs
and graph operations. In section 4, we establish a formula for computation of PH(G) and
present an algorithm for its computation using adjacency matrix. In Theorem 3.1, we prove that
PH(G) = PH(G − v) and PW (G) = PW (G − v), for any graph G with a pendant vertex v
that is not in P (G). The graphs considered in this paper are all connected graphs with at least
two vertices.

2 Definition, Example and Observations

Definition 2.1. The peripheral Harary index PH(G) of a graph G is defined as

PH(G) =
∑

{u,v}⊂P (G)

1
d(u, v)

(2.1)

Example 2.2. We compute the peripheral Harary index of the hydrogen-depleted molecular
graph G of 1-Ethyl-2-methylcyclobutane C7H14. We label the vertices of G as shown in Fig-
ure 1.

Here, P (G) = {a, f, h}. We have d(a, f) = 4, d(a, h) = 2, and d(f, h) = 4. The peripheral
Harary index of G is

PH(G) =
1

d(a, f)
+

1
d(a, h)

+
1

d(f, h)

=
1
4
+

1
2
+

1
4

= 1.

Observations:

(i) If there are k peripheral vertices in a graphG, then we have
(
k

2

)
unordered pairs of distinct

peripheral vertices in G and for any pair {u, v} ⊂ P (G), 1 ≤ d(u, v) ≤ d(G). Hence from
(2.1), we have,

1
d(G)

(
k

2

)
≤ PH(G) ≤

(
k

2

)
.
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Figure 1. 1-Ethyl-2-methylcyclobutaneC7H14 and the corresponding hydrogen-depleted molec-
ular graph G

(ii) In any graph G, P (G) ⊆ V (G). Therefore,

PH(G) ≤ H(G)

and it is easy to see that

PH(G) = H(G) ⇐⇒ G is a peripheral graph.

(iii) For any graph G with k peripheral vertices, by AM-HM inequality, we have,

PW (G) · PH(G) ≥
(
k

2

)2

.

(iv) For an almost self-centered graph G,

PH(G) =
1

d(G)
.

(v) For a graph G,

PH(G) = H(G)−
∑

u∈P (G),
v∈V (G)−P (G)

1
d(u, v)

−
∑

{u,v}∈V (G)−P (G)

1
d(u, v)

(2.2)

(vi) For an almost peripheral graph G with (unique) central vertex c,

PH(G) = H(G)−
∑

v∈V (G)−{c}

1
d(c, v)

.

(vii) For a graph G of diameter 2 with n vertices and k ≥ 2 vertices of eccentricity 1, from (2.2),
it follows that,

PH(G) = H(G)− k(n− k)−
(
k

2

)
.
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3 Some Important Results

Theorem 3.1. Let G be a graph and v be a pendant vertex that is not in P (G). Then PH(G) =
PH(G− v) and PW (G) = PW (G− v).

Proof. Since v 6∈ P (G) and v is a pendant vertex, it follows that, eG(u) = eG−v(u), ∀u ∈
V (G− v) and eG(v) < d(G). Hence

d(G) = max{eG(u) : u ∈ V (G)− {v}}
= max{eG−v(u) : u ∈ V (G− v)}
= d(G− v).

We claim that P (G) = P (G−v). Let u ∈ P (G−v). Then eG−v(u) = d(G−v) = d(G). Hence
u ∈ P (G). So P (G − v) ⊆ P (G). Suppose that u ∈ P (G). Then eG(u) = d(G) = d(G − v),
where u 6= v by assumption. Hence u ∈ P (G− v). So P (G− v) ⊆ P (G). This proves the claim
and hence the result.

From the Theorem 3.1, the following corollary is immediate.

Corollary 3.2. Let G be a graph and S be the set of all pendant vertices which are not in P (G).
Then PH(G) = PH(G − S) and PW (G) = PW (G − S), where G − S denotes the graph
obtained from G by removing all the vertices in S.

Proposition 3.3. For the wheel graph Wn on n ≥ 4 vertices,

PH(Wn) =

{
6, if n = 4;
(n− 1)(n− 3), if n ≥ 5.

Proof. We have W4 = K4, and so PH(W4) = H(W4) = 6.
In Wn, n ≥ 5, there are n − 1 peripheral vertices. Let v be a peripheral vertex. There

are exactly 2 peripheral vertices adjacent to v and there are exactly n − 1 − 1 − 2 = n − 4
vertices at distance 2 from v. Therefore the sum of distances from v to other peripheral vertices
is 1 · 2 + 2 · (n− 4) = 2(n− 3). Since there are n− 1 peripheral vertices,

PH(Wn) =
1
2
· 2(n− 1)(n− 3) = (n− 1)(n− 3).

