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Abstract One of the challenges in optimizing clustering problems is requirement of differ-
entiability. Clustering is a popular approach that classifies a given data into different groups ,
based on some common properties. It is a basic foundation of machine learning , facility location
and image processing. Although the problem is nonsmooth, we used Nesterov partial smooth-
ing technique to approximate nondifferentiable convex functions by smooth convex functions
with Lipschitz continuous gradients. In this paper, we mainly focused in modelling and solving
clustering problems that identify some nodes as cluster centers among others and minimize the
overall `1 distance of the clusters. In addition, since the algorithm starts with any initial clus-
ter centers penalty parameter is used to push centers to real node. As a result, a DCA based
algorithms were implemented that find optimal cluster centers in reasonable iteration time.

1 Introduction

Currently, clustering is an area that mostly studied and applied to many branches of mathematics
and computer science. The majority of clustering problems are nonsmooth and nonconvex that
is not ruled by gradient decent algorithms. Besides, most clustering problems are discrete and
combinatorial in nature which is challenging to obtain optimality.
The combination of Nesterov’s smoothing technique [18] , DC programming and DCA [16]
introduced an efficient platform to study nonconvex and nonsmooth problem in optimization.
DCA has applied to facility location, compressed sensing, and imaging, supply chain manage-
ment and telecommunication successfully [15, 16, 17, 19]. In this regard a number of works
were done on clustering, among them, the minimum sum of squares clustering problem [6],
the bilevel hierarchical clustering problem [14] and the multicast network design problem [10].
More recently, solving multifacility location problems by DC algorithms were studied in [17].
A similar problem was also investigated in [3] using different approach. The significant differ-
ence between problem studied in [17] and [3] is a squared Euclidean norm is used in the former
while Euclidean norm is applied in the later case. An algorithms that were employed to solve
those problems are mostly meta-heuristic and difficult to analysis optimality. In [3] DCA which
was developed in [4, 13] was utilized by replacing `2-norm by squared `2-norm and applied to
higher dimensional problems. DC algorithm has laid an efficient foundation in solving different
nonconvex problems in clustering, see for example in [1, 2, 7, 9] and references cited therein.
Recently, the authors in [10, 14] implemented a new way on Nesterov’s and DC Algorithm to
overcome the problem in [5].The idea of using Nesterov’s smoothing techniques overcomes the
drawback of applying DCA stated in [3] as the model is not appropriate to implement the DCA.
In most applied problems, `1 distance measures can give a better approximation of the reality
than Euclidean distance. In this paper, we further study clustering problem by modifying the
objective and constraints functions using `1 norm. Since `1 norm is nonsmooth, we employed
Nesterov’s partial smoothing techniques and appropriate DC decomposition that helps to apply
DC Algorithm (DCA). Besides, the change made to the objective function and constraints, the
centers are forced to lie on real nodes in the datasets that minimize the overall distance. Thus,
we used penalty parameters to convert constrained problem to unconstrained one.
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The paper is organized as follows. In Section 2, we present basic tools of convex analysis that
is applied to DC functions and DCA. In Sections 3, mainly focus on clustering problem for-
mulation and analysis to develop DCA algorithms that solve the problem based on Nesterov’s
smoothing technique. In Section 4, numerical simulation results with some artificial data are
demonstrated and some concluding remarks are presented in Section 5.

2 Basics of Convex functions

This section presents basic concepts of convex functions and convex analysis that will be used
to study DC functions and convergence of DCA which is used in subsequent sections.

Definition 2.1. [8] A vector v ∈ Ω ⊂ Rn is a subgradient of a convex function f : Ω → R̄ at
x̄ ∈ dom(f) if it satisfies the inequality

f(x) ≥ f(x̄) + 〈v, x− x̄〉 for all x ∈ Rn

The set of subgradients is known as the subdifferential of f at x̄ and is denoted by ∂f(x̄) = {v ∈
Rn | v satisfies definition 2.1}.

We present the following consequentive results without technical proofs. Detailed proofs are
given in [8].

Theorem 2.2. [8] Let fj : Rn → R̄ be proper extended real-valued convex functions and the
intersection of relative interior of domain

⋂n
j=1 ri(dom(fj)) 6= ∅ where n ≥ 2. Then for all

x̄ ∈
⋂n
j=1 dom(fj)

∂

 n∑
j=1

)fj(x̄)

 =
n∑
j=1

∂fj(x̄)

The Maximum Function is defined as the pointwise maximum of convex functions. For
j = 1, 2, 3, ..., n, let functions fj : Rn → R be closed and convex. Then the maximum function

f(x) := max
j=1,...,n

fj(x) = max {f1(x), f2(x), ..., fn(x)}

is also closed and convex.
The Minimum Function f(x), defined by

f(x) := min
j=1,...n

fj(x) = min {f1(x), f2(x), ..., fn(x)}

may not be convex.
Subdifferential of most class of nondifferentiable convex functions is defined as the pointwise
maximum of convex functions.

