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Abstract If A ⊆ B is a (unital) extension of (commutative) rings, we say that A is Prüfer-
closed in B if A is the Prüfer hull of A in B. Fix a ring extension R ⊆ S, with RS denoting
the integral closure of R in S. If R ⊆ S is a P-extension, then the set of rings contained
between R and S is pinched at RS if and only if J is Prüfer-closed in S for each ring J such
that R ⊆ J ⊂ RS . Assume henceforth that R ⊆ S satisfies FCP. Then R is Prüfer-closed in
S if and only if either S is integral over R or R ⊂ RS ⊂ S with (R : RS) ⊆ N for each
N ∈ MSupp(S/RS). Applications include ring-theoretic generalizations of several domain-
theoretic results of Ben Nasr and Zeidi, as well as a characterization of λ-extensions (also known
as chained ring extensions). If S is integral over R, this characterization uses some results of
M. S. Gilbert for the case where R is a field. If R is integrally closed in S, then R ⊆ S is a
λ-extension if and only if SuppR(S/R) (:= {P ∈ Spec(R) | RP ⊂ SP }) is linearly ordered by
inclusion.

1 Introduction

All rings and algebras considered below are commutative and unital, all inclusions of rings are
considered to be (unital) ring extensions, and all algebra/ring homomorphisms are unital. If R is
a ring, then Spec(R) (resp., Max(R)) denotes the set of prime (resp., maximal) ideals of R;

√
R

denotes the nilradical of R (in the sense of [31, page 16]); and RadR(I) denotes the radical of
an ideal I of R. Given a ring extension R ⊆ S, we will use the following notation: RS denotes
the integral closure of R in S; [R,S] denotes the set of intermediate rings between R and S;
(R : S) := {x ∈ R | xS ⊆ R}, the conductor of R in S; Supp(S/R) := SuppR(S/R) :=
{P ∈ Spec(R) | RP 6= SP := SR\P }; MSuppR(S/R) := Max(R) ∩ SuppR(S/R); and [R,S[=
[R,S] \ {R}.

This paragraph will give a very brief summary of this paper. The main purpose of Section 2
is to characterize the P-extensions R ⊆ S such that [R,S] = [R,RS ] ∪ [RS , S]. That character-
ization involves the concept of a Prüfer-closed ring extension, which we introduce for arbitrary
ring extensions and then give an MSupp-theoretic characterization of in the class of (necessar-
ily P-extension) ring extensions satisfying the FCP property. This work in Section 2 leads to
a generalization of a result from [3] and generalizations (with much shorter proofs) of most of
the (domain-theoretic) results in [8] to the setting of arbitrary ring extensions. Section 3 char-
acterizes the λ-extensions from [26] (which were termed “chained extensions” in [36]) which
satisfy FCP by combining results from [26] (for the case where the base ring is a field) to treat
the integral case (with an arbitrary base ring), developing a Supp-theoretic characterization for
the integrally closed case, and applying the above-mentioned characterization from Section 2
of when [R,S] is pinched at RS . The rest of the Introduction provides more details and some
background.

Following [26], we say that a ring extension R ⊆ S is a λ-extension if the set [R,S] is
linearly ordered by inclusion. Perhaps the two most familiar examples of a λ-extension R ⊆ S
are given by a valuation domain R with quotient field S (cf. [31, Theorems 64 and 65]) and
by a minimal ring extension (in the sense of [25]). For an arbitrary ring extension R ⊆ S, it
is clear that R ⊆ S is a λ-extension if and only if each of the following three conditions hold:
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R ⊆ RS is a λ-extension; RS ⊆ S is a λ-extension; and [R,S] is pinched at RS (in the sense that
[R,S] = [R,RS ]∪[RS , S]). Going significantly beyond this triviality, G. Picavet and M. Picavet-
L’Hermitte showed in [36, Proposition 5.3] that the second condition is equivalent to RS ⊆ S
being a Prüfer-Manis extension (in the sense of [32]). Our main purpose here is to deepen our
understanding of λ-extensions R ⊆ S by characterizing each of the above three conditions in
case R ⊆ S satisfies FCP. (Recall that a ring extension is said to satisfy FCP if, when [R,S]
is viewed as a poset under inclusion, each chain in [R,S] is finite. To motivate the partitioning
of this project in conjunction with the condition that [R,S] is pinched at RS , recall the result
[19, Theorem 3.13] that a ring extension R ⊆ S satisfies FCP if and only if both R ⊆ RS and
RS ⊆ S satisfy FCP.) The next three paragraphs summarize our work here. The first and second
of those paragraphs concern the third condition that was mentioned above, how our work on
that condition connects to the titular “Prüfer-closed” concept that is being introduced here, and
how the two main theorems in Section 2 serve to generalize many of the results of Ben Nasr and
Zeidi in [8] from the setting of integral domains to that of arbitrary (commutative) rings. The
following paragraph (after those two paragraphs) summarizes our work in Section 3 on the first
and second conditions, as well as where the reader can see how the individual pieces are put
together to characterize the λ-extensions satisfying FCP.

Section 2 is devoted to studying the ring extensions R ⊆ S such that [R,S] is pinched at
RS . (Earlier studies of these extensions appeared in [8] and [13]; we say more about how our
present work relates to those papers in the next paragraph.) Recall from [28, Theorem 1] and
[12] that an element s ∈ S is called primitive over R if s is a root of some polynomial in R[X]
whose coefficients generate the unit ideal of R (equivalently, if s is a root of some polynomial
in R[X] at least one of whose coefficients is 1); and that if each element of S is primitive over
R, then R ⊆ S is said to be a P-extension. If R is an integral domain with quotient field K,
then R ⊆ K is a P-extension if and only if the integral closure of R (in K) is a Prüfer domain
[28, Theorem 5]. In [32], Knebusch and Zhang introduced the following concept, which can be
considered as a relativization of the concept of a Prüfer ring. A ring extension R ⊆ S is called
a Prüfer extension if R ⊆ T is a flat epimorphism (in the category of commutative rings) for
each T ∈ [R,S]. Any Prüfer extension is integrally closed. It is noteworthy that a ring extension
R ⊆ S is a P-extension if and only if RS ⊆ S is a Prüfer extension: cf. [7, Corollary 1] or [37,
Theorem 2.3]. (This is a far-reaching generalization of the above-mentioned result of Gilmer
and Hoffmann [28, Theorem 5].) For an arbitrary ring extension R ⊆ S, it was proved in [32,
Theorem 5.2, page 47] that a ring extension R ⊆ S is a Prüfer extension if and only if (R,S)
is a normal pair. (Recall from [10] that if R ⊆ S are rings, then (R,S) is called a normal pair
if the ring extension T ⊆ S is integrally closed for each T ∈ [R,S]. Normal pairs have been
extensively studied: cf. [4, 7, 10, 22, 23, 30]. The above “noteworthy” result has the important
consequence that a ring extension R ⊆ S is integrally closed and a P-extension if and only if
(R,S) is a normal pair.) Recall also from [32] that any ring extension R ⊆ S has a maximum
Prüfer subextension R ⊆ R̃S , called the Prüfer hull of R in S. (Note that R̃S was denoted by
P (R,S) in [32].) We say that a ring extensionR ⊆ S is Prüfer-closed (or thatR is Prüfer-closed
in S) if R = R̃S . It is clear that any Prüfer extension is integrally closed; and it is easy to see that
any integral extension is Prüfer-closed (Proposition 2.1 (c)). However, even though there exist
distinct rings R ⊂ S such that R is both integrally closed in S and Prüfer-closed in S (Example
2.2), no such R ⊂ S can satisfy FCP (Proposition 2.1 (d)). Given that FCP ⇒ P-extension
(cf. Proposition 2.4), one may reasonably expect that assuming FCP would lead to a deeper
insight into Prüfer-closed extensions. In fact, Theorem 2.7 establishes a characterization of the
Prüfer-closed extensions R ⊆ S that makes use of the set MSupp(S/RS). Note that Theorem
2.7 generalizes a result of Ayache [3, Proposition 10]. The other main result in Section 2 is
Theorem 2.5: if R ⊆ S is a P-extension (which may or may not satisfy FCP), then J ⊂ S is a
Prüfer-closed extension for each ring J such that R ⊆ J ⊂ RS if and only if [R,S] is pinched at
RS .

