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Abstract The purpose of this paper is to study the commutativity of ring R with involution ∗
which admits pair of derivations satisfying certain algebraic identities. In fact certain well known
problems like Herstein problem and strong commutativity preserving problem have been studied
in the setting of pair of derivations in rings with involution. Finally, we give two examples to
prove that various restrictions imposed in the hypotheses of our results are not superfluous.

1 Introduction

Throughout this articleRwill represent an associative ring with center Z(R). We denote [x, y] =
xy − yx, the commutator of x and y and x ◦ y = xy + yx, the anti-commutator of x and y. A
ring is said to 2-torsion free if 2x = 0 (where x ∈ R) implies x = 0. A ring R is said to be prime
if aRb = (0) (where a, b ∈ R) implies either a = 0 or b = 0 and is called semiprime ring if
aRa = (0) (where a ∈ R) implies a = 0. An additive mapping ∗ : R→ R is called an involution
if ∗ is an anti-automorphism of order 2; that is, (x∗)∗ = x for all x ∈ R. An element x in a ring
with involution is said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of all
hermitian and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively.
A ring equipped with an involution is known as ring with involution or ∗-ring. The involution
is said to be of the first kind if Z(R) ⊆ H(R), otherwise it is said to be of the second kind. In
the later case, S(R) ∩ Z(R) 6= (0). If R is 2-torsion free then every x ∈ R can be uniquely
represented in the form 2x = h+ k, where h ∈ H(R) and k ∈ S(R). Note that in this case x is
normal i.e., xx∗ = x∗x, if and only if h and k commute. If all elements in R are normal, then R
is called a normal ring. An example is the ring of quaternions. A description of such rings can
be found in [14], where further references can be found.

A derivation on R is an additive mapping d : R→ R such that d(xy) = d(x)y + xd(y) for
all x, y ∈ R. A derivation d is said to be inner if there exists a ∈ R such that d(x) = ax − xa
for all x ∈ R. Over the last 30 years, several authors have investigated the relationship between
commutativity of the ring R and certain special types of maps on R. The first result in this
direction is due to Divinsky [13], who proved that a simple artinian ring is commutative if it has
a commuting non-trivial automorphism. Two years later, Posner [23] proved that the existence
of a nonzero centralizing derivation on a prime ring forces the ring to be commutative. Over the
last few decades, several authors have refined and extended these results in various directions
(see [4, 5, 6, 7, 10] where further references can be found).

In [15], Herstein proved that a prime ring R of characteristic not two with a nonzero
derivation d satisfying d(x)d(y) = d(y)d(x) for all x, y ∈ R, must be commutative. Further,
Daif [11] showed that a 2-torsion free semiprime ring R admitting a derivation d such that
d(x)d(y) = d(y)d(x) for all x, y ∈ I , where I is a nonzero ideal of R and d is nonzero on
I , then R contains a nonzero central ideal. Further this result was extended by many authors (viz
[4, 16], where further references can be found). The first aim of this paper is to continue this line
of study in the setting of rings with involution involving pair of derivations.

We say that a map f : R → R preserves commutativity if [f(x), f(y)] = 0 whenever
[x, y] = 0 for all x, y ∈ R. The study of commutativity preserving mappings has been an ac-
tive research area in matrix theory, operator theory and ring theory (see [9, 24] for references).
According to [8], let S be a subset ofR, a map f : R→ R is said to be strong commutativity pre-
serving (SCP) on S if [f(x), f(y)] = [x, y] for all x, y ∈ S. In [6], Bell and Daif investigated the
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commutativity in rings admitting a derivation which is SCP on a nonzero right ideal. Precisely,
they proved that if a semiprime ring R admits a derivation d satisfying [d(x), d(y)] = [x, y] for
all x, y in a right ideal I of R, then I ⊆ Z(R). In particular, R is commutative if I = R. Later,
Deng and Ashraf [12] proved that if there exists a derivation d of a semiprime ring R and a map
f : I → R defined on a nonzero ideal I of R such that [f(x), d(y)] = [x, y] for all x, y ∈ I , then
R contains a nonzero central ideal. In particular, they showed that R is commutative if I = R.
Recently, this result was extended to Lie ideals and symmetric elements of prime rings by Lin
and Liu in [19] and [20], respectively. Many related generalizations of these results can be found
in the literature (see for instance [10, 17, 18, 21, 22]).

