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Abstract In this paper, we extend a class of γ-continuous functions in N -neutrosophic crisp
topological spaces into a new class of almost γ-continuous functions in N -neutrosophic crisp
topological spaces. In a N -neutrosophic crisp γ-open set, an almost γ-continuous functions is
a stronger forms of mapping has equally distributed to their elements in a γ-open set. Also, we
investigate and discuss some possible outcomes in almost γ-continuous functions based on N -
neutrosophic crisp topological spaces. In addition, an almost γ-continuous functions is related
to other open sets such as semi-open, pre-open and β-open sets can bring out a results in N -
neutrosophic crisp topological spaces.

1 Introduction

Crisp sets are utilized in our daily routine for the most of our careers. The concepts of neu-
trosophy and neutrosophic set are the recent tools in a topological space. It was first introduced
by Smarandache [11, 12] in the beginning of 20th century. In 2014, Salama, Smarandache and
Kroumov [8] has given the essential idea of neutrosophic crisp set in a topological space. After
that Al-Omeri [2] likewise explored some essential properties of neutrosophic crisp topological
Spaces. Al-Hamido [1] investigate the chance of extending the idea of neutrosophic crisp topo-
logical spaces into N -topology and research a portion of their essential properties in N -terms.
By utilizing N -terms, we can characterized as 1ncts, 2ncts, · · · , Nncts.

In 1996, Andrijevic [4] introduced b-open sets and develop some of their works in general
topology. Ogata [7] characterized an activity γ on a topological space and presented γ-open
sets. Additionally, the thought of γ-open set in topological spaces was first presented by Min
[6] and worked in the field of general topology. Basu et al. [5] presented a kind of continuity
called γ-continuous function. Vadivel [15] presented γ-open sets in neutrosophic crisp topo-
logical spaces via N -terms of topology. Also γ-continuous function in a N -neutrosophic crisp
topological spaces was presented in his paper. The concept of almost continuity in a topolog-
ical spaces was introduced by Singal and Singal [10]. Recently, many authors [3, 13, 19, 20]
worked on almost properties of continuous functions in neutrosophic set, neutrosophic crisp set,
neutrosophic multifunctions, etc.
Research gap: The extension γ-continuous function in a neutrosophic topological spaces can
never be studied before and also in a neutrosophic crisp topological spaces. An almost concept
of mappings can be defined by very few due to the stronger content of the set. The concept of N -
neutrosophic crisp almost γ-continuous functions in a N -neutrosophic crisp topological spaces
cannot be examined before and study in this paper with some of their properties.

In this paper, we discuss a new class of functions called N -neutrosophic crisp almost γ-
continuous functions in a N -neutrosophic crisp topological spaces. Also, we study and research
about N -neutrosophic crisp almost γ-continuous functions and study some of their properties.
Finally, we discuss N -neutrosophic crisp almost γ-continuous functions related to some other
open sets in N -neutrosophic crisp topological spaces.
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2 Preliminaries

Some basic definitions & properties of Nnc topological spaces are discussed in this section.

Definition 2.1. [9] For any non-empty fixed set Y , a neutrosophic crisp set (briefly, ncs) L, is an
object having the form L = 〈L1, L2, L3〉 where L1, L2 and L3 are subsets of Y satisfying any
one of the types

(T1) Lι ∩ Lκ = φ, ι 6= κ &
⋃3
ι=1 Lι ⊂ Y , ∀ ι, κ = 1, 2, 3.

(T2) Lι ∩ Lκ = φ, ι 6= κ &
⋃3
ι=1 Lι = Y , ∀ ι, κ = 1, 2, 3.

(T3)
⋂3
ι=1 Lι = φ &

⋃3
ι=1 Lι = Y , ∀ ι = 1, 2, 3.

Definition 2.2. [9] Types of ncs’s ∅N and YN in Y are as

(i) ∅N may be defined as ∅N = 〈∅, ∅, Y 〉 or 〈∅, Y, Y 〉 or 〈∅, Y, ∅〉 or 〈∅, ∅, ∅〉.

(ii) YN may be defined as YN = 〈Y, ∅, ∅〉 or 〈Y, Y, ∅〉 or 〈Y, ∅, Y 〉 or 〈Y, Y, Y 〉.

Definition 2.3. [9] Let Y be a non-empty set & the ncs’s L & M in the form L = 〈L1, L2, L3〉,
M = 〈M1,M2, M3〉, then

(i) L ⊆M ⇔ L1 ⊆M1, L2 ⊆M2 & L3 ⊇M3 or L1 ⊆M1, L2 ⊇M2 & L3 ⊇M3.