By combining Theorems 2.5 and 2.7, we obtain five corollaries (2.9-2.13) that generalize
various results in [8] from integral domains to the ring-theoretic setting. In particular, note that
Corollary 2.9 generalizes the main result in [8], [8, Theorem 2.7]. The fact that some results in
[8] could be proved more generally by using other methods was already noted in [13, Theorem
2.1] and its applications. We focus here on generalizations of some of the results in [8] that were
not addressed in [13]. For further specifics in this regard, see Remark 2.14.
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The first seven results in Section 3 concern the integral λ-extensions (such as R ⊆ RS aris-
ing from an arbitrary λ-extension R ⊆ S). Several of these results produce characterizations,
especially in case the given ring extension satisfies FCP. Perhaps the most trenchant of those
characterizations is the one in Theorem 3.5 (d), for the following three reasons: it takes advan-
tage of the fact that wheneverR ⊂ S is an integral λ-extension satisfying FCP, the set Supp(S/R)
consists of a single element, which is necessarily some maximal ideal M of R; in it, there is a
natural role for the condition that [R,S] is pinched at R + RadS(MS); and (as is also true for
several of the other characterizations in the integral case) it builds upon the work of Gilbert [26,
Chapter 3] on the λ-extensions whose base ring is a field. Next, Section 3 turns to the integrally
closed λ-extensions (such as RS ⊆ S arising from an arbitrary λ-extension R ⊆ S). Recall that
[36, Proposition 5.3] developed the characterization that an integrally closed extension R ⊆ S is
a λ-extension if and only if R ⊆ S is a Prüfer-Manis extension. At the cost of assuming FCP,
Theorem 3.9 gives the following (to our minds, much more tractable) characterization: if R ⊂ S
is an integrally closed ring extension that satisfies FCP, then R ⊂ S is a λ-extension if and only
if SuppR(S/R) is linearly ordered by inclusion. Finally, note that the question of whether [R,S]
is pinched at RS is only nontrivial if R ⊂ RS ⊂ S. For that setting, provided that one also
assumes that R ⊆ S satisfies FCP, Corollary 3.11 characterizes when R ⊆ S is a λ-extension,
by using Theorem 3.5 (d) to handle R ⊆ RS , Theorem 3.9 to handle RS ⊆ S, and Theorems 2.5
and 2.7 to handle pinchedness of [R,S] at RS .

As usual, ⊂ denotes proper inclusion. While reading Corollaries 2.9-2.13, the reader may
find it useful to have a copy of [8] at hand. Any otherwise unexplained material or terminology
is standard, as in [27] and [31].

2 When [R,S] is pinched atRS

We begin with a result that collects some useful information.

Proposition 2.1. Let R ⊆ S be rings. Then:
(a) R̃S ∩RS = R.
(b) Assume, in addition, that R ⊆ S is a P-extension. Then R̃S is the maximum element in

{T ∈ [R,S] | T ∩RS = R}, and so, for each T ∈ [R,S] such that T ∩RS = R, one has T ⊆ R̃S .
(c) Assume, in addition, that S is integral over R. Then R is Prüfer-closed in S.
(d) Assume, in addition, that R is integrally closed in S, R ⊆ S satisfies FCP, and R 6= S.

Then R is not Prüfer-closed in S.
(e) Assume, in addition, that R = D +M and S = E +M , where D ⊆ E are integral

domains with quotient field K and M is the maximal ideal of a valuation domain V of the form
V = K +M . Then R̃S = D̃E +M . In particular, R is Prüfer-closed in S if and only if D is
Prüfer-closed in E.

Proof. (a) It is clear that R ⊆ R̃S ∩ RS . For the reverse inclusion, it suffices to prove that if
t ∈ R̃S ∩ RS , then t ∈ R. Consider T := R[t] ∈ [R, R̃S ]. As (R, R̃S) is a normal pair, R is
integrally closed in R̃S and, a fortiori, integrally closed in T . However, since T ∈ [R,RS ], T is
also integral over R. Hence T = R, and so t ∈ R, as desired.

(b) For each T ∈ [R,S], one has that T ∩ RS is integrally closed in T . Suppose now that
T ∈ [R,S] satisfies T ∩ RS = R. Then R is integrally closed in T and, since R ⊆ T inherits
the “P-extension” property from R ⊆ S, it now follows that (R, T ) is a normal pair. Hence, it
follows from the definition of R̃S that T ⊆ R̃S . In view of (a), this completes the proof of (b).

(c) Our task is to prove that R̃S = R. This, in turn, can be obtained as a consequence of
(a), since the assumption that S is integral over R can be restated as RS = S. As any integral
extension is a P-extension, an alternate proof of (c) is available by using the first assertion in (b).

(d) By [19, Theorem 6.3 (b)], the first two additional hypotheses in (c) ensure that (R,S) is a
normal pair. Hence R̃S = S, by the definition of R̃S . As R 6= S, we get R̃S 6= R, as desired.

(e) By a well known fact about the classical (D+M)-construction [6, Theorem 3.1], [R,S] =
{H + M | H ∈ [D,E]}. For any H ∈ [D,E], it follows from a result of Rhodes (cf. [32,
Proposition 5.8, page 52]) that (R,H+M) is a normal pair if and only if (R/M, (H+M)/M) is a
normal pair; that is, if and only if (D,H) is a normal pair. The maximumH+M (resp., maximal
H) satisfying these conditions is R̃S (resp., D̃E). The first assertion now follows immediately.
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The “In particular” assertion is then a consequence, since R is Prüfer-closed in S (resp., D is
Prüfer-closed in E) if and only if R̃S = R (resp., D̃E = D). The proof is complete.

The result in Proposition 2.1 (e) about the (D + M)-construction can be established for
some more general pullbacks. However, as Example 2.2 will illustrate, it will suffice to use
Proposition 2.1 (e) in order to show the necessity of assuming (something with the flavor of) the
FCP condition in many of the results in this paper.

Example 2.2. The assertion in Proposition 2.1 (d) would become false if one were to delete the
hypothesis that R ⊆ S satisfies FCP. In other words, there exist (distinct) rings R ⊂ S such
that R is integrally closed in S and R is Prüfer-closed in S. One way to produce such data is the
following. Take R := k+M and S := k[X] +M , where k is a field, X is an indeterminate over
k, and (V,M) is a valuation domain of the form V = k(X) +M . Moreover, if 0 ≤ d <∞, one
can arrange that V has (Krull) dimension d, so that the integral domain R also has dimension d.

Proof. Let 0 ≤ d <∞. It is well known that we can find a d-dimensional valuation domain of the
form V = k(X) +M (cf. [27, Corollary 18.5 and page 199]) and (since k is zero-dimensional)
that this forcesR := k+M to also be d-dimensional (cf. [27, Exercise 12 (4), page 203]). If A is
any integral domain and X is an indeterminate over A, an easy degree argument shows that A is
integrally closed in A[X]. In particular, k is integrally closed in k[X]. Hence (cf. [27, Example
11 (2), page 202]), R is integrally closed in S := k[X] +M . Of course, R ⊂ S. It remains only
to prove that R is Prüfer-closed in S. Hence, by Proposition 2.1 (e), it suffices to prove that k
is Prüfer-closed in k[X]. Our task then is to prove that if (k, T ) is a normal pair for some ring
T ∈ [k, k[X]], then T = k. For any such T , the “normal pair” condition ensures that k ⊆ T is a
P-extension. As k is a field, it follows that the extension k ⊆ T is algebraic and, hence, integral.
Therefore, since k is integrally closed in k[X], we get T = k. The proof is complete.

The next result begins our examination of connections between the “Prüfer-closed extension”
concept and the property that [R,S] is pinched at RS .

Proposition 2.3. Suppose that [R,S] = [R,RS ] ∪ [RS , S] for some given rings R ⊆ S. Then
J ⊂ S is a Prüfer-closed extension for each ring J ∈ [R,RS [.

Proof. Let J ∈ [R,RS [. Our task is to show that J = J̃S . If RS ⊆ J̃S , then (J,RS) would
inherit the “normal pair” property from (J, J̃S), so that the extension J ⊆ RS would be both
integrally closed and integral, whence J = RS , contrary to hypothesis. Therefore, since J̃S and
RS are assumed to be comparable under inclusion, we have (J ⊆) J̃S ⊂ RS . As the extension
J ⊆ J̃S is then both integrally closed and integral, J = J̃S .

Theorem 2.5 will present a partial converse of Proposition 2.3. First, we isolate a useful fact
that deserves to be more widely known.

Proposition 2.4. Let R ⊆ S be rings such that there exists a finite maximal chain R = R0 ⊂
· · · ⊂ Rn = S in [R,S]. (For instance, let R ⊆ S be a ring extension that satisfies FCP.) Then
R ⊆ S is a P-extension.