Proposition 3.4. Let Wd(n,m) denotes the windmill graph constructed for n ≥ 2 and m ≥ 2 by
joining m copies of the complete graph Kn at a shared common vertex v. Then we have

PH(Wd(n,m)) =
m(n− 1)(n− 2)

2
+
m(m− 1)(n− 1)2

4
.

Hence,

(i) for the friendship graph Fk on 2k + 1 vertices,

PH(Fk) = k2;

(ii) for the star K1,n on n+ 1 vertices,

PH(K1,n) =
n(n− 1)

4
.
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Proof. Clearly, the diameter ofWd(n,m) is 2 and P (Wd(n,m)) = V −{v}. LetH1, . . . ,Hm be
the components ofWd(n,m)−v. Note thatHi

∼= Kn−1, ∀i and for any u, v ∈ P (Wd(n,m)), u 6=
v, we have

d(u, v) =

{
1, if {u, v} ⊂ V (Hi) for some i, 1 ≤ i ≤ m;
2, if u ∈ V (Hi), v ∈ V (Hj), 1 ≤ i < j ≤ m

Hence from (2.1), we have

PH(Wd(n,m)) =
∑

{u,v}⊂P (Wd(n,m))

1
d(u, v)

=
∑

{u,v}⊂V (Hi),
1≤i≤m

1
1
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ m

1
2

= m

(
n− 1

2

)
+

1
2
· 1

2
m(n− 1)(n− 1)(m− 1)

=
m(n− 1)(n− 2)

2
+
m(m− 1)(n− 1)2

4
. (3.1)

Since the friendship graph Fk on 2k + 1 vertices is nothing but Wd(3, k), it follows from
(3.1) that

PH(Fk) =
k(3− 1)(3− 2)

2
+
k(k − 1)(3− 1)2

4
= k2.

Since the star K1,n on n+ 1 vertices is nothing but Wd(2, n), it follows from (3.1) that

PH(Fk) =
n(2− 1)(2− 2)

2
+
n(n− 1)(2− 1)2

4

=
n(n− 1)

4
.

Proposition 3.5. Let G be the corona product Km ◦Kn of complete graphs Km and Kn where
m ≥ 2 and n ≥ 1. Then we have

PH(G) =
mn(n− 1)

2
+
m(m− 1)n2

6
.

Proof. The set of peripheral vertices of G, P (G) = V (G) − V (Km) (that is all vertices of G
lying in the different copies of Kn). Let H1, . . . ,Hm be the components of G− V (Km) (that is
the graph obtained from G by deleting the vertices of the copy of Km). Note that Hi

∼= Kn, ∀i
and for any u, v ∈ P (G), u 6= v, we have,

d(u, v) =

{
1, if {u, v} ⊂ V (Hi) for some i, 1 ≤ i ≤ m;
3, if u ∈ V (Hi), v ∈ V (Hj), 1 ≤ i < j ≤ m

Hence from (2.1), we have

PH(G) =
∑

{u,v}⊂P (G)

1
d(u, v)
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=
∑

{u,v}⊂V (Hi),
1≤i≤m

1
1
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ m

1
3

=
mn(n− 1)

2
+
m(m− 1)n2

6
.

Proposition 3.6. Let G be a graph with m ≥ 2 vertices. Let G′ be the corona product G ◦Kn of
G and the complete graph Kn, n ≥ 1. Then

kn(n− 1)
2

+
k(k − 1)n2

2 (d(G) + 2)
≤ PH(G′) ≤ kn(n− 1)

2
+
k(k − 1)n2

6
,

where k = |P (G)|.