(ii) L ∩M = 〈L1 ∩M1, L2 ∩M2, L3 ∪M3〉 or 〈L1 ∩M1, L2 ∪M2, L3 ∪M3〉

(iii) L ∪M = 〈L1 ∪M1, L2 ∪M2, L3 ∩M3〉 or 〈L1 ∪M1, L2 ∩M2, L3 ∩M3〉

Definition 2.4. [9] Let L = 〈L1, L2, L3〉 a ncs on Y , then the complement of L (briefly, Lc) may
be defined in three different ways:

(C1) Lc = 〈L1
c, L2

c, L3
c〉, or

(C2) Lc = 〈L3, L2, L1〉, or

(C3) Lc = 〈L3, L2
c, L1〉.

Definition 2.5. [8] A neutrosophic crisp topology (briefly, nct) on a non-empty set Y is a family
Γ of nc subsets of Y satisfying

(i) ∅N , YN ∈ Γ.

(ii) L1 ∩ L2 ∈ Γ ∀ L1 & L2 ∈ Γ.

(iii)
⋃
ι
Lι ∈ Γ, ∀ Lι : ι ∈ T ⊆ Γ.

Then (Y,Γ) is a neutrosophic crisp topological space (briefly, ncts for short) in Y . The neutro-
sophic crisp open sets (briefly, ncos) are the elements of Γ in Y . A ncs C is closed (briefly, nccs)
iff its complement Cc is ncos.

Definition 2.6. [1] Let Y be a non-empty set. Then ncΓ1, ncΓ2, · · · , ncΓN are N -arbitrary crisp
topologies defined on Y and the collection

NncΓ = {G ⊆ Y : G = (
N⋃
ι=1

Gι) ∪ (
N⋂
ι=1

Hι), Gι, Hι ∈ ncΓι}

is called Nnc-topology on Y if the axioms are satisfied:

(i) ∅N , YN ∈ NncΓ.

(ii)
∞⋃
ι=1

Cι ∈ NncΓ ∀ {Cι}∞ι=1 ∈ NncΓ.

(iii)
n⋂
ι=1

Cι ∈ NncΓ ∀ {Cι}nι=1 ∈ NncΓ.



426 A. Vadivel and C. John Sundar

Then (Y,NncΓ) is called a Nnc-topological space (briefly, Nncts) on Y . The Nnc-open sets
(Nncos) are the elements of NncΓ in Y and the complement of Nncos is called Nnc-closed sets
(Nnccs) in Y . The elements of Y are known as Nnc-sets (Nncs) on Y .

Definition 2.7. [1] Let (Y,NncΓ) be Nncts on Y and L be an Nncs on Y , then the Nnc interior
of L (briefly, Nncint(L)), Nnc closure of L (briefly, Nnccl(L)) are defined as

Nncint(L) = ∪{C : C ⊆ L & C is a Nncos in Y }

Nnccl(L) = ∩{A : L ⊆ A & A is a Nnccs in Y }.

Definition 2.8. [1] Let (Y,NncΓ) be any Nncts. Let L be an Nncs in (Y,NncΓ). Then L is said
to be a Nnc-regular (resp. Nnc-pre, Nnc-semi, Nnc-α, Nnc-γ & Nnc-β) open set (briefly, Nncros
[15] (resp. NncPos, NncSos, Nncαos, Nncγos [15] & Nncβos [17])) if L = Nncint(Nnccl(L))
(resp. L ⊆ Nncint(Nnccl(L)), L ⊆ Nnccl(Nncint(L)), L ⊆ Nncint(Nnccl(Nncint(L))), L ⊆
Nnccl(Nncint (L)) ∪Nncint(Nnccl(L)) & L ⊆ Nnccl(Nncint(Nnccl(L)))).

The complement of an NncPos (resp. NncSos, Nncαos, Nncros, Nncγos & Nncβos) is
called an Nnc-pre (resp. Nnc-semi, Nnc-α, Nnc-regular, Nnc-γ & Nnc-β) closed set (briefly,
NncPcs (resp. NncScs, Nncαcs, Nncrcs, Nncγcs & Nncβcs)) in Y .

The family of all NncPos (resp. NncPcs, NncSos, NncScs, Nncαos, Nncαcs, Nncγos,
Nncγcs, Nncβos, & Nncβcs) of Y is denoted by NncPOS(Y ) (resp. NncPCS(Y ), NncSO
S(Y ), NncSCS(Y ), NncαOS(Y ), NncαCS(Y ), NncγOS(Y ), NncγCS(Y ), NncβOS(Y ) &
NncβCS(Y )).