Proof. It was proven in [7, Theorem 2] (and can also be seen by combining [37, Corollary
3.3 and Theorem 2.3] with [12, Theorem]) that if both A ⊆ B and B ⊆ C are P-extensions,
then A ⊆ C is also a P-extension. Therefore, it will suffice to show that the minimal extension
Ri−1 ⊂ Ri satisfies FCP for each i = 1, . . . , n. Fix i. As all integral extensions are P-extensions,
we may assume, without loss of generality, that Ri−1 ⊂ Ri is an integrally closed extension.
Then (Ri−1, Ri) is a normal pair, and so Ri−1 ⊂ Ri is a P-extension.

Theorem 2.5. Let R ⊆ S be a P-extension. Then the following conditions are equivalent:
(1) [R,S] = [R,RS ] ∪ [RS , S];
(2) J ⊂ S is a Prüfer-closed extension for each ring J ∈ [R,RS [.
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Proof. (1)⇒ (2): Apply Proposition 2.3.
(2) ⇒ (1): Assume (2). We must show that if T ∈ [R,S], then T is comparable with RS

under inclusion. Consider J := T ∩RS ∈ [R,RS ]. If J = RS , then RS ⊆ T . Thus, without loss
of generality, J 6= RS . Then, by (2), J ⊂ S is a Prüfer-closed extension; that is, J = J̃S . Also,
since JS = RS , we have T ∩JS = J , and so J ⊆ T is an integrally closed extension. Moreover,
J ⊆ T inherits the P-extension property from R ⊂ S. Hence, (J, T ) is a normal pair. Therefore,
by the definition of J̃S , we have T ⊆ J̃S (= J ⊆ RS), and so T ⊆ RS . This completes the
proof.

Remark 2.6. For each integral domain R (with quotient field S) belonging to the class of rings
studied in [18, Theorem 3.4], we have that R ⊆ S is a P-extension (by a theorem of Davis, cf.
[27, Theorem 26.2 (a) ⇔ (d)], since the integral closure of R is a Prüfer domain), but neither
condition (1) nor condition (2) from Theorem 2.5 is satisfied by R ⊆ S. Indeed, for any such
R ⊆ S, there is only one ring W in [R,S] which is not comparable to RS under inclusion.
Moreover, R is the only element of [R,RS [. So, as Theorem 2.5 requires, R ⊂ S is not a Prüfer-
closed extension. One could verify this last fact directly because (R,W ) is a normal pair for any
such data (the point being that R ⊂ W is a minimal extension such that W ∩ RS = R). This
concludes the remark.

We pause to recall the definition of, and some background concerning, a concept that was
introduced in [25] by Ferrand and Olivier. A ring extension R ⊂ S is said to be minimal if
(R ⊂ S and) [R,S] = {R,S}. Any minimal (ring) extension must be either integrally closed or
integral. If R ⊂ S is a minimal extension, it follows from [25, Théorème 2.2 (i) and Lemme 1.3]
that there exists a (necessarily unique) maximal ideal M of R, called the crucial maximal ideal
of R ⊂ S, such that the canonical injective ring homomorphism RM → SM (:= SR\M ) can be
viewed as a minimal extension, while the canonical ring homomorphismRP → SP (:= SR\P ) is
an isomorphism for all prime ideals P ofR exceptM (cf. also [33, p. 37], [11]). If a minimal ring
extension R ⊂ S is integral, then M is precisely the conductor (R : S) := {x ∈ R | xS ⊆ R}
(by [25, Théorème 2.2 (ii)]). A minimal ring extension R ⊂ S is integrally closed if and only if
R ↪→ S is a flat epimorphism (in the category of commutative rings); also, if and only if R ⊂ S
is a Prüfer extension, in the sense of [32], that is, if and only if (R,S) is a normal pair.

It will be useful to note that if R ⊂ S has FCP, then any maximal (necessarily finite) chain
of R-subalgebras of S, R = R0 ⊂ R1 ⊂ ... ⊂ Rn−1 ⊂ Rn = S, results from juxtaposing n
minimal extensions Ri ⊂ Ri+1 (with 0 ≤ i ≤ n− 1).

The next theorem characterizes the Prüfer-closed extensions that satisfy FCP. This result
generalizes [3, Proposition 10].

Theorem 2.7. Let R ⊆ S be a ring extension that satisfies FCP. Then the following conditions
are equivalent:

(1) R ⊆ S is a Prüfer-closed extension;
(2) Either (i) R ⊆ S is an integral extension

or (ii) R ⊂ RS ⊂ S and (R : RS) ⊆ N for each N ∈ MSupp(S/RS).

Proof. Both (1) and (2) hold trivially if R = S, and so we can assume henceforth that R ⊂ S.
(1)⇒ (2): Assume (1). By parts (c) and (d) of Proposition 2.1, we can assume, without loss

of generality, that S is not integral over R (that is, RS ⊂ S) and R is not integrally closed in S
(that is, R ⊂ RS). It remains to show that (R : RS) ⊆ N for each N ∈ MSupp(S/RS).

Let N ∈ MSupp(S/RS). As RS ⊂ S satisfies FCP, it follows from [38, Lemma 1.8] that
there exists a ring T0 ∈ [RS , S] such that RS ⊂ T0 is a minimal extension with crucial maximal
ideal N . Moreover, this (minimal) extension is integrally closed, since (RS , S) is a normal pair
(by virtue of [19, Theorem 6.3 (b)]). On the other hand, since R ⊂ RS satisfies FCP, there exists
a (finite) maximal chain R = R0 ⊂ R1 ⊂ ... ⊂ Rn = RS of rings, for some positive integer n.
For each i ∈ {1, 2, ..., n}, Ri−1 ⊂ Ri is an integral minimal extension and so, by [25, Théorème
2.2], its crucial maximal ideal is Qi := (Ri−1 : Ri). It will be useful to note that (R : RS) ⊆ Qi

for each i.
By integrality,N∩Rn−1 is a maximal ideal ofRn−1. So, ifN∩Rn−1 ⊆ Qn, thenN∩Rn−1 =

Qn, whence Qn ⊆ N and (R : RS) ⊆ N , as desired. In the remaining case, N ∩ Rn−1 * Qn.



PRÜFER-CLOSED EXTENSIONS AND FCP λ-EXTENSIONS 367

Then the conditions of the crosswise exchange lemma [19, Lemma 2.7] apply, thus producing a
ring T1 ∈ [Rn−1, T0] such that Rn−1 ⊂ T1 is an integrally closed minimal extension with crucial
maximal ideal N ∩ Rn−1. In the subcase (N ∩ Rn−1) ∩ Rn−2 (= N ∩ Rn−2) ⊆ Qn−1, we
get N ∩ Rn−2 = Qn−1 (since integrality ensures that N ∩ Rn−2 is a maximal ideal of Rn−2),
whence Qn−1 ⊆ N and (R : RS) ⊆ N , as desired. Thus, we have reduced to the subcase where
N ∩ Rn−2 * Qn−1. By repeating the above reasoning, another application of [19, Lemma 2.7]
and [19, Theorem 6.3 (b)] produces a ring T2 ∈ [Rn−2, T1] such that Rn−2 ⊂ T2 is an integrally
closed minimal extension with crucial maximal ideal N ∩Rn−2.

If repeating the above “downward” process of argumentation has not led to a subcase with
the desired conclusion before the focus falls naturally on the extension R0 ⊂ R1, iteration does
eventually reduce to the subcase where N ∩R1 * Q1. Then [19, Lemma 2.7] and [19, Theorem
6.3 (b)] combine one final time, producing a ring Tn ∈ [R, Tn−1] such that R ⊂ Tn is an
integrally closed minimal extension. In particular, (R, Tn) is a normal pair, which contradicts
the hypothesis that R ⊂ S is a Prüfer-closed extension. Thus, some (earlier) point of the above
iterative reasoning produced an index j such that N ∩ Rj = Qj , with the consequence that
(R : RS) ⊆ (Qj ⊆) N .

(2) ⇒ (1): By Proposition 2.1 (c), we may assume that the condition (2) (ii) holds and our
task is to prove (1), that is, that R = R̃S . Suppose that the assertion fails. Then, since R ⊂ R̃S

satisfies FCP, [19, Corollary 3.2] guarantees that Supp(R̃S/R) is a finite nonempty set. As
SuppA(E) is stable under generalization for any module E over any ring A, MSupp(R̃S/R) is
also a finite nonempty set. Let M be one of its elements. We will show (two paragraphs hence)
that M does not contain (R : RS).