Our purpose here is to continue this line of investigation by studying commutativity criteria
for rings with involution admitting pair of derivations satisfying certain algebraic identities and
some more identities have also been studied.

2 Main Results

In [1], it is proved that if R is a prime ring with involution of the second kind with a derivation
d such that [d(x), d(x∗)] = 0 for all x ∈ R, then R is commutative. In the present paper our aim
is to establish the generalized version of this result by considering pair of derivations.

Theorem 2.1. Let R be a prime ring with involution ∗ of the second kind such that char(R) 6= 2.
Let d1 and d2 be non-zero derivations of R such that [d1(x), d2(x∗)] = 0 for all x ∈ R. Then R
is commutative.

Proof. By the given assumption, we have

[d1(x), d2(x
∗)] = 0 (2.1)

for all x ∈ R. A linearization of (2.1) yields that

[d1(x), d2(y
∗)] + [d1(y), d2(x

∗)] = 0 (2.2)

for all x, y ∈ R. Replacing y by h′y in (2.2), where y ∈ R and h′ ∈ H(R) ∩ Z(R), We get

h′([d1(x), d2(y
∗)] + [d1(y), d2(x

∗)]) + d2(h
′)[d1(x), y

∗] + d1(h
′)[y, d2(x

∗)] = 0.

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). Using (2.2), we get

d2(h
′)[d1(x), y

∗] + d1(h
′)[y, d2(x

∗)] = 0 (2.3)

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). Replacing y by k′y in (2.3), where y ∈ R and
k′ ∈ S(R) ∩ Z(R), we have

−d2(h
′)[d1(x), y

∗k′] + d1(h
′)[k′y, d2(x

∗)] = 0.

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). This further implies that

−d2(h
′)k′[d1(x), y

∗] + d1(h
′)k′[y, d2(x

∗)] = 0. (2.4)

for all x, y ∈ R. Multiplying (2.3) by k′ and comparing with (2.4), we obtain

2d1(h
′)k′[y, d2(x

∗)] = 0 for all x, y ∈ R.

Since char (R) 6= 2 and S(R) ∩ Z(R) 6= (0), we have

d1(h
′)[y, d2(x

∗)] = 0 (2.5)

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). Using the primeness of R, we get d1(h′) = 0 for all
h′ ∈ H(R) ∩ Z(R) or [y, d2(x∗)] = 0 for all x, y ∈ R. Suppose [y, d2(x∗)] = 0 for all x, y ∈ R.
Replacing x by x∗ we get [y, d2(x)] = 0 for all x, y ∈ R. Thus in view Posner’s Result [23], R
is commutative. Now suppose d1(h′) = 0 for all h′ ∈ H(R) ∩ Z(R). This further implies that
0 = d1((k′)2) = 2d1(k′)k′. Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we have d1(k′) = 0
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for all k′ ∈ S(R) ∩ Z(R). Since every z ∈ Z(R) can be represented as 2z = h′ + k′ where
h′ ∈ H(R) ∩ Z(R) and k′ ∈ S(R) ∩ Z(R), we get d1(Z(R)) = (0). Now in view of (2.4), we
have

d2(h
′)k′[d1(x), y

∗] = 0

for all x, y ∈ R, h′ ∈ H(R) ∩ Z(R) and k′ ∈ S(R) ∩ Z(R). Using primeness, we get either
d2(h′) = 0 for all h′ ∈ H(R) ∩ Z(R) or [d1(x), y∗] = 0 for all x, y ∈ R. Replacing y by y∗,
we get [d1(x), y] for all x, y ∈ R. Again using Posner’s result [23], we get R is commutative.
Suppose d2(h′) = 0 for all h′ ∈ H(R) ∩ Z(R). This intern implies that d2(Z(R)) = (0).
Replacing y by −k′y in (2.2), we have

k′([d1(x), d2(y
∗)]− [d1(y), d2(x

∗)] = 0.