Definition 2.9. [14] Let (Y,NncΓ) & (Z,NncΨ) be any two Nncts’s. A map h : (Y,NncΓ) →
(Z,NncΨ) is said to be Nnc-continuous (briefly, NncCts) if the inverse image of every Nncos in
(Z,NncΨ) is a Nncos in (Y,NncΓ).

Definition 2.10. [18] Let (Y,NncΓ) be Nncts on Y and L be an Nncs on Y , then the Nncδ
interior of L (briefly, Nncδint(L)) and Nncδ closure of L (briefly, Nncδcl(L)) are defined as

Nncδint(L) = ∪{A : A ⊆ L & A is a Nncros}

Nncδcl(L) = ∪{y ∈ Y : Nncint(Nnccl(L)) ∩ L 6= φ, y ∈ L & L is a Nncos} or

Nncδcl(L) = ∩{A : L ⊆ A & A is a Nncrcs in Y }.

Definition 2.11. [18] Let (Y,NncΓ) be any Nncts. Let L be an Nncs in (Y,NncΓ). Then L is
said to be a Nncδ open set (briefly, Nncδos) if L = Nncδint(L).

The complement of an Nncδos is called an Nnc-δ closed set (briefly, Nncδcs) in Y .

3 Nnc Almost γ-Continuous Function

Here we study about Nnc almost γ-continuous function and its properties in Nncts.

Definition 3.1. [16] Let (Y,NncΓ) & (Z,NncΨ) be any two Nncts’s. A map h : (Y,NncΓ) →
(Z,NncΨ) is said to be Nncγ-continuous (briefly, NncγCts) if the inverse image of every Nncos
in (Z,NncΨ) is a Nncγos in (Y,NncΓ).

Definition 3.2. [16] Let L = 〈L1, L2, L3〉 a Nncs on Y , then p = 〈pt1, pt2, pt3〉, pt1 6= pt2 6=
pt3 ∈ Y is called a N -neutrosophic crisp point (briefly, Nncp).

A Nncp, p = 〈pt1, pt2, pt3〉 belongs to a Nncs L = 〈L1, L2, L3〉 of Y , denoted by p ∈ L, if it
may be defined in two ways

(i) {pt1} ⊆ L1, {pt2} ⊆ L2 & {pt3} ⊇ L3 or

(ii) {pt1} ⊆ L1, {pt2} ⊇ L2 & {pt3} ⊇ L3.
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Definition 3.3. A function h : (Y,NncΓ) → (Z,NncΨ) is called N -neutrosophic crisp almost
continuous at a Nncp p ∈ Y if ∀ Nncos M in Z containing h(p), there exists a Nncos L in Y
containing p 3 h(L) ⊆ Nncint(Nnccl(M)). If h is N -neutrosophic crisp almost continuous at
every Nncp of Y , then it is called N -neutrosophic crisp almost continuous (briefly, NncaCts).

Definition 3.4. A function h : (Y,NncΓ) → (Z,NncΨ) is called N -neutrosophic crisp almost
γ-continuous at a Nncp, p ∈ Y if ∀ p ∈ Y and each Nncos M of Z containing h(p), there exists a
Nncγos L of Y containing p 3 h(L) ⊆ Nncint(Nnccl(M)). If h is N -neutrosophic crisp almost
γ-continuous at every Nncp of Y , then it is called N -neutrosophic crisp almost γ-continuous
(briefly, NncaγCts).

Remark 3.5. The following implications are easily shown and the converses are not true.

NncγCts =⇒ NncaγCts =⇒ NncaCts

Example 3.6. Let Y = {l,m, n}, ncΓ1 = {φN , YN , A,B,C}, ncΓ2 = {φN , YN , D}. A =
〈{l}, {φ}, {m,n}〉, B = 〈{m}, {φ}, {l, n}〉, C = 〈{l,m}, {φ}, {n}〉, D = 〈{l, n}, {φ}, {m}〉,
then we have 2ncΓ = {φN , YN , A,B,C,D}. ncΦ1 = {φN , YN , T, U, V }, ncΦ2 = {φN , YN ,W}.
T = 〈{l}, {φ}, {m,n}〉, U = 〈{m}, {φ}, {l, n}〉, V = 〈{l,m}, {φ}, {n}〉, W = 〈{l, n}, {φ},
{m}〉, then we have 2ncΦ = {φN , YN , T, U, V,W}. Let h : (Y, 2ncΓ) → (Y, 2ncΦ) be defined
as h(l) = n, h(m) = m and h(n) = l. an identity function. Then h is 2ncaγCts but not
2ncγCts, because 〈{l}, {φ}, {m,n}〉 is a 2ncos in (Y, 2ncΦ) containing h(〈{n}, {φ}, {l,m}〉) =
〈{l}, {φ}, {m,n}〉, but there exist no 2ncγos, 〈{n}, {φ}, {l,m}〉 in (Y, 2ncΓ) containing 〈{n},
{φ}, {l,m}〉 such that h(〈{n}, {φ}, {l,m}〉) ⊆ 〈{l}, {φ}, {m,n}〉.