Since R ⊂ RS is an integral extension that satisfies FCP, [19, Theorem 4.2 (a)] guarantees
that the nonzero ringR/(R : RS) is Artinian. As this ring is also nonzero, it has Krull dimension
0 and its prime spectrum is finite and nonempty (cf. [2, Propositions 8.1 and 8.3]). So, for
some positive integer n, the set consisting of the prime (that is, the maximal) ideals of R that
contain (R : RS) can be denoted by {M1,M2, ...,Mn}. We claim that RMi = (R̃S)Mi for each
i ∈ {1, 2, ..., n}. Suppose that this claim fails for some (temporarily fixed) i. Note that RMi

⊂
(R̃S)Mi satisfies FCP and inherits the “integrally closed extension” property from R ⊂ R̃S .
Thus, (RMi , (R̃

S)Mi) is a normal pair by [19, Theorem 6.3 (b)]. It follows that there exists a
ring Ai in [RMi , (R̃

S)Mi
] such that RMi

⊂ Ai is an integrally closed minimal extension. On the
other hand, the (integral) ring extension RMi

⊂ (RS)Mi
also satisfies FCP. Thus, there exists

a ring Bi in [RMi , (RS)Mi ] such that RMi ⊂ Bi is an integral minimal extension. However,
since RMi

is quasi-local, it cannot be the base ring of both an integral minimal extension and an
integrally closed minimal extension that have the same crucial maximal ideal and are subrings of
some common “universal” ring extension (in the present instance, SMi

can play the role of such
a “universal” ring), by [38, Lemma 1.5]. This (desired) contradiction completes the proof of the
above claim.

For each i ∈ {1, 2, ..., n}, we have shown that RMi = (R̃S)Mi , and so Mi 6∈ Supp(R̃S/R).
Hence, M 6∈ {M1,M2, ...,Mn}. It follows that M does not contain (R : RS). (Two paragraphs
ago, we promised to prove this fact.) As R ⊂ RS is an integral extension, the Lying-over
Theorem (cf. [27, Theorem 11.5], [31, Theorem 44]) supplies a maximal ideal M ′ of RS that
lies overM . It is worth noticing that, becauseR ⊂ R̃S is an integrally closed extension satisfying
FCP, [19, Remark 6.14] ensures that Supp(R̃S/R) = {P ∈ Spec(R) | RP 6= (R̃S)P } = {P ∈
Spec(R) | PR̃S = R̃S}. (Although [19, Remark 6.14] included a hypothesis that the ambient
rings were integral domains, a sympathetic reading of its proof shows that the argument goes
through without the domain-theoretic hypothesis.) Hence, MR̃S = R̃S . It follows that MS = S
and, consequently, M ′S = S. Once again using [19, Remark 6.14] and the fact that RS ⊂ S is
an integrally closed extension satisfying FCP, we infer that M ′ ∈ Supp(S/RS). Hence, by (2)
(ii), (R : RS) ⊆M ′. Therefore,

(R : RS) = (R : RS) ∩R ⊆M ′ ∩R =M,

the desired contradiction. The proof is complete.
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Remark 2.8. (a) The implication (1) ⇒ (2) in Theorem 2.7 would become false if one were to
delete the hypothesis that R ⊆ S satisfies FCP. The easiest way to see this is to take R ⊆ S to
be the ring extension k +M ⊂ k[X] +M that was studied in Example 2.2. Consequently, by
Theorem 2.7, R ⊆ S does not satisfy FCP. This last fact can also be seen directly by using the
infinite strictly decreasing chain of rings {k[X2n

] +M | n ≥ 0}.
(b) The above proof of Theorem 2.7 included a proof of the following fact: if R ⊂ S is a

Prüfer-closed extension that satisfies FCP and is not integral, then R ⊂ RS . In case R is quasi-
local, this fact can also be gleaned from [35, Proposition 3.3]. We became aware of [35] after
the research for the present paper had been completed. This concludes the remark.

As a consequence of Theorems 2.5 and 2.7, we next generalize [8, Theorem 2.7].

Corollary 2.9. Let R ⊂ S be a ring extension that satisfies FCP and R ⊂ RS ⊂ S. Then the
following conditions are equivalent:

(1) [R,S] = [R,RS ] ∪ [RS , S];
(2) For each ring J ∈ [R,RS [ and each N ∈ MSupp(S/RS), one has (J : RS) ⊆ N ;
(3) For each ring J ∈ [R,RS [ such that J ⊂ RS is a minimal extension and for each

N ∈ MSupp(S/RS), one has (J : RS) ⊆ N .

Proof. The equivalence (1)⇔ (2) follows by combining Proposition 2.4 with Theorems 2.5 and
2.7, while the implication (2) ⇒ (3) is trivial. It remains to prove that (3) ⇒ (2). Assume (3)
and let J ∈ [R,RS [. As J ⊂ RS inherits FCP from R ⊂ S, there exists H ∈ [J,RS [ such
that H ⊂ RS is a minimal extension. Since (H : RS) is contained in each maximal element of
Supp(S/RS) by (3), it follows from (J : RS) ⊆ (H : RS) that (J : RS) is also contained in
each maximal element of Supp(S/RS).

The next result generalizes [8, Corollary 2.9].

Corollary 2.10. Let R ⊂ S be rings such that R ⊂ RS ⊂ S and R ⊂ S satisfies FCP. Then the
following conditions are equivalent:

(1) [R,S] \ {R} = [RS , S]; that is, RS is the (unique) minimum element of [R,S] \ {R};
(2) R ⊂ RS is a minimal extension and (R : RS) ⊆ N for each N ∈ MSupp(S/RS).

Proof. (1) ⇒ (2): Assume (1). Then [R,S] = {R} ∪ [RS , S]. Thus R ⊂ RS is a minimal
extension and [R,S] = [R,RS ] ∪ [RS , S]. Then for each N ∈ MSupp(S/RS), one gets (R :
RS) ⊆ N by applying Corollary 2.9 (with J := R).

(2)⇒ (1): This implication also follows from Corollary 2.9 since (2) ensures that [R,RS [=
{R}.

The next two corollaries generalize [8, Proposition 2.2] and [8, Corollary 2.3], respectively.
These two results were proved by Ben Nasr and Zeidi for integral domains using [8, Theorem
2.1], a result that determined the structure of the intermediate rings between R and S. The
statement of [8, Theorem 2.1] was markedly domain-theoretic. The same could be said of its
proof, which cannot be adapted to the more general ring-theoretic context. Next, we give a proof
that is much shorter and is valid for arbitrary rings.

Corollary 2.11. Let R ⊆ S be a ring extension satisfying FCP such that each ring in [R,RS [ is
quasi-local. Then [R,S] = [R,RS ] ∪ [RS , S].

Proof. Without loss of generality, we can assume that R ⊂ RS ⊂ S. By Corollary 2.9, it suffices
to show that for each J ∈ [R,RS [ such that J ⊂ RS is minimal, the conductor (J : RS) is
contained in eachN ∈ MSupp(S/RS). For any suchN , integrality ensures thatN∩J ∈ Max(J).
As J is assumed to be quasi-local, its maximal ideal must be (J : RS), as that is the crucial
maximal ideal of J ⊂ RS , by [25, Théorème 2.2]. Thus, (J : RS) = N ∩ J ⊆ N .
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Corollary 2.12. Let R ⊆ S be a ring extension satisfying FCP such that RS is quasi-local. Then
[R,S] = [R,RS ] ∪ [RS , S].

Proof. It follows from integrality (cf. [2, Theorem 5.10 and Corollary 5.8]) that each ring in
[R,RS [ inherits the“ quasi-local” property from RS . Hence the assertion is a special case of
Corollary 2.11.

We next generalize [8, Proposition 2.5]. While [8, Proposition 2.5] played the role of being a
basic result that led to the proof of [8, Theorem 2.7] in [8], we can now see that [8, Proposition
2.5] is, like [8, Theorem 2.7], just another easy consequence of Corollary 2.9.

Corollary 2.13. Let R ⊂ S be rings such that R ⊂ S satisfies FCP, R ⊂ RS ⊂ S, [R,S] =
[R,RS ] ∪ [RS , S] and RS ⊂ S is a minimal extension. Let N denote the crucial maximal ideal
of RS ⊂ S. Then (R : RS) ⊆ N ∩R.

Proof. As it is clear that MSupp(S/RS) = {N}, the assertion follows from the implication (1)
⇒ (2) in Corollary 2.9 (with J = R).

Remark 2.14. Corollary 2.13 has the following corollary. If R ⊂ S are rings such that both
R ⊂ RS and RS ⊂ S are minimal extensions, with respective crucial maximal ideals M and
N , and if [R,S] = [R,RS ] ∪ [RS , S], then M = N ∩ R. (Indeed, since [25, Théorème 2.2]
ensures that (R : RS) = M , it follows from Corollary 2.13 that M ⊆ N ∩ R and then equality
holds because M ∈ Max(R).) More is already known. In fact, [13, Theorem 2.1] can be restated
as follows. If R ⊂ S are rings such that both R ⊂ RS and RS ⊂ S are minimal extensions,
with respective crucial maximal ideals M and N , then: [R,S] = [R,RS ] ∪ [RS , S] if and only
if M = N ∩ R. Another equivalent condition that could be added to this result is that [R,S]
is linearly ordered by inclusion. This observation gives additional motivation for the study of
λ-extensions in the next section and, for the context of ring extensions that satisfy FCP, it will be
generalized in the final result of this paper.