Lemma 2.3. Let f1, f2, ..., fn : Rn → R̄ be proper extended real-valued convex functions and let
f(x) = max {f1(x), f2(x), ..., fn(x)} . if x ∈

⋂n
j=1 int(dom(fj)), then

∂f(x) = co

 ⋃
j∈I(x)

∂fk(x)

 where I(x) = {j | fj(x) = f(x), j = 1, 2, ..., n}

The proof of this result can be found in [8]

2.1 Conjugate Functionals

We consider throughout this paper DC programming as:

Minimize f(x) = g(x)− h(x), x ∈ Rn (2.1)



A DC Optimization to Constrained Clustering with `1-Norm 339

where g and h are convex functions and g − h is a DC decomposition of f .
The Fenchel conjugate of g is defined as in [12]

g∗(y) = sup{〈y, x〉 − g(x) | x ∈ Rn}, y ∈ Rn. (2.2)
and always convex function.

Definition 2.4. [9] A function f : Rn → R is γ-strongly convex if and only if the function

g(x) := f(x)− γ

2
||x||2

is convex. In particular, if f is strongly convex, then f is also strictly convex.

Theorem 2.5. [9] Let f be problem in (2.1) and the sequence {xk} generated by the DCA algo-
rithm. Suppose that g and h are γ1 and γ2 convex respectively, then

f(xk)− f(xk+1) ≥
γ1 + γ2

2
||xk+1 − xk||2,∀k ∈ N. (2.3)

Proof. Since yk ∈ ∂h(xk), then one has

〈yk, x− xk〉+
γ2

2
||x− xk||2 ≤ h(x)− h(xk)for allx ∈ Rn.

In particular,h

〈yk, xk+1 − xk〉+
γ2

2
||xk+1 − xk||2 ≤ h(xk+1)− h(xk)

In addition,xk+1 ∈ ∂g∗(yk), and so yk ∈ ∂g(xk+1), which similarly implies

〈yk, xk − xk+1〉+
γ1

2
||xk − xk+1||2 ≤ g(xk)− g(xk+1)

Adding these inequalities gives (2.3).

γ1 + γ2

2
||xk+1 − xk||2 ≤ f(xk)− f(xk+1),∀k ∈ N.

Theorem 2.6. [9] Let f be defined by (2.1) and {xk} is a sequence created by DCA. Then
functional value {f(xk)} is a decreasing sequence. If f is bounded from below and g is lower
semicontinuous, and that g is γ1−convex and h is γ2−convex with γ1 + γ2 > 0. If {xk} is
bounded, then all subsequential limits of {xk} converge to a stationary point of f .

Definition 2.7. [8] Let F be a nonempty closed subset of Rn and let x ∈ Rn.

(i) Define the distance between x and set F by

d(x, F ) = inf{‖x− w‖ | w ∈ F}.

(ii) The set of all Euclidean projection from x to F is defined by

P (x, F ) = {w ∈ F | d(x, F ) = ‖x− w‖}.

It is well-known that P (x, F ) is nonempty when F ⊂ Rn is closed. If we assume in addition
that F is convex, than P (x, F ) is a singleton.

Proposition 2.8. [11, 20] Given any a ∈ Rn and γ > 0, A Nesterov smoothing approximation of
ϕ(x) = ||x− a||1 has the representation

ϕγ(x) :=
1

2γ
‖x− a‖2 − γ

2
[d(

x− a
γ

;F )]2.

where F is the closed unit box of Rn, i.e., F := {v = (v1, ..., vn) ∈ Rn | −1 ≤ vi ≤ 1 for
i = 1, ..., n} Moreover, ∇ϕγ(x) = P (x−aγ ;F ) and

ϕγ(x) ≤ ϕ(x) ≤ ϕγ(x)) +
γ

2
‖F‖2, (2.4)

where ‖F‖ := sup{‖q‖ | q ∈ F}.
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3 Problems Formulation

Clustering is typically a partition of N data points into k groups (clusters) such that the points
in each group are more similar to each other than to points in other groups. To define our
problems, consider a set A of i data points, that is A =

{
ai ∈ Rn : i = 1, ...,m

}
and k variable

cluster centers denoted by x1, ..., xk. We modeled the clustering problem by choosing k separate
centers from the data points that minimize the overall distance. Other members of the data will
be assigned to one of the centers based on the `1- norm between the data points and centers. In
the model, nodes are grouped in to k variable centers by minimizing the `1- norm from all node
to the k centers. Then we define clustering model as

Minimize
m∑
i=1

min
j=1,...,k

‖xj − ai‖1 (3.1)

where the distance measure is the `1-norm defined as

||x||1 =
n∑
j=1

|xj |.