Example 3.7. In Example 3.6, h(γ) = Y , for all γ ∈ 2ncΓ. Then h is 2ncaCts but not 2ncaγCts.

Corollary 3.8. Let (Y,NncΓ) be anyNncts. LetL be anNncs in (Y,NncΓ). ThenL ∈ NncPOS(Y )
if and only if NncScl(L) = Nncint(Nnccl(L)).

Theorem 3.9. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the statements

(i) h is NncaγCts.

(ii) ∀ p ∈ Y and each Nncos N of Z containing h(p), there exists a Nncγos L in Y containing
p 3 h(L) ⊆ NncScl(N).

(iii) ∀ p ∈ Y and each Nncros N of Z containing h(p), there exists a Nncγos L in Y containing
p 3 h(L) ⊆ N .

(iv) ∀ p ∈ Y and each Nncδos N of Z containing h(p), there exists a Nncγos L in Y containing
p 3 h(L) ⊆ N .

Proof. (i)⇒ (ii) Let p ∈ Y and Let N be any Nncos of Z containing h(p). By (i), there exists
a Nncγos L of Y containing p 3 h(L) ⊆ Nncint(Nnccl(N)). Since N is Nncos and hence N is
NncPos. By Corollary 3.1, Nncint(Nnccl(N)) = NncScl(N). Therefore, h(L) ⊆ NncScl(N).

(ii) ⇒ (iii) Let p ∈ Y and Let N be any Nncros of Z containing h(p). Then N is an
Nncos of Z containing h(p). By (ii), there exists a Nncγos L in Y containing p 3 h(L) ⊆
NncScl(N). Since N is Nncros and hence N is NncPos. By Corollary 3.1, NncScl(N) =
Nncint(Nnccl(N)). Therefore, h(L) ⊆ Nncint(Nnccl(N)). SinceN isNncros, then h(L) ⊆ N .

(iii) ⇒ (iv) Let p ∈ Y and Let N be any Nncδos of Z containing h(p). Then for each
h(p) ∈ N , there exists a Nncos G containing h(p) 3 G ⊆ Nncint(Nnccl(G)) ⊆ N . Since
Nncint(Nnccl(G)) is Nncros of Z containing h(p). By (iii), there exists a Nncγos L in Y
containing p 3 h(L) ⊆ Nncint (Nnccl(G)) ⊆ N .

(iv)⇒ (i) Let p ∈ Y and Let N be any Nncos of Z containing h(p). Then Nncint(Nnccl(N))
is Nncδos of Z containing h(p). By (iv), there exists a Nncγos L in Y containing p 3 h(L) ⊆
Nncint(Nnccl(N)). Therefore, h is NncaγCts.

Theorem 3.10. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the statements are equivalent.

(i) h is NncaγCts.

(ii) h−1(Nncint(Nnccl(N))) is Nncγos in Y , for each Nncos N in Z.
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(iii) h−1(Nnccl(Nncint(F ))) is Nncγcs in Y , for each Nnccs F in Z.

(iv) h−1(F ) is Nncγcs in Y , for each Nncrcs F of Z.

(v) h−1(N) is Nncγos in Y , for each Nncros N of Z.

Proof. (i) ⇒ (ii) Let N be any Nncos in Z. We have to show that h−1(Nncint (Nnccl(N)))
is Nncγos in Y . Let p ∈ h−1(Nncint (Nnccl(N))). Then h(p) ∈ Nncint(Nnccl(N)) and
Nncint(Nnccl(N)) is a Nncros in Z. Since h is NncaγCts. Then by Theorem 3.9, there exists
a Nncγos L of Y containing p 3 h(L) ⊆ Nncint(Nnccl(N)). Which implies that p ∈ L ⊆
h−1(Nncint(Nnccl(N))). Therefore, h−1(Nncint(Nnccl(N))) is Nncγos in Y .