3 Applications to the λ-extensions satisfying FCP

The definition of a λ-extension in [26] was motivated by the following two observations: any
minimal (ring) extension is a λ-extension, and any λ-extension is a ∆-extension (in the sense of
[29]). As we mentioned in the Introduction, λ-extensions were characterized in [36, Proposition
5.3] and our purpose in Section 3 is to give a deeper characterization of them for the case of ring
extensions that satisfy FCP.

Once again, we begin a section with a result that collects some useful information.

Proposition 3.1. Let R ⊆ S be a λ-extension. Then:
(a) R ⊆ S is a P-extension. Consequently, no element of S is transcendental over R.
(b) The following conditions are equivalent:

(1) There exists a finite maximal chain R = R0 ⊂ · · · ⊂ Rn = S in [R,S];
(2) R ⊆ S satisfies FCP.
Moreover, if the above (hypothesis and) equivalent conditions hold, then [R,S] = {Ri |

0 ≤ i ≤ n} and S = R[u] for some u ∈ S.
(c) Suppose, in addition, that R = K is a field (such that K ⊆ S is a λ-extension). Then S is

algebraic over K. Moreover, the above conditions (1) and (2) in (b) are also equivalent to the
following conditions:

(3) S is a finitely generated as a K-module;
(4) dimK(S) <∞.

Proof. (a) One way to prove the first assertion is to argue as in [26, page 1 and Lemma 1.1] by
noting that each λ-extension is a ∆-extension and then use the proof of [29, Lemma 3] to show
that any ∆-extension is a P-extension. (For an alternate (and simpler) proof that does not refer to
∆-extensions, use the “λ-extension” hypothesis to show that if u ∈ S, then either u2 ∈ R[u3] or
u3 ∈ R[u2], whence u is primitive over R.) The “‘Consequently” assertion follows because any
element that is primitive over R cannot be transcendental over R.
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(b) Regardless of whether R ⊆ S is a λ-extension, (2) ⇒ (1). Next, given that R ⊆ S is a
λ-extension and assuming (1), we see that if T ∈ [R,S], then T ∈ C := {Ri | 0 ≤ i ≤ n}, by
virtue of the maximality of C. This observation establishes the first of the “Moreover” assertions
and also completes the proof that (1)⇒ (2), since any subset of C is finite. To prove the second
of the “Moreover” assertions, we may adapt the proof of [26, Theorem 3.2, (b)⇒ (c)]. In detail,
one may assume, without loss of generality, that R ⊂ S, so that n ≥ 1; then any u ∈ S \ Rn−1
satisfies R[u] = S, since R[u] and Rn−1 are comparable under inclusion and Rn−1 ⊂ S is a
minimal extension.

(c) Since R = K is assumed to be a field, the first assertion follows from either of the
conclusions in (a). Hence S is integral over K. Thus (cf. [31, Theorem 17]), (3) is equivalent
to (3)′: S is finitely generated as a K-algebra. As we saw in (b) that (1) and (2) imply that
S = R[u] for some u ∈ S, it follows that (1) and (2) imply (3)′ (and hence that they imply (3)).
Of course, (3) ⇔ (4) by the theory of finite-dimensional vector spaces. Thus, it remains only
to show that (4) ⇒ (2). This, in turn, also follows from the theory of finite-dimensional vector
spaces. Indeed, if d := dimK(S) < ∞ and A0 ⊂ . . . ⊂ Am is a finite chain in [R,S], then
{dimK(Aj) | 0 ≤ j ≤ m} is a strictly increasing (finite) sequence of non-negative integers that
are each less than d+ 1, so that m+ 1 ≤ d+ 1 and m ≤ d. The proof is complete.

It seems natural to explore the extent to which the equivalences in Proposition 3.1 (c) may
have valid analogues in case the base ring R is not a field. However, since one of our purposes
here is to reduce the theory of λ-extensions that satisfy FCP to, insofar as possible, contexts hav-
ing a field as a base ring, we move at once to that context. Fortunately, Corollary 3.2 will provide
a considerable amount of information along those lines, thanks to copious citations from [26].
First, recall that if S is a (commutative) algebra over a ring R, then S is said to be decomposable
as an R-algebra if S is R-algebra isomorphic to a direct product

∏
i∈I Ai where each Ai is a

nonzero R-algebra and the index set I has cardinality at least 2; of course, if an R-algebra S is
not decomposable as an R-algebra, S is said to be indecomposable as an R-algebra. Also, recall
that a ring is said to be reduced if it has no nonzero nilpotent elements.

Corollary 3.2. Let K be a field and S a nonzero K-algebra. View K ⊆ S via the (injective,
unique) K-algebra homomorphism K → S. Then:

(a) If S is a field, then K ⊆ S is a λ-extension if (and only if) the set of fields contained
between K and S is linearly ordered by inclusion.

(b) S is decomposable as a K-algebra and K ⊆ S is a λ-extension if and only if S is K-
algebra isomorphic to K×L for some field extension L of K such that the set of fields contained
between K and L is linearly ordered by inclusion.

(c) Suppose that S is (nonzero and) indecomposable as a K-algebra and let J :=
√
S. Then

K ⊆ S is a λ-extension if and only if K ⊆ K + J is a λ-extension, K + J is comparable under
inclusion with each ring in [K,S], L := S/J is a field, and (when we view K ⊆ L) the set
of fields contained between K and L is linearly ordered by inclusion. Moreover, if the above
(hypotheses and) equivalent conditions hold, then each ring in [K,S] has a unique prime ideal,
each ring in [K + J, S] has J as its unique prime ideal, J is a principal nilpotent ideal of S of
nilpotency index r for some r ∈ {1, 2, 3} and K + J is K-algebra isomorphic to K[X]/(Xr)
with X an indeterminate over K. Finally, if the above (hypotheses and) equivalent conditions
hold and S is not a field, the field extension K ⊆ L is purely inseparable.

(d) Suppose that (K is a field and) K ⊆ S satisfies FCP and S is a reduced ring. Then
K ⊆ S is a λ-extension if and only if there exists a field extension L of K such that [L : K] <∞,
K ⊆ L is a λ-extension, and S is K-algebra isomorphic to either L or K × L.

Proof. (a) Since any λ-extension is a ∆-extension, the assertion follows from [29, Theorem 1].
An alternate proof of the assertion, which does not make use of the “∆-extension” concept, can
be found in [26, Proposition 3.17 (2)].

(b) It suffices to combine [26, Corollary 2.14 (b)] and (a).
(c) Since (K + J)/J ∼= K, the assignment E 7→ E/J induces an order isomorphism [K +

J, S] → [K,L]. Thus, K + J ⊆ S is a λ-extension if and only if K ⊆ L is a λ-extension.
It follows that K ⊆ S is a λ-extension if and only if K ⊆ K + J is a λ-extension, K + J is
comparable under inclusion with each ring in [K,S] and K ⊆ L is a λ-extension.
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Suppose first that K ⊆ S is a λ-extension. Then, by [26, Theorem 3.8 (2)], J is the unique
prime ideal of each ring in [K + J, S]. It follows that L is a field. In view of the preceding
paragraph, this completes the proof of the “only if” assertion.

To prove the “if” assertion, it suffices to combine (a) with the first paragraph of this proof.
All parts of the “Moreover” and “Finally” assertions now follow from what was established

in [26, Theorem 3.8].
(d) The “if” assertion follows by combining (a) and (b). For the converse, suppose that

K ⊆ S is a λ-extension. Since K ⊆ S satisfies FCP, Proposition 3.1 (c) gives dimK(S) < ∞.
Thus, by once again combining (a) and (b), we may assume, without loss of generality, that S
is an indecomposable K-algebra. Since S is assumed to be reduced, J :=

√
S = 0. Hence,

by yet another combination of (a) and (b), S is a field (identified with L := S/J). Finally,
[L : K] = dimK(S) <∞. The proof is complete.

Remark 3.3. (a) One cannot remove the hypothesis in the “Finally” assertion in Theorem 3.2
(c) that S is not a field. In other words, a field extension which is also a λ-extension need not
be purely inseparable. Examples of non-minimal field extensions that are also λ-extensions and
illustrate this fact are easy to find in any prime characteristic p > 0: cf. Fp ⊂ F

p(q
2) for any prime

number q. With some more effort, one can verify that Q ⊂ Q(21/4) provides such an example in
characteristic 0. We will meet these field extensions again in Remark 3.7 (b).