In addition, to make sure that the k centers are selected from the existing nodes, we need to add
the following constraint to the optimization problem formulated in (3.1):

k∑
j=1

min
i=1,...,m

‖xj − ai‖1 = 0. (3.2)

The constraints given in (3.2) helps to push the artificial center to the closest node.
Now we formulate the clustering model as

Minimize
m∑
i=1

min
j=1,...,k

‖xj − ai‖1 (3.3)

subject to
k∑
j=1

min
i=1,...m

‖xj − ai‖1 = 0, x1, ..., xk ∈ Rn.

To solve the problem given in (3.3) we apply penalty method with parameter τ > 0. Then we
can express the minimization problem as unconstrained problem as follows:

Minimize
m∑
i=1

min
j=1,...,k

‖xj − ai‖1 + τ

k∑
j=1

min
i=1,...,m

‖xj − ai‖1, x
1, ..., xk ∈ Rn

Since the pointwise minimum of convex functions may not be convex, we can suitably write
as difference of convex functions as given in (3.4).

min
i=1,...,m

fi(x) =
m∑
i=1

fi(x)− max
t=1,...,m

m∑
i=1,i6=t

fi(x). (3.4)

Rewriting the minimum of convex function in (3.4) as sum and maximum of convex functions
we have

f(x1, x2, ..., xk) =
m∑
i=1

k∑
j=1

‖xj − ai‖1 −
m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1

+τ
m∑
i=1

k∑
j=1

‖xj − ai‖1 − τ max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1
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Writing as DC function it becomes

f(x1, x2, ..., xk) = (1 + τ)
m∑
i=1

k∑
j=1

‖xj − ai‖1 −
m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1

−τ
k∑
j=1

max
r=1,...,m

m∑
i=1,i6=r

‖xj − ai‖1 (3.5)

where the corresponding convex functions g and h are given as

g(x1, x2, ..., xk) = (1 + τ)
m∑
i=1

k∑
j=1

‖xj − ai‖1

h(x1, x2, ..., xk) =
m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1 + τ

k∑
j=1

max
r=1,...,m

m∑
i=1,i6=r

‖xj − ai‖1

Since f is DC function based on `1 smoothing studied in [20], we give a Nesterov’s approxi-
mation of ||x− a||1 as define in Proposition 2.8 :

‖x− a‖1 =
γ

2

[
‖x− a

γ
‖2 − [d(

x− a
γ

;F )]2
]

and a Nesterov smoothed objective function in (3.5) is as follows.

fγ(x
1, x2, ..., xk) =

(1 + τ)γ

2

m∑
i=1

k∑
j=1

‖x
j − ai

γ
‖2

−(1 + τ)γ

2

m∑
i=1

k∑
j=1

[d(
xj − ai

γ
;F )]2 (3.6)

−
m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1 − τ
k∑
j=1

max
r=1,...,m

m∑
i=1,i6=r

‖xj − ai‖1)

The aim is to minimize the smoothed problem fγ as:

Minimize
{
fγ(x

1, x2, ..., xk) = gγ(x
1, x2, ..., xk)− hγ(x1, x2, ..., xk)

}
where

gγ(x
1, x2, ..., xk) =

(1 + τ)γ

2

m∑
i=1

k∑
j=1

‖x
j − ai

γ
‖2.

hγ(x
1, x2, ..., xk) =

(1 + τ)γ

2

m∑
i=1

k∑
j=1

[d(
xj − ai

γ
;F )]2 +

m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1

+τ
k∑
j=1

max
r=1,...,m

m∑
i=1,i6=r

‖xj − ai‖1.

For the calculation of gradient and subgradient we consider a data matrix A with ai, i =
1, ...,m, in the ith row and a variable matrix X with xj , j = 1, 2, ..., k in the jth row.

