Palestine Journal of Mathematics

Vol. 11(3)(2022) , 39-47 © Palestine Polytechnic University-PPU 2022

THE FEKETE-SZEGO PROBLEM FOR A GENERALIZED
CLASS OF ANALYTIC FUNCTIONS OF COMPLEX ORDER
ASSOCIATED WITH ¢—CALCULUS

Halit Orhan, Saurabh Porwal and Nanjundan Magesh
Communicated by R. K. Raina

MSC 2010 Classifications: 30C45.

Keywords and phrases: Analytic function, the Saldgean derivative g—calculus, Fekete-Szego problem.

Abstract In the present investigation, by using the concept of convolution and g—calculus,
we define a certain g—derivative operator for analytic functions in the open unit disk. We obtain
bounds for the Fekete-Szegd functional |a3 — na3| for new subclasses of analytic functions of
complex order by using this operator. Relevant connections of the results are briefly indicated
for these subclasses.

1 Introduction

Let o/ represent the class of functions f of the form
f2) =24 apz", (1.1)
K=2

which are analytic in the open unit disk A = {z : z € C and |z| < 1} and satisfy the
normalization condition f(0) = f’(0) — 1 = 0. Further, we represent by .& the subclass of &/
consisting of functions f of the form (1.1) which are also univalent in A.

A function f € & is said to be in the class . (s, \), if it satisfy the condition

1 ( 2f'(2)
¢ \Azf"(z) + (1 -

Similarly, a function f € o is said to be in the class € (s, A), if it satisfy the condition

§R<1+ )\)f(z)_l)>>0’ 0<A<l, ¢eC\{0}, z€A.

R (Fahpm )70 0sacLceeio, e

It is worthy to note that
(i) Z(s, 0) = .#(c) studied by Nasar and Aouf [12]
(ii) €(s, 0) = Z(s) studied by Wiatrowski [21].
(i) (1, A) = L()) studied by Altintas and Owa [4].
(iv) € (1, ) = €()) studied by Altintas and Owa [4].
(v) (1, 0) = * studied by Robertson [17].
(vi) €(1, 0) = ¥ studied by Robertson and Silverman [19].

The convolution (or Hadamard product) of two functions f(z) of the form (1.1) and g(z) =

2+ Z b,.2" is defined by
k=2

Fra)) =zt anbez = (g% F)(2) (12)
K=2
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In 1981, Saldgean [18] introduced the Séldgean derivative operator 2™ for functions f of the
form (1.1) as

P°f(2) = f(2), 2 f(z) =2f"(2), -+ and
P"f(z) = 2" 1 (2f(2)), neN={l1,23,---}.

Also, we note that
P"f(z) =2+ K'axz",  neNg=NU{0}={0,1,2,3 -}
k=2

In 1986, Owa et al. [14] gave important some results related with certain subclass of analytic
functions introduced by Salagean.
Now, let the function

z

1 Yo -
fl,(z):/< —|—r> 1_T2dr:z+ng,€(1/)z“, v>0, z€A,
0 k=2

1—7r

where |
e(v) =v and p3(v) = §(ZV2 +1).

It is worthy to note that for v < 1, the function z f/ (z) is starlike with two slits. Moreover, since
z fl’(z) is the Koebe function, all functions f, for 0 < v < 1 are univalent and convex. For
detailed study of the function f,, one may refer Trimble [20].

Now, we consider the function

F)=1f,:)«2"f(z) =2+ Z@H(V)ﬁ”anz“, v>0, z€A (1.3)
k=2

Recently, it has come to know that the concept of g—calculus is widely used in geometric
function theory. The concept of g—calculus were initially introduced by Jackson [8, 9] and
Purohit and Raina [16]. The g—number for x € N defined by

1—g"
Mq:l—q’ 0<g<l,

[r]4 can also be represented as geometric series in the following way

[Klg=>_d, lim : [k],=——  and lim : [x], = . (1.4)

K—00 1— q q—1

The g-derivative operator Z, of a function f € . is defined as

Daf (2) =1+ [slgaez""". (1.5)
k=2
For a function f € ., it can be easily seen that
_ f(z) — flez)
Dqf(2) = (BT q#1, 2#0 (1.6)

and (2,1)(0) = f'(0). If we take the function h(z) = 2", then the g—derivative of h(z) is
defined as

Dyh(z) = Dg2" = z = [n]qz’“*l.