(b) As one may surmise from Corollary 3.2 (c), it remains an open question, for a field K,
to classify (up to K-algebra isomorphism) the K-algebras S that are indecomposable, but not
reduced, such that K ⊆ S is a λ-extension. As noted in Corollary 3.2 (c), much is known about
such rings S, including the fact that

√
S is the only prime ideal of S and

√
S is a principal

nilpotent ideal of S whose nilpotency index is either 2 or 3. Moreover, if K is a field and K ⊆ T
is a λ-extension, then each nilpotent element of T has nilpotency index at most 3 [26, Corollary
3.6]. The restriction in Corollary 3.2 (c) to reduced extension rings was made in order to obtain
the classification result there. In fact, if X is an indeterminate over a field K and n ≥ 1, then
K ⊆ K[X]/(Xn) is a λ-extension if and only if n ≤ 3 [26, Proposition 3.5]. This completes the
remark.

We turn next to characterizing the integral λ-extensions satisfying FCP in the general case,
that is, where the base ring may not be a field. The general procedure is summarized in Proposi-
tion 3.4 (which does not even need the “FCP” hypothesis).

Proposition 3.4. Let R ⊆ S be an integral ring extension, let M ∈ Max(R) and let J be an ideal
of S such that MS ⊆ J ⊂ S. Put A := R + J . Then R ⊆ S is a λ-extension if and only if the
following three conditions hold:

(i) [R,S] = [R,A] ∪ [A,S];
(ii) R ⊆ A is a λ-extension;
(iii) R/M ⊆ S/J is a λ-extension.

Proof. It will suffice to show that (iii) is equivalent to the condition that A ⊆ S is a λ-extension.
This, in turn, can be shown by reasoning as in the first paragraph of the proof of Corollary 3.2
(c). (In detail, combine the order-isomorphism [A,S] → [A/J, S/J ] with the ring isomorphism
A/J ∼= R/M .)

One may think that the most natural choice for J in Proposition 3.4 would be J = MS.
However, Theorem 3.5 (c) will indicate how Proposition 3.4 can be sharpened when one adds
the “FCP” hypothesis. We will show why a different choice of J (and a particular choice of M )
may be appropriate when one is given S as the result of juxtaposing a finite number of minimal
extensions whose smallest base ring is R.

Theorem 3.5. Let R ⊂ S be an integral ring extension with a finite maximal chain R = R0 ⊂
· · · ⊂ Rn = S in [R,S]. Then:

(a) If 1 ≤ i ≤ n, put Qi := (Ri−1 : Ri) and Mi := Qi ∩R. Then

SuppR(S/R) = MSuppR(S/R) = {Mi | 1 ≤ i ≤ n}
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and

RadR(
n∏

i=1

Mi) = RadR((R : S)) = ∩ni=1Mi.

(b) Assume that the (integral) extension R ⊂ S is a λ-extension and M ∈ Max(R). Then
there are at most two distinct prime (in fact, maximal) ideals of S that lie over M .

(c) Assume that the (integral) extension R ⊂ S is a λ-extension that satisfies FCP. Then
SuppR(S/R) = MSuppR(S/R) is the singleton set whose unique element is RadR((R : S)).

(d) Assume that the (integral) extension R ⊂ S satisfies FCP. Let M ∈ Max(R) and put
A := R+RadS(MS). Then R ⊂ S is a λ-extension if and only if the following three conditions
hold:

(i) [R,S] = [R,A] ∪ [A,S];
(ii) R ⊆ A is a λ-extension;
(iii) If M ∈ SuppR(S/R), there are at most two prime (maximal) ideals N of S that lie

over M , for at most one such N is it the case that R+N ⊂ S, and if there exists N ∈ Max(S)
such that R + N ⊂ S, then R/M ⊂ S/N is a (necessarily finite-dimensional) λ-extension of
fields.

Proof. (a) For each i, it follows from [25, Théorème 2.2 (ii)] that Qi is the crucial maximal ideal
of the minimal extension Ri−1 ⊂ Ri. Hence, by integrality, Mi is a maximal ideal of R. By [19,
Corollary 3.2], SuppR(S/R) = {Mi | 1 ≤ i ≤ n}. This proves the first assertion of (a). Also,
each Mi contains (R : S), since (R : S) ⊆ (Ri−1 : Ri). On the other hand, since QiRi ⊆ Ri−1,
we have

(
∏

1≤i≤n

Mi)S ⊆ (
∏

1≤i≤n

Qi)S ⊆ (
∏

1≤i≤n−1

Qi)Rn−1 ⊆

(
∏

1≤i≤n−2

Qi)Rn−2 ⊆ (
∏

1≤i≤n−3

Qi)Rn−3 ⊆ . . . ⊆ R.

Thus,
∏

1≤i≤nMi ⊆ (R : S) ⊆
⋂

1≤i≤nMi. We can use this fact and [2, Proposition 1.11 (ii)]
(which applies since each Mi is a prime ideal of R) to get the final assertion of (a).

(b) The parenthetical assertion is a standard consequence of integrality (cf. [2, Corollary
5.8]). If M 6∈ SuppR(S/R), then RM = SM and so there exists a unique prime (maximal) ideal
of S lying overM . Thus, without loss of generality, we may assume thatM ∈ SuppR(S/R) (that
is, M ∈ {Mi | 1 ≤ i ≤ n}). Since S is finitely generated as an R-module, there are only finitely
many prime (maximal) ideals of S that lie over M , say, N1, . . . , Nk for some integer k ≥ 1 (cf.
[9, Proposition 3, page 40], [2, Theorem 5.10]). Consider the ideal J := RadS(MS) = ∩kj=1Nj

and the ring A := R + J ∈ [R,S]. We have canonical R-algebra isomorphisms R/M → A/J

and S/J →
∏k

j=1 S/Nj (with the former holding because J ∩R =M and the latter coming via
the Chinese Remainder Theorem). By the order-isomorphism [A,S]→ [A/J, S/J ], A/J ⊆ S/J
inherits the “λ-extension” property from A ⊆ S, and so we may view the injective canonical
R-algebra homomorphism R/M →

∏k
j=1 S/Nj as a λ-extension R/M ⊆

∏k
j=1 S/Nj . Hence,

as R/M is a field, [26, Corollary 2.14 (a)] ensures that k ≤ 2.
(c) Since R ⊂ S is a λ-extension that satisfies FCP, it follows easily, by combining (a) with

[19, Corollary 3.2] and [38, Lemma 1.7], that SuppR(S/R) = MSuppR(S/R) is a singleton
set. Let M denote its unique element. It remains only to prove that M = RadR((R : S)). For
1 ≤ i ≤ n, let Mi be as in (a). Then Mi = M for all i. Hence, by (a), RadR((R : S)) =
∩ni=1Mi =M , as desired.

(d) We must show that the present condition (iii) is equivalent to what was called condition
(iii) in Proposition 3.4 (with J = RadS(MS)). Recall that condition (iii) of Proposition 3.4 can
be reformulated as stating that R/M ⊆ S/RadS(MS) is a λ-extension.

Suppose first that M 6∈ SuppR(S/R), that is, RM = SM . Then the unique prime (maximal)
ideal N of S lying over M is such that the residue fields S/N and R/M are isomorphic as R-
algebras. In fact, if we view the canonical R-algebra homomorphism R/M → S/RadS(MS) =
S/N as an inclusion, it is the identity map on R/M , in which case R/M ⊆ S/RadS(MS) is
trivially a λ-extension.

Suppose next that M ∈ SuppR(S/R). There are two subcases. In the first subcase, there ex-
ists a unique prime (maximal) idealN of S lying overM . In this subcase, S/RadS(MS) = S/N .
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By (b), there is only one other subcase, namely, where there are two distinct prime (maximal)
ideals, say N1 and N2, of S lying over M . Then, by the Chinese Remainder Theorem, we have
an R-algebra isomorphism

S/RadS(MS) = S/(N1 ∩N2) ∼= S/N1 × S/N2.

It remains only to explain why R/M ⊆ S/N1 × S/N2 being a λ-extension is (after possibly re-
labeling N1 and N2) equivalent to having R/M = S/N1 and R/M ⊆ S/N2 a finite-dimensional
λ-extension of fields. Thus, since R/M ⊆ S/RadS(MS) inherits the “FCP” property from
R ⊆ S, an appeal to Proposition 3.1 (c) and Corollary 3.2 (b) completes the proof.