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R). Since S(R) ∩ Z(R) 6= (0), this further implies that by
the primeness of R

[d1(x), d2(y
∗)]− [d1(y), d2(x

∗)] = 0 (2.6)

for all x, y ∈ R. On Comparing (2.6) with (2.2), We get 2[d1(x), d2(y∗)] = 0 for all x, y ∈ R.
Hence [d1(x), d2(y)] = 0 for all x, y ∈ R. Using [3, Theorem 3.1] in the setting of m = n = 1,
we get R is commutative. 2

Corollary 2.2. [1, Theorem 3.1] Let R be a prime ring with involution ∗ of the second kind such
that char(R) 6= 2. Let d be a nonzero derivation of R such that [d(x), d(x∗)] = 0 for all x ∈ R.
Then R is commutative.

In view of our Theorem 2.1, we get a version of Herstein’s result for rings with involution.

Corollary 2.3. LetR be a prime ring with involution ∗ of the second kind such that char(R) 6= 2.
Let d be a nonzero derivation of R such that [d(x), d(y)] = 0 for all x, y ∈ R. Then R is
commutative.

Theorem 2.4. Let R be a prime ring with involution ∗ of the second kind such that charR 6= 2.
Let d1 and d2 be non-zero derivations of R such that

d1(x) ◦ d2(x
∗) = 0 for all x ∈ R.

Then R is commutative.

Proof. By the given assumption, we have

d1(x) ◦ d2(x
∗) = 0 for all x ∈ R.

This can be further written as

d1(x)d2(x
∗) + d2(x

∗)d1(x) = 0 for all x ∈ R. (2.7)

Replacing x by x+ y, we get

d1(x)d2(x
∗) + d1(x)d2(y

∗) + d1(y)d2(x
∗) + d1(y)d2(y

∗) + d2(x
∗)d1(x)

+d2(x
∗)d1(y) + d2(y

∗)d1(x) + d2(y
∗)d1(y) = 0 for all x, y ∈ R.

Using (2.7), we arrive at

d1(x)d2(y
∗) + d1(y)d2(x

∗) + d2(x
∗)d1(y) + d2(y

∗)d1(x) = 0 for all x, y ∈ R. (2.8)

Replace x by h′ in (2.7) where h′ ∈ H(R) ∩ Z(R). We get d1(h′)d2(h′) + d2(h′)d1(h′)
= 0. This implies 2d1(h′)d2(h′) = 0. Since char(R) 6= 2, we have d1(h′)d2(h′) = 0. Using
Primeness ofR, either d1(h′) = 0 or d2(h′) = 0 for all h′ ∈ H(R)∩Z(R). First consider the case
d1(h′) = 0 for all h′ ∈ H(R)∩Z(R). This intern implies that d1(Z(R)) = (0). Taking y = h′ in
(2.8), where h′ ∈ H(R)∩Z(R). We get 2d2(h′)d1(x) = 0 for all x ∈ R and h′ ∈ H(R)∩Z(R).
Since char(R) 6= 2, we get d2(h′)d1(x) = 0. Using the primeness, we get either d2(h′) = 0
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for all h′ ∈ H(R) ∩ Z(R) or d1(x) = 0 for all x ∈ R. But d1(x) 6= 0 by our assumption,
hence d2(h′) = 0 for all h′ ∈ H(R) ∩ Z(R). Hence d2(Z(R)) = (0). Similarly on considering
the case d2(h′) = 0 for all h′ ∈ H(R) ∩ Z(R), we get d2(Z(R)) = (0) and d1(Z(R)) = (0).
Thus in both cases we have d1(Z(R)) = (0) and d2(Z(R)) = (0). Replacing y by k′y where
k′ ∈ S(R) ∩ Z(R) in (2.8)

k′(−d1(x)d2(y)
∗ + d1(y)d2(x

∗) + d2(x
∗)d1(y)− d2(y)

∗d1(x)) = 0 for all x, y ∈ R.

Using the primeness of R and the fact that S(R) ∩ Z(R) 6= (0), we arrive at

−d1(x)d2(y)
∗ + d1(y)d2(x

∗) + d2(x
∗)d1(y)− d2(y)

∗d1(x) = 0 for all x, y ∈ R. (2.9)

On comparing (2.8) and (2.9), we get

2(d1(y)d2(x
∗) + d2(x

∗)d1(y)) = 0 for all x, y ∈ R.