Then
lim Z,h(2) = lim[k],2" " = k2" = W (2),
q—1 q—1
where A’ is the ordinary derivative.
By using subordination, we define g-analogue of the subclasses . (¢, A) and € (s, ).
Let x be an analytic function with positive real part in A with x(0) = 1, x/(0) > 1.
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Definition 1.1.Let 0 < A < 1, € C\ {0}, » > 0and n > 0. Also, let f € o/. We say that f
belongs to the class .72 s, x), if

14 1 29D, F ()

S ()\z@q}'(z) F(1-NF(k) 1> =< x(2),

where F(z) is defined by (1.3).

(1.7)

Definition 1.2. Let 0 < A < 1,¢ € C\ {0}, » > 0and n > 0. Also, let f € o/. We say that f

belongs to the class € ) (<, x), if

1 /(1 =X (Z2,(2F'(2)) = F'(2))
I+ < APy (2F'(2)) + (1 — \)F'(z)

) <o) (18)

where F(z) is defined by (1.3).

If we take

in Definitions 1.1 and 1.2, we have

142
v, A . v, A
x:,, q <<> T yn, q <§ )

T1—z

{rea (ol (G re ) o 0o

and

y y 142z
a @ = (s )

z

~{rew (et (SattTigeg) o 0w

It is worth mentioning that for A = 0 and ¢ — 1, the classes . 2 (<, ), €2 2(<, x)» L% (<)
and 67 7 (<) were studied by first author with Raducanu [13].
In 1933, Fekete and Szegd [6] found the maximum value of the coefficient functional

P, (f) = las — na3|

over the class . of univalent functions in A given by (1.1). By applying the Loewner method,
they proved that

L+2exp(22), 0<n<l

fes 1, n=1.

max @, (f) = {

The inequality is sharp for each € [0, 1]. The problem of finding the maximum of ®,,(f)
for various subclasses of analytic functions f € A with complex or real parameter 7, is known
as the Fekete-Szego problem. Noteworthy contribution in this direction may be found in [1, 2,
3,5,7,10, 13, 15].

In this paper, motivated with the above mentioned work, we consider the Fekete-Szegt prob-
lem for the classes .7 s, X), €7 2(s, x), % 2 (s) and €2 M<).

2 The Fekete-Szego Results

Let B denote the class of all analytic functions w(z) in A with w(0) = 0 and |w(z)| < 1, z € A.
A function f is said to be subordinate to a function g, denoted by f < g, if there exists w € B
such that f(z) = g(w(2)), z € A.

First, in order to prove our results, we recall the following two lemmas.
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Lemma 2.1. [11] Let w(2) = wiz+wa2*+- - - be in the class B. Then, for any complex number
s
|wy — sw?| < max{1; |s|}. 2.1

The result is sharp for the function w(z) = 2% or w(z) = .

Lemma 2.2. [2] Let w(z) = w2 + wy2? + - - - be in the class B. Then,

-5 :s<-1
lwy —sw} << 1 : —-1<s<1 (2.2)
s s> 1.

For s < —1 or s > 1, equality holds if and only if w(z) = z or one of its rotations. For
—1 < s < 1, equality holds if and only if w(z) = z* or one of its rotations. Equality holds for
s = —1 if and only if

E+z
= <€E<1
we) =il 0ses

or one of its rotations, while for s = 1, equality holds if and only if

2 gce<

w(z):—z1+£z, <

or one of its rotations.

In our first theorem, we find the bound for the coefficient functional ®@,,(f) = |a3 —na3|, with
complex 7 for the function class 7% (s, x).

Theorem 2.3. Let 0 < A < 1,5 € C\{0},v > 0andn > 0. Also, let x(z) = 1+x12+x22>+ -,
x1 > 0. If f of the form (1.1) is in the class Yr’{;;‘(g, X), then

sIx
S = Naw .
‘CL3| < ‘§|X1 max{l, ﬂgxl + XZ‘} (24)
3 (1 = N)g(1 + ) (202 + 1) (1-M\)q 1
and forn € C
n—I1 2
s[x1 max 4 1, —iﬁ——1+qA—3 2"+ D)(1 +4q)n gL
laz —na3| < (1-XNg 22ny2 X1 25)
3= Naz|l > 377,71(1 _ )\)q(l +q)(2zx2+ 1) . .
Inequalities hold if
29, F(z)
NG F) + (- NFEE @
or ,
z q]:(z) =1 —I—([X(Zz) . 1]’

N2 Dy F(z) + (1 — AN F(2)
where F(z) is given by (1.3).