Remark 3.6. It is clear from the proofs of Corollary 3.2 (c), Proposition 3.4 and Theorem 3.5 (d)
that the following conclusion holds. Let R ⊆ S be rings, J an ideal of S, and I := J ∩ R; then
R ⊆ S is a λ-extension if and only ifR ⊆ R+J is a λ-extension, [R,S] = [R,R+J ]∪ [R+J, S]
andR/I ⊆ S/J is a λ-extension. It is natural to ask why we chose to focus in Theorem 3.5 (d) on
an intermediate ring of the formR+RadS(MS), that is, on an ideal of the form J = RadS(MS)
for some M ∈ Max(R). The answer is that this focus permitted a characterization in Theorem
3.5 (d) which made effective use of what is known about such problems when the base ring is
a field. When we begin to move to the context of non-integral ring extensions in Theorem 3.9,
an entirely different kind of analysis will be needed. But the methodology discussed above will
return in Corollary 3.11, where it will be advantageous to use the natural intermediate ring in
[R,S], namely, RS . This completes the remark.

Remark 3.7 will complete our contributions to the study of the integral case for the λ-
extensions that satisfy FCP.

Remark 3.7. (a) This remark assumes familiarity with the inert/decomposed/ramified trichotomy
for the integral minimal extensions of a given base ring R (cf. [34, Theorem 3.3]). The point of
view in Theorem 3.5 leads naturally to the following question. If a ring extension R ⊂ S admits
a finite maximal chain R = R0 ⊂ · · · ⊂ Rn = S in [R,S], under what circumstances is R ⊂ S
a λ-extension? This question has been studied extensively in case n = 2, where the question is
equivalent to asking when [R,S] = {R,R1, S}. As the focus thus far in Section 3 has been on
certain integral extensions, let us summarize here in case n = 2, supposing that one knows only
that E1 : R ⊂ T and E2 : T ⊂ S are each integral minimal extensions with respective crucial
maximal ideals M and N . It was shown in [24, Proposition 3.1 (d)] that a necessary condition
for R ⊂ T to be a λ-extension is that N ∩ R = M . With this necessary condition also being
assumed, it turns out that there are only two contexts for which one can be certain that R ⊂ T is
a λ-extension: E2 is inert and E1 is either decomposed or ramified. This fact is included in [14,
Theorem 2.9 (a)].

Unfortunately, an error in [14, Theorem 2.8] led to condition (ix) of [24, Theorem 4.1] being
mishandled in [14, Theorem 2.9]. Condition (ix) is the stipulation that E1 is ramified, E2 is
decomposed and N ∩R =M . Part (b) of [14, Theorem 2.9] summarized the contexts for which
R ⊂ T is never a λ-extension; part (c) of [14, Theorem 2.9] summarized the contexts for which
some instances have R ⊂ T being a λ-extension and other instances have R ⊂ T not being a λ-
extension; and [14, Theorem 2.8] mistakenly classified condition (ix) into part (b) instead of part
(c). Thanks to an example provided by Picavet and Picavet-L’Hermitte, this error was rectified in
[15, Example], and results that classify up to isomorphism have been completed that are strong
enough to cover the situation where R is the prime subring of S (cf. [16, Corollaries 2.21 (c) and
3.6 (f)], [20, Corollaries 2.15 and 2.18 (c)], [21, Corollary 2.4 and 2.5 (f)], [17, Lemma 2.2 (b)]).

The flavor of some of the underlying work may be seen by considering the situation where R
is a field, say K, with E1 and E2 each being ramified. Up to isomorphism, it follows from [25,
Lemme 1.2] and[17, Lemma 2.2 (b)] that we can take T = K ×K (with K viewed inside T via
the diagonal embedding, a 7→ (a, a)) and S = K ×K ×K (with T viewed inside S by taking
the product of a diagonal map and the identity map on one of the copies of K). Then K ⊂ S
meets the stipulation of condition (xiii) of [24, Theorem 4.1] and, according to [14, Theorem
2.9] (as tempered by the above comments), condition (xiii) admits some examples that are λ-
extensions and other examples that are not λ-extensions. So, even in an example as apparently
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simple as this, the theory covering the general case instructs us to analyze further. Fortunately,
it is not difficult to give a direct argument showing that K ⊂ S is not a λ-extension. Indeed,
[K,S]\{K,S} contains at least (exactly, if K = F2) three pairwise distinct elements. These are,
respectively, the collection of all (a, b, c) ∈ S such that a = b (resp., such that a = c; resp., such
that b = c).

(b) By taking p = 2 = q in an example from Remark 3.3 (a), we see that F2 ⊂ F16 is a
non-minimal field extension which is also a λ-extension. Its only “properly intermediate” ring is
F4. One can describe this situation as in the first paragraph of (a), by takingE1 to be F2 ⊂ F4 and
E2 to be F4 ⊂ F16. The characteristic 0 example from Remark 3.3 (a) can be described similarly,
by taking E1 to be Q ⊂ Q(

√
2) and E2 to be Q(

√
2) ⊂ Q(21/4). Notice that in both examples,

E1 and E2 are inert (and, of course, their crucial maximal ideals satisfy N ∩ R = M , since N
and M are each 0). According to [14, Theorem 2.9 (c)](as tempered by the above comments),
there exist inert ring extensions A ⊂ B and B ⊂ C such that their crucial maximal ideals satisfy
N ∩A =M and A ⊂ C is not a λ-extension. Indeed, field-theoretic examples that illustrate this
fact are easy to find: consider the chains F2 ⊂ F4 ⊂ F64 and Q ⊂ Q(

√
2) ⊂ Q(

√
2,
√

3).
(c) As noted in (a), it was proved in [14] that if E2 is inert and E1 is either decomposed or

ramified, then the juxtaposition of E2 atop E1 produces a λ-extension. One such example, where
K ⊂ L is any minimal field extension, is given by the chain K ⊂ K ×K ⊂ K × L. The reader
is invited to similarly build many other examples by using some known inert, decomposed or
ramified extensions in conjunction with [14, Theorem 2.9]. This completes the remark.

Theorem 3.9 identifies the integrally closed λ-extensions that satisfy FCP. This result gener-
alizes [5, Corollary 2.7] and, in our opinion, improves upon [36, Proposition 5.2 (1)]. First, for
the sake of completeness, Lemma 3.8 isolates some facts about support that will be needed in
the proof of Theorem 3.9. Recall that if E is a (unital) module over a ring A, then SuppA(E) :=
{P ∈ Spec(A) | EP 6= 0}.

Lemma 3.8. (a) Let R be a ring, let P ⊆ M be prime ideals of R, and let E be an R-module.
Then P ∈ SuppR(E) if and only if PRM ∈ SuppRM

(EM ).
(b) Let A ⊆ B be rings and let P ⊆M be prime ideals of A. Then P ∈ SuppA(B/A) if and

only if PAM ∈ SuppAM
(BM/AM ).

Proof. (a) We must show that PRM ∈ SuppRM
(EM ) if and only if EP 6= 0. This, in turn,

follows since

(EM )PRM
= EM ⊗RM

(RM )PRM
∼= (E ⊗R RM )⊗RM

RP
∼=

E ⊗R RP
∼= ER\P =: EP .

(b) As BM/AM
∼= (B/A)M , an application of (a) (with R := A and E := B/A) completes

the proof.

Theorem 3.9. Let R ⊆ S be an integrally closed ring extension that satisfies FCP. Then the
following conditions are equivalent:
(1) SuppR(S/R) is linearly ordered by inclusion;
(2) R ⊆ S is a λ-extension.

Proof. If R = S, then both (1) and (2) hold trivially. Thus, we may henceforth assume, without
loss of generality, that R ⊂ S.

(1) ⇒ (2): Suppose that the implication fails. Then (1) holds, but there exist T,U ∈ [R,S]
such that T * U and U * T . As T * U , it follows via globalization that TM * UM for
some M ∈ Max(R). (As usual, if A ⊆ B are rings, with C ∈ [A,B] and P ∈ Spec(A), then
CP := CA\P and CP is identified with its image under the canonical injection CP −→ BP .)
Hence TM 6= RM , and so RM ⊂ TM ; a fortiori, RM ⊂ SM , that is, M ∈ SuppR(S/R).

Consider RM ⊂ SM . On general principles, [RM , SM ] = {CM | C ∈ [R,S]}. (In detail, one
inclusion is clear. For the reverse inclusion, if D ∈ [RM , SM ] and j : S −→ SM is the canonical
injection, then E := j−1(D) ∈ [R,S] and EM = D.) Thus, RM ⊆ SM inherits the FCP (and
FIP) properties from R ⊆ S; and, of course, RM is integrally closed in SM . Therefore, by
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[19, Corollary 6.4], [RM , SM ] is a finite set that is linearly ordered by inclusion. Consequently,
UM ⊂ TM . As U * T , it follows via globalization that UN * TN for some N ∈ Max(R).