Proof. Let H1, . . . ,Hm be the components of G′ − V (G). Note that Hi
∼= Kn, ∀i. Let

v1, . . . , vk be the peripheral vertices of G. Then, clearly P (G′) = ∪ki=1V (Hi). Now, for
{u, v} ⊂ V (Hi), 1 ≤ i ≤ k, we have, d(u, v) = 1, and for u ∈ V (Hi), v ∈ V (Hj), i 6= j, we
have

3 ≤ dG′(u, v) ≤ d(G) + 2 (3.2)

Hence from (2.1), we have

PH(G′) =
∑

{u,v}⊂P (G′)

1
d(u, v)

=
∑

{u,v}⊂V (Hi),
1≤i≤k

1
1
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)

= k
n(n− 1)

2
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)

(3.3)

From (3.2), we have∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
d(G) + 2

≤
∑

u∈V (Hi), v∈V (Hj),
1 ≤ i < j ≤ k

1
dG′(u, v)

≤
∑

u∈V (Hi), v∈V (Hj),
1 ≤ i < j ≤ k

1
3
,

that is

k(k − 1)n2

2 (d(G) + 2)
≤

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)

≤ k(k − 1)n2

6
(3.4)

Using (3.4) in (3.3), we have

kn(n− 1)
2

+
k(k − 1)n2

2 (d(G) + 2)
≤ PH(G′) ≤ kn(n− 1)

2
+
k(k − 1)n2

6
.

Proposition 3.7. Let G = (V,E) be a graph with n ≥ 1 vertices. Let G′ be the corona product
Km ◦G of the complete graph Km, m ≥ 2 and G. Then

PH(G) =
m

2
|E|+ mn(n− 1)

4
+
m(m− 1)n2

6
.
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Proof. The set of peripheral vertices of G′, P (G′) = V (G′) − V (Km). Let H1, . . . ,Hm be the
components of G′ − V (Km). Note that Hi

∼= G, ∀i and for any u, v ∈ P (G′), u 6= v, we have,

dG′(u, v) =


1, if {u, v} ⊂ V (Hi) for some i, 1 ≤ i ≤ m and u ∼ v;
2, if {u, v} ⊂ V (Hi) for some i, 1 ≤ i ≤ m and u 6∼ v;
3, if u ∈ V (Hi), v ∈ V (Hj), 1 ≤ i < j ≤ m.

Hence from (2.1), we have

PH(G′) =
∑

{u,v}⊂P (G′)

1
dG′(u, v)

=
∑

{u,v}⊂V (Hi),
1≤i≤m
u∼v

1
1
+

∑
{u,v}⊂V (Hi),

1≤i≤m
u6∼v

1
2
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ m

1
3

= m|E|+ 1
2
m

[
n(n− 1)

2
− |E|

]
+
m(m− 1)n2

6

=
m

2
|E|+ mn(n− 1)

4
+
m(m− 1)n2

6
.

Proposition 3.8. Let G be a graph with m ≥ 2 vertices and H be a graph with n ≥ 1 vertices.
Let G′ be the corona product G ◦H of the graphs G and H . Then

k

2
|E(H)|+ kn(n− 1)

4
+

k(k − 1)n2

2 (d(G) + 2)

≤ PH(G′) ≤ k

2
|E(H)|+ kn(n− 1)

4
+
k(k − 1)n2

6
,

where k = |P (G)|.

Proof. Let H1, . . . ,Hm be the components of G′ − V (G). Note that Hi
∼= H, ∀i. Let v1, . . . , vk

be the peripheral vertices of G. Then, clearly P (G′) = ∪ki=1V (Hi). Now, for any u, v ∈
P (G′), u 6= v, we have

dG′(u, v) =

{
1, if {u, v} ⊂ V (Hi) for some i, 1 ≤ i ≤ k and u ∼ v;
2, if {u, v} ⊂ V (Hi) for some i, 1 ≤ i ≤ k and u 6∼ v,

and for u ∈ V (Hi), v ∈ V (Hj), 1 ≤ i < j ≤ k, we have

3 ≤ dG′(u, v) ≤ d(G) + 2 (3.5)

Hence from (2.1), we have

PH(G′) =
∑

{u,v}⊂P (G′)

1
dG′(u, v)

=
∑

{u,v}⊂V (Hi),
1≤i≤k
u∼v

1
1
+

∑
{u,v}⊂V (Hi),

1≤i≤k
u6∼v

1
2
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)



330 R. Rajendra, K. Bhargava, D. Shubhalakshmi and P. Siva Kota Reddy

= k|E(H)|+ 1
2
k

[
n(n− 1)

2
− |E(H)|

]
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)

=
k

2
|E(H)|+ kn(n− 1)

4
+

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)

(3.6)

From (3.5), we have∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
d(G) + 2

≤
∑

u∈V (Hi), v∈V (Hj),
1 ≤ i < j ≤ k

1
dG′(u, v)

≤
∑

u∈V (Hi), v∈V (Hj),
1 ≤ i < j ≤ k

1
3
,

that is

k(k − 1)n2

2 (d(G) + 2)
≤

∑
u∈V (Hi), v∈V (Hj),

1 ≤ i < j ≤ k

1
dG′(u, v)

≤ k(k − 1)n2

6
(3.7)

Using (3.7) in (3.6), we have

k

2
|E(H)|+ kn(n− 1)

4
+

k(k − 1)n2

2 (d(G) + 2)

≤ PH(G′) ≤ k

2
|E(H)|+ kn(n− 1)

4
+
k(k − 1)n2

6
.