Proof. If f € .7 (s, x) then, there exists an analytic function w(z) = wiz + wyz* +--- in B

such that | 7, 7(2)
1 2DgF (= B _
1+g<Am%f@H41mfu) Q X

From the definition of F(z) given in (1.3), we have

(w(z)), z €A (2.6)

F(2) =2+ A% + A3 4,

where
Ay =2"vay, As = 3”71(21/2 -+ 1)&3. 2.7
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Since
2947 (2)
\2 9, }'( )+ (1 -XN)F(2)
= 1+ (1= {[2]g 1} Az
F (=2 {Blg = 1145 = (ARl + (1 =N} (1= M) {[2]g - 1} 43) 22
4+,

But, 2], = 1+ ¢, [3], = 1 + ¢ + ¢*. Then we have
Az%fé)@fz(ﬁ 57 =t (1= M\)gArz + (1= N)q (14 q)As — (1 +g\)A3) 2> +
and

x(w(z)) =1+ xiwiz + (aws + xawi)z> + -
From (2.6) we have

SX1W1
Ay =
2T (1= Mg
X (1+q)) X2\ >
Ay = ——F—— — - . 2.
Using (2.7), we have
[s[xi1[w] l<Ix1
= <
2l = A= N2 S T Naw
and
[<Ix1 ’ 1+gA X2 2‘
= -1 — = . 2.
= T )3 @ £ 1) |2 TED YA 29)
The inequality (2.4) follows by an application of Lemma 2.1 with
1+ g ox X2
_ .
(1-Ng™ xi
Now,
— 3120 + 1)(1 +
i {w2 B {(1 _Qf\l) <1 o ( sznyz)( q)n> _ Xﬂ w%}
—nad = 4 Xl . (2.10)

3n=1(1 — N)g(1 +q)(2v2 + 1)
Applying Lemma 2.1 with

SX1 2+ 1)(1+4q) | xe
’ (1- A)q( Ta 22ny? ) xi’
we obtain inequality (2.8). Thus, the proof is completed. O

In the next theorem, we consider Fekete-Szegd problem for the class .7 (;\ (s, x) forn e R.

Theorem 2.4. Let 0 < A < 1,6 > 0, v>0andn > 0. Let x(z) = 1 + x12 + x22> + - - -,
X1 > 0,x2 € R. If a function f, given by (1.1) belongs to the class /" (s, x), then forn € R

n,q

3n—1 2 2+1 +1
o =X (1o, (V2 2)(q )) X2
(1 —X)gq 22ny X1 ifn<
31— Ng(1+q)(202 + 1) =M
2 SX1 . < <
laz — na3| < 3n—1(1_)\)q(1+q)(2yz+1) if pp<n<m
37122 4+ 1)(1
con | =X (g - (V2+2)( +t9)) ,xe
(1-=XNgq 22ny X1 .
3n=1(1 = Ng(1+¢q)(202 + 1) = P2

2.11)
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where -
27y (1-X)q (Xz )}
P 3%-1(2u2+1)(1+q)[ 1 o\
and a s
27y (1-X)q (Xz ﬂ
= I+gh+ —22 (2= 41 ).
P2 3122y (1 +q) [ 1 X1\

For each n there exists a function in 7 q>‘( X) such that equality holds.

Proof. If
—SX1 312024+ 1)(1+4q)\  x2
—=—(14+qgr— — =<1
(I=Ng ( Farm 222 Xt~
then
1—A
2212 {1 + g\ + u (X2 _ 1>}
SX1 X1
< < .
7= 31202+ 1)(1 + q) (= p1)
Making use of (2.10) and Lemma 2.2, we have
31202 4+ 1) %
Cndd < X1 ]—p— =" X2y
|a’3 na’z‘ — 371,71(41/2 +2) [gxl( TI 22774711/2 )+ Xl}

n—1 2
- s l+q>\—3 (2v —|—l)(1—|—q)77 X2
‘a _mz‘ - (1-A)g 22 X1
3R = (1= A)g(1 +q)3n=1(22 + 1)

for -
—SX1 3" (2% + 1) X2
1< ——(14+g\—n——7p—>(1 -2 <
= _)\)q< TAA =553 (1+q) W
we have
22ny? (1 X2
1+ g\ S |
3n1<2u2+1><1+q>{ M= ( ﬂ
222 (1-XNq (x2
<p< 1+ g\ 1 <p<
== )1+ ){ Tt (x + )] (pr=m=p)

and (2.10) together with Lemma 2.2 yield

jay —na3] < 2d .
= 3011 = Ng(1 + q)(2v2 + 1)
Finally, if
—<X 3122 4+ 1) X2
_XL (g S N | X2 5
o (e g e ) -
then b o
27y (a—Ng (Xz ﬂ
> L4 gh+ 2 VE (A2 4 > ).
”—3n—1(2u2+1)(1+q)[ L s (0= p2)

It follows from (2.10) and Lemma 2.2 that

—SX1 SX1 3n-l (2V2 + 1)(] + q) X2
|a3 77a2| = 3n- 1(1 — )\)q(l +q)(21/2 ¥ 1) |:(1 — )\)q (1 +C,I/\ n 22n,2 + » .