Since the char(R) 6= 2, we obtain

d1(y)d2(x
∗) + d2(x

∗)d1(y) = 0 for all x, y ∈ R.

Replacing x by x∗, we get

d1(y)d2(x) + d2(x)d1(y) = 0 for all x, y ∈ R.

That is,
d1(y) ◦ d2(x) = 0 for all x, y ∈ R.

Hence in view of [3, Theorem 3.5], R is commutative. 2

Corollary 2.5. [1, Theorem 3.3] Let R be a prime ring with involution ∗ of the second kind such
that char(R) 6= 2. Let d be a nonzero derivation of R such that d(x) ◦ d(x∗) = 0 for all x ∈ R.
Then R is commutative.

Corollary 2.6. LetR be a prime ring with involution ∗ of the second kind such that char(R) 6= 2.
Let d be a nonzero derivation of R such that d(x) ◦ d(y) = 0 for all x, y ∈ R. Then R is
commutative.

Motivated by the notion of strong commutativity preserving derivation, in [2] author stud-
ied the more general concept by considering the identity [d(x), d(x∗)] = [x, x∗]. In fact they
proved that if R is a prime ring involution of the second kind and admits a nonzero derivation d
such that [d(x), d(x∗)] = [x, x∗] for all x ∈ R, then R must be commutative. In the following
theorem we study the more general case by considering pair of derivation.

Theorem 2.7. Let R be a prime ring with involution ∗ of the second kind and with char(R) 6= 2.
Let d1 and d2 be two nonzero derivations ofR, such that [d1(x), d2(x∗)] = ±[x, x∗] for all x ∈ R.
Then R is commutative.

Proof. First consider the case

[d1(x), d2(x
∗)] = [x, x∗] for all x ∈ R. (2.10)

A lineralization of (2.10) yields that

[d1(x), d2(y
∗)] + [d1(y), d2(x

∗)] = [x, y∗] + [y, x∗] for all x, y ∈ R. (2.11)

Replace y by h′y in (2.11), where h′ ∈ H(R) ∩ Z(R), we get

[d1(x), d2((h
′y)∗)] + [d1(h

′y), d2(x
∗)] = [x, (h′y)∗] + [h′y, x∗] (2.12)

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). On solving, we have

[d1(x), y
∗]d2(h

′) + [y, d2(x
∗)]d1(h

′)+ (2.13)
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h′([d1(x), d2(y
∗)] + [d1(y), d2(x

∗)]) = ([x, y∗] + [y, x∗])h′

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). Multiplying (2.11) by h′ and adding with (2.13), we
arrive at

[d1(x), y
∗]d2(h

′) + [y, d2(x
∗)]d1(h

′) = 0 (2.14)

for all x, y ∈ R and h′ ∈ H(R)∩Z(R). Now (2.14) is same as (2.3) and thus following the same
technique we get d1(Z(R) = (0) and d2(Z(R) = (0) . Now on replacing y by k′y in (2.11),
where k′ ∈ S(R) ∩ Z(R), we get

[d1(x), d2((k
′y)∗)] + [d1(k

′y), d2(x
∗)] = [x, (k′y)∗] + [k′y, x∗] (2.15)

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R). On solving, we have

−[d1(x), d2(y
∗)]k′ + k′[d1(y), d2(x

∗)] = −[x, y∗]k′ + k′[y, x∗] (2.16)

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R). Multiplying (2.11) by k′ and adding with (2.16), we
obtain 2k′[d1(y), d2(x∗)] = 2[y, x∗]. Since char(R) 6= 2 and using primeness of R we get
[d1(y), d2(x∗)] = [y, x∗] for all x, y ∈ R. Hence [d1(y), d2(x)] = [y, x] for all x, y ∈ R. Thus in
view of [12, Theorem 1], R is commutative.
Similarly we can prove the second case with some necessary variations. 2

Corollary 2.8. [2, Theorem 1] Let R be a prime ring with involution ∗ of the second kind such
that char(R) 6= 2. Let d be a nonzero derivation of R such that [d(x), d(x∗)] − [x, x∗] = 0 for
all x ∈ R. Then R is commutative.