Since X and A belongs to a linear space of real matrices we can apply inner product such
that

〈X,A〉 = trace(XTA) =
n∑
i=1

k∑
j=1

xijaij .
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And the Frobenius norm on Rk×m is given by

‖A‖F =
√
〈A,A〉 =

√√√√ k∑
j=1

〈aj , aj〉 =

√√√√ k∑
j=1

||aj ||2 (3.7)

To solve the smoothed problem, first we compute partial of gγ to implement DCA using
matrix norm defined in (3.7). Then it becomes

gγ(x
1, x2, ..., xk) =

(1 + τ)γ

2

m∑
i=1

k∑
j=1

‖x
j − ai

γ
‖2.

The partials of gγ with respect to X can be written as

gγ(x
1, x2, ..., xk) :=

(1 + τ)

2γ

m∑
i=1

k∑
j=1

||xj − ai||2

=
(1 + τ)

2γ

m∑
i=1

k∑
j=1

[
‖xj‖2 − 2〈xj , ai〉+ ‖ai‖2]

=
(1 + τ)

2γ
[
m‖X‖2

F − 2〈X,EkmA〉+ k‖A‖2
F

]
where Ekm is a matrix with elements are all ones. Then, g1γ is smooth and its partial gradients
are:

∇xgγ(x1, x2, ..., xk) =
(1 + τ)

γ
[mX − EkmA]

=
(1 + τ)

γ
[mX −M ] ,where M = EkmA.

Next,we focus on X ∈ ∂g∗(Y ) where g∗ is a Fenchel conjugate defined in (2.2) and can
be calculated using the fact that X ∈ ∂g∗(Y ) ⇔ Y ∈ ∂g(X). Since gγ is differentiable, it is
expressed as

∇xgγ(x1, x2, ..., xk) = Y.

And now one can drive X from the following equation as

Y =
(1 + τ)

γ
[mX −M ]

Now we can express X as

X =
γY

m(1 + τ)
+
M

m
.

To compute the subgradient of convex function hγ in (3.7). First we express hγ as sum of
convex functions as in (3.8)

hγ(x
1, x2, ..., xk) = h1γ(x

1, x2, ..., xk) + h2γ(x
1, x2, ..., xk) + h3γ(x

1, x2, ..., xk) (3.8)

where

h1γ(x
1, x2, ..., xk) =

(1 + τ)γ

2

m∑
i=1

k∑
j=1

[d(
xj − ai

γ
;F )]2,

h2γ(x
1, x2, ..., xk) =

m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

‖xj − ai‖1,

h3γ(x
1, x2, ..., xk) = τ

k∑
j=1

max
r=1,...,m

m∑
i=1,i6=r

‖xj − ai‖1.
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Since we use `1 norm, the subgradient Y ∈ ∂hγ(X) for the case where F is the closed unit box
in Rn defined as F = {(v1, ..., vn) ∈ Rn | 1 ≤ vk ≤ 1, k = 1, ..., n}.
For a given v ∈ R we define

sign(v) =


1 if v > 0,
0 if v = 0,
−1 if v < 0,

then subgradient of f(x) = ||x||1 at x ∈ Rn is sign(x).
Let us find the gradient of a smooth function h1 in (3.8) with respect toX . As all function in sum
is convex, subgradient of hγ is computed using subdifferential sum and maximum rule, given in
[8]. Hence

h1γ =
(1 + τ)γ

2

m∑
i=1

k∑
j=1

[
d(
xj − ai

γ
;F )

]2

.

Thus, the partial of h1γ at X and λ is given as:

∂h1γ

∂xj
(x1, x2, ..., xk) = (1 + τ)

m∑
i=1

[
xj − ai

γ
− P (x

j − ai

γ
;F )

]
, (3.9)

for all j = 1, ..., k. Note that, H1 is a k × n matrix.

The projection in (3.9) is the Euclidean projection from v ∈ Rn onto a unit closed box F is
defined as,

P (v, F ) = max(−e,min(v, e)).