The sharpness of the result follows from the sharpness of inequalities in Lemma 2.2. The proof
of our theorem is completed. O

If we take x(z) = ® in Theorem 2.3 and Theorem 2.4, we obtain the following results.
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Corollary 2.5. Let 0 < A < 1,c € C\ {0}, v > 0and n > 0. If f of the form (1.1) is in the class
S M), then

<]

<

jaa] < 2711 — X)qv
2c| 2¢(1+¢qN)

< L, | —————+1

o = s e ™ U
and forn € C
n—1 2
2|¢| max < 1, 2 l—l—q)\f3 (2v”+ )(1 +a)n +1
) (1—=XNgq 22ny2
a3 — naz| <

3n=1(1 = A)g(1 +q) (22 + 1)
The inequalities are sharp.

Corollary 2.6. Let 0 < A < 1,¢ > 0,v > 0and n > 0. If a function f, given by (1.1) belongs to
the class .7 (<), then forn € R

26 3202+ 1) (g + 1)
2 [ (1 - 2

3n=H1 = N)g(1+q) (202 + 1)

ifn<p3

— 2§—|— 'fp <n<
7
3n 1(1 )\)Q(l q)(2u2+1) 37> P4

las — na3| <

2¢ 3"‘1(2V2+ 1)(1+q)
—-2¢ [(1 ~ Vg <1 +qg\—1n 20,2 +1

311 = Ng(1+ )22 + 1) ifnzps

where
22nV2(1 _|_q)\)

T3 22+ 1)(1+9)

P3

and - ( )

2"y 1—X)g

- QD W %L |
IR (R

P4
The result is sharp.

From the Alexander transformation, we have that 7 (z) satisfies (1.8) if and only if zF'(z)
satisfies (1.7), where F(z) is given by (1.3). Consequently, we can easily obtain coefficient
bounds and a solution of the Fekete-Szegd problem for the class € > (<, x)-

Theorem 2.7. Let0 < \ < 1,5 € C\{0}, v > Oandn > 0. Also, let x(z) = 1+x12+x222+- - -,
X1 > 0. If f is of the form (1.1) is in the class € (s, X), then

[<Ix1
< DAL
jaz| < 20 (1 — A)qv
[<Ix1 { (1+4q)) X2 }
< ], |9y X2
S ST+ g ) ’(1—»#’“* 1
and forn € C
3n (202 +1)(1
|<|X1max{1, SEL LS <1+q>\— (v ;+2)(2+q)77> +X2 }
jay — a3 < L= e all

3n(1—A)g(1 +q) (202 +1)

The results are sharp.



46 Halit Orhan, Saurabh Porwal and Nanjundan Magesh

Theorem 2.8. Let0 < A < 1,6 > 0,v > 0andn > 0. Let x(2) = 1+ x12+x22> 4+, x1 > 0.
If a function f, given by (1.1) belongs to the class %,’L’”é\(g, X), then forn € R

S 37202 + 1) (g + 1
o[ (1T CZE D)
(1= A)g 2y XL ifn<ops
3n(1=A)g(1+q)(2v* + 1) -
laz —na3| < 3n(1 — )\)q(l —|—q)(21/2—|— 1) if ps <n<ps
37202 + 1)(1 +
—x1 {gx‘ <1+q/\—77 (2v 2++2)(2 q)) +xz}
(1= A 2y XU ifn > ps
3n(1=N)g(1+q)(2v2 + 1) Y
where i : )
27y 1-Ngq (x2 ﬂ
= l+gr+—22 (22
7= 3@+ 1)1+ q) { P <><1
and 2n+2,,2 ( )
27y 1-Nq (x2 )]
= l4+gh+—22 (2241,
P 3 F 1)1+ q) [ T <xl

The result is sharp.

The proofs of Theorem 2.7 and Theorem 2.8 are much akin to those of Theorems 2.3 and 2.4,
respectively and therefore we omit the details involved.

Remark 2.9. If we put A = 0, and ¢ — 1 in Theorems 2.3 to 2.8, then we obtain the correspond-
ing results of first author with Raducanu [13].
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