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Abstract In [E. Yildiz, B. A. Ersoy, Ü. Tekir and S. Koc, On S-Zariski topology, Comm.
Algebra, 49 (3) (2021), 1212-1224], the authors have constructed a topology on SpecS(R) (the
set of S-prime ideals of a commutative ring R with identity) called the S-Zariski topology. They
have proved that (1) SpecS(R) is an irreducible space if and only if NS(R) ∈ Spec(R) and (2)
SpecS(R) is compact. The aim of this short note is to improve the above mentioned results.
More precisely, we show that SpecS(R) is an irreducible space if and only if N(R) ∈ SpecS(R).
Moreover, we demonstrate that any basis element of the S-Zariski topology is compact. In
particular, SpecS(R) is compact. As a consequence, we show that any set X satisfying {P ∈
Spec(R) | P ∩ S = ∅} ⊆ X ⊆ SpecS(R) is compact.

1 Introduction

All rings considered below are commutative with identity. Let R be a ring and S a multiplicative
closed subset ofR (briefly, m.c.s). An ideal P ofR is called S-prime if P∩S = ∅ and there exists
an (fixed) s ∈ S such that whenever ab ∈ R for some a, b ∈ R, then either sa ∈ P or sb ∈ P
(cf. [2, 5]). We let SpecS(R) denote the set of all S-prime ideals of R. In [7], the authors have
constructed a topology on SpecS(R) called the S-Zariski topology. Any closed set of SpecS(R)
has the form VS(E) := {P ∈ SpecS(R) | sE ⊆ P for some s ∈ S}, where E is a subset of
R. The collection of all DS

a := {P ∈ SpecS(R) | sa 6∈ P for all s ∈ S}, where a ∈ R, forms
a basis for the S-Zariski topology. The irreducibility and the compactness of SpecS(R) were
investigated in [7]. More precisely, [7, Theorem 5] states that SpecS(R) is irreducible if and
only if NS(R) is a prime ideal, where NS(R) = {a ∈ R | san = 0 for some s ∈ S and n ∈ N}.
Moreover, SpecS(R) is a compact topological space (cf. [7, Theorem 6]). Our purpose here is
to sharpen these two results. Our main result in Section 2 is Theorem 2.2, which shows that
SpecS(R) is irreducible if and only if N(R) is an S-prime ideal, where N(R) is the nilradical
of R (the set of nilpotent elements of R). In Section 3, we prove that each basis element DS

a

is compact. In particular, SpecS(R) = DS
1 is compact (see Theorem 3.2). As a consequence,

we show that any set X such that {P ∈ Spec(R) | P ∩ S = ∅} ⊆ X ⊆ SpecS(R) is compact
(see Corollary 3.3). As usual Spec(R) denotes the set of all prime ideals of the ring R. Any
unexplained terminology is standard as in [1] and [4].

2 Irreducibility of SpecS(R)

Recall that a topological space X is called irreducible if X is nonempty and cannot be expressed
as the union of two proper closed subsets, or equivalently, any two nonempty open subsets of X
intersect (cf. [3, 4]). It is worth noticing that SpecS(R) is always nonempty because (0)∩S = ∅
and so there exists a prime ideal Q of R disjoint from S according to [6, Theorem 3.44]. There-
fore, Q ∈ SpecS(R). Recall that Theorem 5 in [7] states that SpecS(R) is irreducible if and only
if NS(R) is a prime ideal, where NS(R) = {a ∈ R | san = 0 for some s ∈ S and n ∈ N}.
Our goal in this section is to provide another characterization of the irreducibility of SpecS(R)
by means of the nilradical of R.

We start our investigation with the following straightforward result.
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Lemma 2.1. Let R be a commutative ring and S a m.c.s of R. Then

a ∈ NS(R)⇐⇒ ∃ s ∈ S such that sa ∈ N(R).

Proof. “=⇒” Since a ∈ NS(R), then there exist s ∈ S and n ∈ N such that san = 0. Thus,
(sa)n = sn−1(san) = 0. This shows that sa ∈ N(R).
“⇐=” By assumption, there exist s ∈ S and n ∈ N such that (sa)n = 0. Put s∗ = sn ∈ S.
Clearly, s∗an = 0. Hence, a ∈ NS(R).

We present now the titular result of this section which improves [7, Theorem 5].

Theorem 2.2. Let R be a commutative ring and S a m.c.s of R. Then the following statements
are equivalent:

(1) SpecS(R) is an irreducible space;
(2) N(R) ∈ SpecS(R);
(3) NS(R) ∈ Spec(R).

Proof. (1)=⇒(2) Firstly, notice thatN(R)∩S = ∅ since 0 6∈ S. Assume by way of contradiction
that N(R) 6∈ SpecS(R). Then, for any s ∈ S, there exist a, b ∈ R such that ab ∈ N(R) but
sa, sb 6∈ N(R). As sa 6∈ N(R) for any s ∈ S, it follows from Lemma 2.1 that a 6∈ NS(R).
Thus, DS

a 6= ∅ by virtue of [7, Proposition 6]. A similar argument shows that DS
b 6= ∅. Since

ab ∈ N(R), then ab ∈ NS(R). Another appeal to [7, Proposition 6] guarantees that DS
ab = ∅.