Proposition 3.9. For the m×n grid graph Pm×Pn (the graph Cartesian product of path graphs
on m ≥ 2 and n ≥ 2 vertices),

PH(Pm × Pn) = 2
(

1
m− 1

+
1

n− 1
+

1
m+ n− 2

)
.

Hence, for the ladder graph Pn × P2,

PH(Pn × P2) = 2
(

1
n− 1

+
1
n
+ 1
)
.

Proof. In the grid graph Pm × Pn, there are exactly 4 peripheral vertices each of eccentricity
m + n, situated at the four corners of the grid. Let v1, v2, v3 and v4 be the peripheral vertices
Pm × Pn. Therefore from (2.1), we have

PH(Pm × Pn) =
∑

1≤i<j≤4

1
d(vi, vj)

= 2
(

1
m− 1

+
1

n− 1
+

1
m+ n− 2

)
(3.8)

From (3.8), for the ladder graph Pn × P2, it follows that,

PH(Pn × P2) = 2
(

1
n− 1

+
1

2− 1
+

1
n+ 2− 2

)
= 2

(
1

n− 1
+

1
n
+ 1
)
.
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Proposition 3.10. Let G = Pm × Cn denote the cylinder graph with m ≥ 2 and n ≥ 3. Then

PH(G) = 2PH(Cn) + nPH(Pm)+2n

(
1
m

+
1

m+ 1
+ · · ·+ 1

m+
⌊
n
2

⌋
− 2

)

+
n2ε(n)

m+
⌊
n
2

⌋
− 1

,

where ε(n) =

{
0 when n is even;
1 when n is odd.

Proof. We have

PH(Cn) = H(Cn) =
n

2

[
2

(
1 +

1
2
+ · · ·+ 1⌊

n
2

⌋
− 1

)
+

2ε(n)⌊
n
2

⌋ ] (3.9)

and

PH(Pm) =
1

d(Pm)
=

1
m− 1

(3.10)

Clearly, the number of peripheral vertices in G is 2n. For any v ∈ P (G), we have∑
u∈P (G)−{v}

1
dG(u, v)

=2

(
1 +

1
2
+ · · ·+ 1⌊

n
2

⌋
− 1

)
+

2ε(n)⌊
n
2

⌋ +
1

m− 1

+ 2

(
1

(m− 1) + 1
+

1
(m− 1) + 2

+ · · ·+ 1
(m− 1) +

⌊
n
2

⌋
− 1

)

+
2ε(n)

(m− 1) +
⌊
n
2

⌋ .
Hence,

PH(G) =
1
2

∑
v∈P (G)

∑
u∈P (G)−{v}

1
dG(u, v)

= n

[
2

(
1 +

1
2
+ · · ·+ 1⌊

n
2

⌋
− 1

)
+

2ε(n)⌊
n
2

⌋ ]+ n

m− 1

+ 2n

(
1

(m− 1) + 1
+

1
(m− 1) + 2

+ · · ·+ 1
(m− 1) +

⌊
n
2

⌋
− 1

)

+
n2ε(n)

(m− 1) +
⌊
n
2

⌋
= 2PH(Cn) + nPH(Pm) + 2n

(
1
m

+
1

m+ 1
+ · · ·+ 1

m+
⌊
n
2

⌋
− 2

)

+
n2ε(n)

m+
⌊
n
2

⌋
− 1

(using (3.9) and (3.10)).
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We use the following two lemmas (see [7]) to discuss the computation of Peripheral Harary
index for the Cartesian product of graphs.

Lemma 3.11. [7] Let G and H be graphs, and let (g, h), (g
′
, h
′
) be vertices of G×H . Then

dG×H((g, h), (g
′, h′)) = dG(g, g

′) + dH(h, h
′).