Corollary 2.9. LetR be a prime ring with involution ∗ of the second kind such that char(R) 6= 2.
Let d be a nonzero derivation of R such that d(x)d(x∗) − xx∗ = 0 for all x ∈ R. Then R is
commutative.

Corollary 2.10. Let R be a prime ring with involution ∗ of the second kind such that char(R) 6=
2. Let d be a nonzero derivation of R such that [d(x), d(y)]− [x, y] = 0 for all x, y ∈ R. Then R
is commutative.

Theorem 2.11. LetR be a prime ring with involution ∗ of the second kind such that char(R) 6= 2.
Let d1 and d2 be nonzero derivations of R, such that d1(x) ◦ d2(x∗) = ±x ◦ x∗ for all x ∈ R.
Then R is commutative.

Proof. First we consider the case

d1(x) ◦ d2(x
∗) = x ◦ x∗ for all x ∈ R.

This can be further written as

d1(x)d2(x
∗) + d2(x)d1(x

∗) = xx∗ + x∗x for all x ∈ R. (2.17)

Replace x by x+ y in (2.17), where x, y ∈ R. we get

d1(x)d2(y
∗) + d1(y)d2(x

∗) + d2(x
∗)d1(y) + d2(y

∗)d1(x) = (2.18)

xy∗ + yx∗ + x∗y + y∗x for all x, y ∈ R.

Replacing y by h′y (where y ∈ R and h′ ∈ H(R) ∩ Z(R)) in (2.18) and using it, we have

(d1(x)y
∗ + y∗d1(x))d2(h

′) + d1(h
′)(yd2(x

∗) + d2(x
∗)y) = 0 (2.19)

for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R). Replacing y by k′y in (2.19) where y ∈ R and
k′ ∈ S(R) ∩ Z(R), we get

−d1(x)y
∗k′ − y∗k′d1(x)d2(h

′) + d1(h
′)(k′yd2(x

∗) + d2(x
∗)k′y) = 0 (2.20)
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for all x, y ∈ R, h′ ∈ H(R)∩Z(R) and k′ ∈ S(R)∩Z(R). Multiplying (2.19) by k′ and adding
with (2.20), we obtain

2d1(h
′)k′(yd2(x

∗) + d2(x
∗)y) = 0

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R) and h′ ∈ H(R) ∩ Z(R). Since char(R) 6= 2 this implies
that d1(h′)k′(yd2(x∗)+d2(x∗)y) = 0 for all x, y ∈ R, h′ ∈ H(R)∩Z(R) and k′ ∈ S(R)∩Z(R).
That is, d1(h′)k′(y ◦ d2(x∗)) = 0. Replacing x by x∗, we get d1(h′)k′(y ◦ d2(x)) = 0. By using
the primeness and the fact that S(R) ∩ Z(R) 6= (0), we get either d1(h′) = 0 or y ◦ d2(x) =
0. Consider y ◦ d2(x) = 0 for all x, y ∈ R. Replace y by yu, where u ∈ R, we obtain
y(u ◦ d2(x))− [y, d2(x)]u = 0 for all x, y, u ∈ R, implies that [y, d2(x)]u = 0 for all x, y, u ∈ R.
Taking u 6= 0 ∈ Z(R) and applying the primeness of R, since S(R) ∩ Z(R) 6= (0), implies that
[y, d2(x)] = 0 for all x, y ∈ R. Hence in view of Posner’s [23], we get R is commutative. Now
consider d1(h′) = 0 for all h′ ∈ H(R) ∩ Z(R). Hence

d1(z) = 0 for all z ∈ Z(R). (2.21)

Using (2.21) in (2.19), we get (d1(x) ◦ y∗)d2(h′) = 0 for all x, y ∈ R and h′ ∈ H(R) ∩ Z(R).
Replacing y by y∗ we arrive at (d1(x) ◦ y)d2(h′) = 0. Now using the primeness we have either
(d1(x) ◦ y) = 0 or d2(h′) = 0. Again d1(x) ◦ y = 0. Implies that either R is commutative or
d2(h′) = 0 for all h′ ∈ H(R) ∩ Z(R). Which intern implies that

d2(z) = 0 for all z ∈ Z(R). (2.22)

Substituting k′y for y in (2.18), where y ∈ R and k′ ∈ S(R) ∩ Z(R), we obtain

k′(−d1(x)d2(y
∗) + d1(y)d2(x

∗) + d2(x
∗)d1(y)− d2(y

∗)d1(x)) = (2.23)

(−xy∗ + yx∗ + x∗y − y∗x)k′ for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R).