Where e ∈ Rn is a vector with one in each coordinate.
On the other hand, the third kinds h2γ and h3γ , are non-smooth since we use `1 norm. Then, we
can compute a sub-gradient for h2γ and h2γ , based on the subdifferential formula for maximum
functions, as demonstrated below. For instance, we consider

h2γ(x
1, x2, ..., xk) =

m∑
i=1

max
t=1,...,k

k∑
j=1,j 6=t

||xj − ai||1

=
m∑
i=1

max
t=1,...,k

 k∑
j=1

||xj − ai||1 − ||xt − ai||1


For i = 1, ...,m, select an index t(i) so that

max
t=1,...,k

 k∑
j=1

||xj − ai||1 − ||xt − ai||1

 =
k∑
j=1

||xj − ai||1 − ||xt(i) − ai||1

Now let U = (uji) be a signed block matrix with uji = sign(xj − ai) is row vector and U i be
ith column block matrix of U . Then ∂h2γ at X is

∂h2γ

∂xj
:=

m∑
i=1

(
U i − et(i)ut(i)i

)
for et(i) a column vector of k coordinates with one at the t(i)th place and zero otherwise.
Similarly the subgradient of h3γ is given by

h3γ(x
1, x2, ..., xk) = τ

k∑
j=1

max
r=1,...,m

m∑
i=1,i6=r

||xj − ai||1

=
k∑
j=1

max
r=1,...,m

(
m∑
i=1

||xj − ai||1 − ||xj − ar||1

)
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for all j = 1, ..., k, select r(j) so that

max
r=1,...,m

(
m∑
i=1

||xj − ai||1 − ||xj − ar||1

)
=

m∑
i=1

||xj − ai||1 − ||xj − ar(i)||1.

Let S ∈ Rk×n be a matrix with jth row
∑m
i=1 sji − sjr(j), then ∂h2γ at X is

∂h3γ

∂xj
:= τS.

From the subgradient calculated above we have,

Y =
∂h1γ

∂xj
+
∂h2γ

∂xj
+
∂h3γ

∂xj
.

Now we have brought all necessary point such as gradient and subgradient to formulate the
DCA algorithm that solve the problem as shown in Table 1.

DCA Algorithm
1. Initial: A,X0, τ0, γ0, σ1, σ2, ε, , N ∈ N.
2. while stopping is not reached do
3. For k = 1, ..., N do
4. Search Yk ∈ ∂hγ(Xk−1)

5. Where Xk =
γYk

m(1+τ) +
M
m

12. end for
13. update τ and γ
14. end while
15. Output (XN )

Table 1. DCA Algorithm for the problem

4 Simulation Results

The numerical simulation was done on a laptop with MATLAB software by considering artificial
data. We used a continuous formulation of discrete problem. As a result it became non-smooth
and non-convex, on which Nesterov’s smoothing and DC-based algorithms were implemented.
During numerical simulation different parameters were used, among those, we used a large grow-
ing τ . In addition penalty and smoothing parameter are updated throughout the iteration as fol-
lows : τi+1 = σ1τi, σ1 > 1, and γi+1 = σ2γi, σ2 ∈ (0, 1). We selected starting penalty parameter
(τ0 = e−6) and initial smoothing parameter γ0 = 1. Besides, we used σ1 = 16e9 as penalty
parameter’s growth factor and σ2 = 0.75 smoothing parameter’s decay factor after testing with
different values.
For the implementation of the algorithms, we used a randomly selected starting cluster centers.
Since the algorithms are modified DCA, there is no guarantee that our algorithms converge to a
global optimal solution. However, for small datasets the algorithm converges 100 % of the time
to a global optimal solution.
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Figure 1. Multiple optimal solution and CPU time of DCA algorithm , with 15 nodes data points
and three clusters. The total cost f(X) = 50.00, with centers

X =

 8.0000 12.0000
4.0000 4.0000
12.0000 4.0000



Figure 2. Optimal solution and CPU time of DCA algorithm of 65 town in Oromia region of
Ethiopia , with five clusters. The total cost f(X) = 63.090034, with centres

X =


9.2100 41.1000
7.9500 39.1400
9.1800 35.8300
9.0400 38.1500
5.6300 38.2300
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Figure 3. Optimal solution and CPU time of DCA algorithm , with 1000 nodes random data
points and five clusters. The total cost f(X) = 1954.401747, with centers

X =


8.2370 7.8794
3.0467 2.7415
3.4140 7.7048
8.5211 2.7217
5.8614 4.7893



5 Conclusion

In this paper ,we formulate a clustering problem as continuous optimization using DC functions
where the distance between two data points is measured by `1 norm. We implemented a DC
based algorithms and tested with real and artificial dataset of various sizes and dimensions with
MATLAB. Starting with different random initial cluster centers the algorithm converge to opti-
mal value in reasonable time. As a result an improved iteration time for large scale problems and
convergence to optimal cluster centers were observed. In addition the algorithm used in solving
clustering problems with DCA is flexible to apply to other nonsmooth nonconvex optimization
problem such as location science and machine learning.
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