Lemma 3.12. [7] For two graphs G1 and G2,

P (G1 ×G2) = P (G1)× P (G2).

Theorem 3.13. For two graphs G1 and G2 with k1 and k2 peripheral vertices respectively,

k2PH(G1) + k1PH(G2) +
1

d(G1) + d(G2)

(
k1

2

)(
k2

2

)
≤ PH(G1 ×G2) ≤ k2PH(G1) + k1PH(G2) +

1
2

(
k1

2

)(
k2

2

)
.

Proof. Let P (G1) = {u1, . . . uk1} and P (G2) = {v1, . . . vk2}. From (2.1), we write

PH(G1) =
∑

1≤i<j≤k1

1
dG1(ui, uj)

(3.11)

and

PH(G2) =
∑

1≤i<j≤k2

1
dG2(vi, vj)

(3.12)

By Lemma 3.12 and using (2.1), we have

PH(G1 ×G2) =
∑

1≤i,j≤k1,1≤k,l≤k2,
i 6= j or k 6= l

1
dG1×G2((ui, vk), (uj , vl))

=
∑

1≤i,j≤k1,1≤k,l≤k2,
i 6= j or k 6= l

1
dG1(ui, uj) + dG2(vk, vl)

(from Lemma 3.11)

=
∑

1≤i<j≤k1,
1≤k=l≤k2

1
dG1(ui, uj) + dG2(vk, vl)

+
∑

1≤i=j≤k1,
1≤k<l≤k2

1
dG1(ui, uj) + dG2(vk, vl)

+
∑

1≤i<j≤k1,
1≤k<l≤k2

1
dG1(ui, uj) + dG2(vk, vl)

= k2PH(G1) + k1PH(G2) +
∑

1≤i<j≤k1,
1≤k<l≤k2

1
dG1(ui, uj) + dG2(vk, vl)

(3.13)

Now, for any 1 ≤ i < j ≤ k1 and 1 ≤ k < l ≤ k2, we have

2 ≤ dG1(ui, uj) + dG2(vk, vl) ≤ d(G1) + d(G2)
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which implies∑
1≤i<j≤k1,
1≤k<l≤k2

1
d(G1) + d(G2)

≤
∑

1≤i<j≤k1,
1≤k<l≤k2

1
dG1(ui, uj) + dG2(vk, vl)

≤
∑

1≤i<j≤k1,
1≤k<l≤k2

1
2

that is
1

d(G1) + d(G2)

(
k1

2

)(
k2

2

)
≤

∑
1≤i<j≤k1,
1≤k<l≤k2

1
dG1(ui, uj) + dG2(vk, vl)

≤ 1
2

(
k1

2

)(
k2

2

)
(3.14)

Using (3.14) in (3.13), we get

k2PH(G1) + k1PH(G2) +
1

d(G1) + d(G2)

(
k1

2

)(
k2

2

)
≤ PH(G1 ×G2) ≤ k2PH(G1) + k1PH(G2) +

1
2

(
k1

2

)(
k2

2

)
.

The following Corollary is immediate from Theorem 3.13.

Corollary 3.14. For a graph G with k peripheral vertices,

2kPH(G) +
1

2d(G)

(
k

2

)2

≤ PH(G×G) ≤ 2kPH(G) +
1
2

(
k

2

)2

.

Proposition 3.15. Let G = T k
∆

denote the Dendrimer tree (see [14]), which is a rooted tree with
level k where every non-pendent vertex is of degree ∆. Then

PH(G) =


∆(∆−1)

4 , for k = 1;
∆(∆−1)(∆−2)

4 + ∆(∆−1)3

8 , for k = 2;
∆(∆−1)k−1

4

[
(∆− 1)

{
1 + 1

2 + · · ·+ 1
k−1 + (∆−1)k−1

k

}
− 1
]
, for k ≥ 3.

Proof. Clearly the number of peripheral vertices in G is ∆(∆ − 1)k−1. For any v ∈ P (G), we
have

∑
u∈P (G)−{v}

1
dG(u, v)

=


(∆− 1)

2
, for k = 1;

(∆− 2)
2

+
(∆− 1)2

4
, for k = 2

and for k ≥ 3,∑
u∈P (G)−{v}

1
dG(u, v)

=
(∆− 2)

2
+

(∆− 1)
4

+ · · ·+ (∆− 1)
2(k − 1)

+
(∆− 1)k

2k

=
(∆− 1)

2

{
1 +

1
2
+ · · ·+ 1

k − 1
+

(∆− 1)k−1

k

}
− 1

2
.