Multiplying (2.18)by k′ and comparing with (2.23), we arrive at

k′(d1(y)d2(x
∗) + d2(x

∗)d1(y)− (yx∗ + x∗y)) = 0 (2.24)

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R). This can be further written as

k′(d1(y) ◦ d2(x
∗)− y ◦ x∗) = 0 (2.25)

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R). Replace x by x∗ and interchange x by y, we have

k′(d1(x) ◦ d2(y)− (x ◦ y)) = 0 (2.26)

for all x, y ∈ R and k′ ∈ S(R) ∩ Z(R). Since S(R) ∩ Z(R) 6= (0), we obtain

d1(x) ◦ d2(y) = (x ◦ y) for all x, y ∈ R (2.27)

Taking y 6= 0 ∈ Z(R), we have xy = 0 for all x ∈ R and y ∈ Z(R), and thus x = 0 for all
x ∈ R, which is a contradiction. Hence, we conclude that R is commutative.
Similarly we can prove the second case with some necessary variations. 2

Corollary 2.12. [2, Theorem 2] Let R be a prime ring with involution ∗ of the second kind such
that char(R) 6= 2. Let d be a nonzero derivation of R such that d(x) ◦ d(x∗)− x ◦ x∗ = 0 for all
x ∈ R. Then R is commutative.

Corollary 2.13. Let R be a prime ring with involution ∗ of the second kind such that char(R) 6=
2. Let d be a nonzero derivation of R such that d(x) ◦ d(y)− x ◦ y = 0 for all x, y ∈ R. Then R
is commutative.

Remark 2.14. Following the proofs of our main results we see that if R is assumed to be a non
commutative ring, then d1(Z(R)) = (0) and d2(Z(R)) = (0).

At the end, let us write an example which shows that the restriction of the second kind
involution in Theorem 2.1 and Theorem 2.7 is not superfluous.
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Example 2.15. Let R =

{(
a1 a2

a3 a4

)∣∣∣ a1, a2, a3, a4 ∈ Z
}
. Of course R with matrix addi-

tion and matrix multiplication is a non commutative prime ring. Define mappings d1, d2 :

R −→ R and ∗ : R −→ R such that d1

(
a1 a2

a3 a4

)
=

(
0 −a2

a3 0

)
, d2

(
a1 a2

a3 a4

)
=(

0 a2

−a3 0

)
,

(
a1 a2

a3 a4

)∗
=

(
a4 −a2

−a3 a1

)
. Obviously, Z(R) =

{(
a1 0
0 a1

)∣∣∣ a1 ∈ Z
}
.

Then x∗ = x for all x ∈ Z(R), and hence Z(R) ⊆ H(R), which shows that the involution ∗ is
of the first kind. Moreover, d1, d2 are nonzero derivations and the following conditions hold
[d1(x), d2(x∗)] = 0 and [d1(x), d2(x∗)] = ±[x, x∗] for all x ∈ R. However, R is not commu-
tative. Hence, the hypothesis of second kind involution is crucial in Theorem 2.1 and Theorem
2.7.

We conclude the manuscript with the following example which reveals that Theorem 2.1
and Theorem 2.7 cannot be extended to semiprime rings.

Example 2.16. Let S = R × C, where R is same as in Example 2.15 with involution ∗ and
derivations d1 and d2 same as in Example 2.15, C is the ring of complex numbers with conjugate
involution τ . Thus, S is a non commutative semiprime ring with char(R) 6= 2. Now define
an involution α on S, as (x, y)α = (x∗, yτ ). Clearly, α is an involution of the second kind.
Further, we define the mappings d1 and d2 from S to S such that D1(x, y) = (d1(x), 0) and
D2(x, y) = (d2(x), 0) for all (x, y) ∈ S. It can be easily checked that D1 and D2 are derivations
on S and satisfying the identities of the Theorem 2.1 and Theorem 2.7 but S is not commutative.
Hence, in our theorems, the hypothesis of primeness is essential.
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