Repeat the above reasoning, with RN ⊆ SN replacing RM ⊆ SM . The upshot is that
[RN , SN ] is a finite set that is linearly ordered by inclusion. Hence, TN ⊂ UN (since UN * TN ).
Thus, RN ⊂ UN ⊆ SN , and so N ∈ SuppR(S/R). As M and N are each maximal ideals of R
that are in SuppR(S/R), it follows from (1) that M = N . Since UM ⊂ TM and UN * TN , we
have the (desired) contradiction, thus completing the (indirect) proof that (1)⇒ (2).

(2) ⇒ (1): Assume (2). We will derive a contradiction from the condition that there exist
P,Q ∈ SuppR(S/R) such that P 6⊆ Q and Q 6⊆ P . As R ⊂ S, we can use the proof of [36,
Proposition 5.2 (2)] to conclude that MSuppR(S/R) consists of a single maximal ideal of R. Let
M denote the unique element of MSuppR(S/R).

We claim that we can replace R ⊆ S with RM ⊆ SM . To see this, note first that RM ⊆
SM inherits the “λ-extension” property from R ⊂ S. Next, it follows from Lemma 3.8 (a)
that PRM , QRM ∈ SuppRM

(SM/RM ). Of course, PRM and QRM are not comparable since
P and Q are not comparable. Next, it follows from Lemma 3.8 (b) and globalization that if
SuppRM

(SM/RM ) were linearly ordered by inclusion, then SuppR(S/R) would also be linearly
ordered by inclusion. This proves the above claim and so, by abus de langage, we can assume
henceforth that (R,M) is quasi-local.

As R ⊂ S satisfies FCP, we can pick a finite maximal chain R = R0 ⊂ ... ⊂ Rk ⊂ ... ⊂
Rn = S in [R,S]. Since [19, Theorem 6.3 (b)] ensures that (R,S) is a normal pair, Rk−1 ⊂ Rk

is an integrally closed minimal extension, for each k ∈ {1, ..., n}. For each such k, let Ck denote
the crucial maximal ideal of the minimal extension Rk−1 ⊂ Rk. As (Rk−1, Rk) is a normal pair
and R0 (= R) is quasi-local, it follows from [19, Theorem 6.8] (by induction on k) that each
Rk is quasi-local; Rk = (Rk−1)hk

for some prime ideal hk of Rk−1 such that hkRk = hk; and
Rk−1/hk is a valuation domain (necessarily with quotient field Rk/hk). By [25, Théorème 2.2],
Ck “blows up” in Rk (in the sense that CkRk = Rk) and every other prime ideal of Rk−1 is lain
over by exactly one prime ideal of Rk. So, for each k, there exists at most one pk (resp., at most
one qk) ∈ Spec(Rk) such that pk ∩ R = P (resp., such that qk ∩ R = Q). To show that P ⊆ Q
(resp., Q ⊆ P ), it will be enough to find k such that pk ⊆ qk (resp., qk ⊆ pk), as one would then
intersect with R to get the desired assertion, that is, the desired contradiction.

By [19, Corollary 3.2], P can be expressed as the intersection ofRwith some appropriate Ck.
Also, since P ∈ SuppR(S/R), it follows from [19, Remark 6.14] that P blows up in S = Rn,
and so there exists a unique index k1 such that 1 ≤ k1 ≤ n and pk1−1 blows up in Rk1 . Similarly,
there exists a unique index k2 such that 1 ≤ k2 ≤ n and qk2−1 blows up in Rk2 . For each index
k, as noted above, only one prime ideal of Rk−1 blows up in Rk. If k1 = k2, then pk1−1 = qk−1
and intersection with R would give P = Q, the desired contradiction. Therefore k1 6= k2.

Without loss of generality, k1 < k2. Put k := k1. Then pk−1 = Ck 6= qk−1 in Spec(Rk−1).
Recall that Rk = (Rk−1)hk

and hkRk = hk. It follows that hk is the unique maximal ideal of
Rk. We have that pk−1 blows up in Rk = (Rk−1)hk

and qk−1 does not blow up in Rk. Thus,
pk−1 * hk and qk−1 ⊆ hk.

We claim that hk is comparable under inclusion with each prime ideal p of Rk−1. We will
show that if p * hk, then hk ⊆ p. Pick a ∈ p \ hk. Then, working in Rk = (Rk−1)hk

, we see
that for each u ∈ hk,

u = (
u

a
)a = (

u

1
)(

1
a
)a ∈ hk(Rk−1)hk

a = hka ⊆ Rk−1a ⊆ p.

This proves the above claim.
Apply the above claim to p := pk−1. As pk−1 * hk, we get hk ⊆ pk−1. Since qk−1 ⊆ hk, it

follows that qk−1 ⊆ pk−1. As explained above, this leads to Q ⊆ P , the desired contradiction.
The proof is complete.

Remark 3.10. One cannot delete the “FCP” hypothesis in Theorem 3.9. Perhaps the easiest way
to see this is to let R be any quasi-local treed integral domain (that is, an integral domain such
that Spec(R) is linearly ordered by inclusion; for instance, a valuation domain) and let S be the
polynomial ring R[X] (for an indeterminate X over R). As noted in the proof of Example 2.2, R
is integrally closed in S. It is also clear that SuppR(S/R) is linearly ordered by inclusion, since it
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is a subset of Spec(R). However, [R,S] is not linearly ordered by inclusion: notice, for instance,
that R[X2] and R[X3] are incomparable under inclusion since X2 6∈ R[X3] and X3 6∈ R[X2].
Of course, one can verify directly that the ring extension R ⊂ S does not satisfy FCP, in view of
infinite decreasing chains such as {R[X(2n)] | n ≥ 0}. In fact, R ⊂ S is not even a P-extension.
This completes the remark.

In view of the earlier results in this section, our goal of characterizing the λ-extensions satis-
fying FCP will be accomplished if we do so for the FCP extensions that are neither integral nor
integrally closed. This is done in our final result.

Corollary 3.11. Let R ⊂ S be rings such that R ⊂ RS ⊂ S and R ⊂ S satisfies FCP. Then the
following conditions are equivalent:

(1) R ⊂ S is a λ-extension;
(2) R ⊂ RS is a λ-extension, [R,S] = [R,RS ] ∪ [RS , S] and RS ⊂ S is a λ-extension;
(3) Let M ∈ Max(R) and put E := R+ RadRS

(MRS). The following five conditions hold:
(i) [R,RS ] = [R,E] ∪ [E,RS ];
(ii) R ⊆ E is a λ-extension;
(iii) IfM ∈ SuppR(RS/R), there are at most two prime (maximal) idealsN ofRS that lie

overM , for at most one suchN is it the case thatR+N ⊂ RS , and if there existsN ∈ Max(RS)
such that R+N ⊂ RS , then R/M ⊂ RS/N is a (necessarily finite-dimensional) λ-extension of
fields;

(iv) J ⊂ S is a Prüfer-closed extension for each ring J ∈ [R,RS [;
(v) SuppRS

(S/RS) is linearly ordered by inclusion.
(4) Let M ∈ Max(R) and put E := R + RadRS

(MRS). The following five conditions
hold: conditions (i), (ii), (iii) and (v) from the above statement of (3), as well as the following
condition:

(iv)′ For each J ∈ [R,RS [ and for each N ∈ MSuppRS
(S/RS), one has (J : RS) ⊆ N .

Proof. It is easy to see that (1)⇔ (2). Then (2)⇔ (3) follows by combining Theorems 3.5 (d),
2.5 and 3.9; and (3)⇔ (4) by Theorem 2.7.

In closing, we point out four aspects of the characterization of R ⊂ S being a λ-extension (in
case R ⊂ RS ⊂ S and R ⊂ S satisfies FCP) that is provided by condition (4) in Corollary 3.11.
First, three of the five conditions that comprise condition (4) are Supp-theoretic (namely, (iii),
(iv)′ and (v)). Second, apart from its Supp-theoretic predication, (iii) is a condition that belongs
to field theory, specifically, the (as yet unfinished) characterization of the finite-dimensional
field extensions that are λ-extensions. Third, (ii) is a condition that shows the importance of
understanding the integral case of λ-extensions and moreover, (ii) is stated in terms of an integral
extension E of R that is often “smaller” than RS . Fourth, in view of the presence of condition
(i), it seems (to us) that any result in the spirit of Corollary 3.11 will need to include a stipulation
that (is equivalent to requiring that) the set of intermediate rings of some related ring extension
is pinched somewhere.
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