Hence

PH(G) =
1
2

∑
v∈P (G)

∑
u∈P (G)−{v}

1
dG(u, v)

=


∆(∆−1)

4 , for k = 1;
∆(∆−1)(∆−2)

4 + ∆(∆−1)3

8 , for k = 2;
∆(∆−1)k−1

4

[
(∆− 1)

{
1 + 1

2 + · · ·+ 1
k−1 + (∆−1)k−1

k

}
− 1
]
, for k ≥ 3.
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4 Computation of peripheral Harary index using adjacency matrix

Let G be a graph of diameter d with n vertices v1, . . . , vn. Let A = (a
(1)
ij ) be the adjacency

matrix of G, where

a
(1)
ij =

{
1, if vi ∼ vj ;
0, otherwise.

Consider the powers At, 2 ≤ t ≤ d of A. We denote the (i, j)-th element of At (2 ≤ t ≤ d), by
a
(t)
ij , where

a
(t)
ij =

n∑
k=1

a
(t−1)
ik a

(1)
kj .

We know that a(t)ij is the number of distinct edge sequences of length t between vi and vj . For

i 6= j, let a(qij)ij be the first non-zero entry in the sequence a(1)ij , a
(2)
ij , . . . , a

(d)
ij . Then, it is clear that

a
(qij)
ij is the the number of geodesics of length qij between vi and vj . Therefore d(vi, vj) = qij .

Note that the matrix (qij) is the distance matrix of G, where qii is set to zero.

Suppose that G has k peripheral vertices. Without loss of generality we may assume that
v1, . . . , vk are the peripheral vertices of G (this is nothing but relabeling of vertices). Therefore
from (2.1), the pheripheral Harary index of G is given by

PH(G) =
∑

1≤i<j≤k

1
qij

(4.1)

Let us define φ(t)ij , (1 ≤ t ≤ d, i 6= j) as follows:

φ
(t)
ij =

{
1, if a(1)ij = a

(2)
ij = · · · = a

(t−1)
ij = 0 and a(t)ij 6= 0;

0, otherwise.
(4.2)

Then

qij = 1 · φ(1)ij + 2 · φ(2)ij + · · ·+ d · φ(d)ij =
d∑
t=1

t · φ(t)ij (4.3)

Using (4.3) in (4.1), we write

PH(G) =
∑

1≤i<j≤k

1∑d
t=1 t · φ

(t)
ij

(4.4)

Thus, we have the following theorem:

Theorem 4.1. LetG be a graph of diameter d with n vertices v1, . . . , vn and k peripheral vertices
v1, . . . , vk. Let A = (a

(1)
ij ) be the adjacency matrix of G. Denote the (i, j)-th element of At

(2 ≤ t ≤ d) by a(t)ij . Then

PH(G) =
∑

1≤i<j≤k

1∑d
t=1 t · φ

(t)
ij

,

where φ(t)ij , (1 ≤ t ≤ d, i 6= j) is given by

φ
(t)
ij =

{
1, if a(1)ij = a

(2)
ij = · · · = a

(t−1)
ij = 0 and a(t)ij 6= 0;

0, otherwise.
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4.1 An algorithm

Here, we present an algorithm to find the peripheral Harary index of a graph G using its adja-
cency matrix A. An algorithm for finding the distance matrix D of G is assumed.

Algorithm to find the peripheral Harary index
Input: Adjacency matrix of a connected graph G

Output: 1. PH(G), peripheral Harary index of the graph G
2. P , Vector of peripheral vertices

Start:

Step 1: Define the adjacency matrix A of G

Step 2: Determine the distance matrix D of G

Step 3: Determine P

Step 3.1: [ Initialize k to 1 ]
Step 3.2: [ Determine the diameter t of the graph ]

t = D[1, 1]
Repeat for i = 1 to n
Repeat for j = 1 to n
If i < j then

if (D[i, j] > t) then
t = D[i, j]

Step 3.3: Repeat for j = 1 to n
If (D[k, j] = t) then
P [k] = j
k = k + 1

Step 4: Compute the Peripheral Harary index

Step 4.1: [ Initialize PH(G) to 0 ]
Step 4.2: Repeat for i = 1 to k

Repeat for j = i+ 1 to k

PH(G) = PH(G) + 1/D[P [i], P [j]]

Step 5: End of the algorithm
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