Since DS
a ∩DS

b = DS
ab according to [7, Proposition 6], we get readily DS

a ∩DS
b = ∅. This shows

that SpecS(R) is not irreducible, the desired contradiction.
(2)=⇒(3) Let a, b ∈ R such that ab ∈ NS(R). According to Lemma 2.1, there exists s ∈ S such
that sab ∈ N(R). As N(R) is an S-prime ideal, then there exists s∗ ∈ S such that either s∗sa ∈
N(R) or s∗b ∈ N(R). Using again Lemma 2.1, we deduce that a ∈ NS(R) or b ∈ NS(R).
(3)=⇒(1) Follows readily from [7, Theorem 5].

Lemma 2.3. Let R be a commutative ring and S a m.c.s of R. Then

P ∈ SpecS(R) =⇒
√
P ∈ SpecS(R).

Proof. Let a, b ∈ R such that ab ∈
√
P . Then there exists n ∈ N such that anbn ∈ P . As

P ∈ SpecS(R), then there exists s ∈ S such that either san ∈ P or sbn ∈ P . Hence, either
sa ∈

√
P or sb ∈

√
P . This completes the proof.

Recall from [5] that a ring R is said to be an S-integral domain if there exists a fixed s ∈ S
such that whenever ab = 0 for some a, b ∈ R, then either sa = 0 or sb = 0. This concept
generalizes that of an integral domain. It is not difficult to check that R is an S-integral domain
if and only if (0) ∈ SpecS(R). Next we recover [7, Corollary 1].

Corollary 2.4. Let R be a commutative ring and S a m.c.s of R. If R is an S-integral domain,
then SpecS(R) is an irreducible space.

Proof. As R is an S-integral domain, then (0) ∈ SpecS(R). Hence, N(R) =
√
(0) ∈ SpecS(R)

by virtue of Lemma 2.3. Thus, SpecS(R) is an irreducible space by Theorem 2.2.

3 Compactness of SpecS(R)

Recall from [4] that a topological space X is called compact if any open cover of X has a finite
subcover. Recall also [7, Definition 1] that if R is a commutative ring, S is a m.c.s of R and I is
an ideal of R, then the S-radical of I is defined by:

S
√
I := {a ∈ R | san ∈ I for some s ∈ S and n ∈ N}.

Lemma 3.1. Let R be a commutative ring and S a m.c.s of R. If I and J are ideals of R. Then

VS(I) ⊆ VS(J)⇐⇒
S
√
J ⊆ S

√
I.
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Proof. Follows immediately by combining [7, Remark 2], [7, Proposition 5] and [7, Proposition
7].

The next theorem improves [7, Theorem 6].

Theorem 3.2. Let R be a commutative ring and S a m.c.s of R. Then DS
a is compact for any

a ∈ R. In particular, SpecS(R) = DS
1 is compact.

Proof. Assume that DS
a ⊆

⋃
i∈∆

DS
ai , where ai ∈ R for any i ∈ ∆. Then, by using [7, Theorem

1], we obtain VS(〈a〉) ⊇
⋂
i∈∆

VS(〈ai〉) = VS(I), where I = 〈ai, i ∈ ∆〉 is the ideal of R
generated by the ai’s. It follows from Lemma 3.1 that S

√
〈a〉 ⊆ S

√
I . Hence, a ∈ S

√
I . Thus,

there exist s ∈ S and n ∈ N such that san ∈ I . Therefore, there exists a finite subset δ of ∆

such that san ∈ 〈ai, i ∈ δ〉. This shows that a ∈ S
√
〈ai, i ∈ δ〉. Thus, VS( S

√
〈ai, i ∈ δ〉) ⊆ VS(a)

by virtue of Lemma 3.1. Hence, VS(〈ai, i ∈ δ〉) ⊆ VS(a) ([7, Proposition 7]); or equivalently,⋂
i∈δ VS(ai) ⊆ VS(a). It follows that DS

a ⊆
⋃
i∈δD

S
ai . This completes the proof.

As a consequence, we derive the following corollary.

Corollary 3.3. Let R be a commutative ring and S a m.c.s of R. Assume that {P ∈ Spec(R) |
P ∩ S = ∅} ⊆ X ⊆ SpecS(R). Then X is compact.

Proof. Using Theorem 3.2, it is enough to show that if O is an open subset of SpecS(R) con-
taining X , then O = SpecS(R). To this end, let P ∈ SpecS(R). As P ∩ S = ∅, then it follows
from [6, Theorem 3.44] that there exists Q ∈ Spec(R) such that P ⊆ Q and Q ∩ S = ∅. Since
Q ∈ X ⊆ O, then there exists a ∈ R such that Q ∈ DS

a ⊆ O. Thus, for any s ∈ S, sa 6∈ Q. In
particular, for any s ∈ S, sa 6∈ P . This proves that P ∈ DS

a ⊆ O. Therefore, we have proved
that SpecS(R) ⊆ O. As the reverse inclusion is obvious, we get O = SpecS(R). The proof is
complete.
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