(ii)⇒ (iii) Let F be anyNnccs of Z. Then Z\F is anNncos of Z. By (ii), h−1(Nncint(Nnccl
(Z \ F ))) is Nncγos in Y and h−1(Nncint(Nnccl(Z \ F ))) = h−1(Nncint(Z \Nncint(F ))) =
h−1(Z \Nnccl(Nncint(F ))) = Y \h−1(Nnccl(Nncint(F ))) is Nncγos in Y and hence h−1(Nnc
cl(Nncint(F ))) is Nncγcs in Y .

(iii)⇒ (iv) Let F be any Nncrcs of Z. Then F is a Nnccs of Z. By (iii), h−1(Nnccl(Nncint
(F ))) isNncγcs in Y . Since F isNncrcs. Then h−1(Nnccl (Nncint(F ))) = h−1(F ). Therefore,
h−1(F ) is Nncγcs in Y .

(iv) ⇒ (v) Let N be any Nncros of Z. Then Z \ N is Nncrcs of Z and by (iv), we have
h−1(Z \N) = Y \ h−1(N) is Nncγcs in Y and hence h−1(N) is Nncγos in Y .

(v)⇒ (i) Let p ∈ Y and let N be any Nncros of Z containing h(p). Then p ∈ h−1(N). By
(v), we have h−1(N) isNncγos in Y . Therefore, we obtain h(h−1(N)) ⊆ N . Hence by Theorem
3.9, h is NncaγCts.

Theorem 3.11. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the statements are equivalent.

(i) h is NncaγCts.

(ii) h(Nncγcl(L)) ⊆ Nncδcl(h(L)), for each subset L of Y .

(iii) Nncγcl(h−1(N)) ⊆ h−1(Nncδcl(N)), for each subset N of Z.

(iv) h−1(L) is Nncγcs in Y , for each Nncδcs L of Z.

(v) h−1(N) is Nncγos in Y , for each Nncδos N of Z.

(vi) h−1(Nncδint(N)) ⊆ Nncγint(h−1(N)), for each subset N of Z.

(vii) Nncδint(h(L)) ⊆ h(Nncγint(L)), for each subset L of Y .

Proof. (i) ⇒ (ii) Let L be a subset of Y . Since Nncδcl(h(L)) is Nncδcs in Z. Then, we have
L ⊆ h−1(Nncδ cl(h(L))). By (i) and Theorem 3.10, h−1(Nncδcl(h(L))) is Nncγcs of Y . Hence
Nncγcl(L) ⊆ h−1(Nncδcl (h(L))). Therefore, we obtain h(Nncγcl(L)) ⊆ Nncδcl(h(L)).

(ii) ⇒ (iii) Let N be any subset of Z. Then h−1(N) is a subset of Y . By (ii), we have
h(Nncγcl(h−1(N))) ⊆ Nncδcl(h(h−1(N))) = Nncδcl(N).

Hence Nncγcl(h−1(N)) ⊆ h−1(Nncδcl(N)).
(iii) ⇒ (iv) Let L be any Nncδcs of Z. By (iii), we have Nncγcl(h−1(L)) ⊆ h−1(Nncδ

cl(L)) = h−1(L) and hence h−1(L) is Nncγcs in Y .
(iv) ⇒ (v) Let N be any Nncδos of Z. Then Z \ N is Nncδcs of Z and by (iv), we have

h−1(Z \N) = Y \ h−1(N) is Nncγcs in Y . Hence h−1(N) is Nncγos in Y .
(v)⇒ (vi) For each subset N of Z. We have Nncδint(N) ⊆ N . Then h−1(Nncδint(N)) ⊆

h−1(N). By (v), h−1(Nncδint(N)) is Nncγos in Y . Then h−1(Nncδint(N)) ⊆ Nncγint
(h−1(N)).

(vi) ⇒ (vii) Let L be any subset of Y . Then h(L) is a subset of Z. By (vi), we obtain
that h−1(Nncδint(h(L))) ⊆ Nncγint(h−1(h(L))). Hence h−1(Nncδint(h(L))) ⊆ Nncγint(L).
Which implies that Nncδint(h(L)) ⊆ h(Nncγint(L)).

(vii) ⇒ (i) Let p ∈ Y and N be any Nncros of Z containing h(p). Then p ∈ h−1(N)
and h−1(N) is a subset of Y . By (vii), we get Nncδint(h(h−1(N))) ⊆ h(Nncγint(h−1(N)))
implies that Nncδint(N) ⊆ h(Nncγint(h−1(N))). Since N is Nncros and hence N is Nncδos,
then N ⊆ h(Nncγint(h−1(N))) this implies that h−1(N) ⊆ Nncγ int(h−1(N)). Therefore,
h−1(N) is Nncγos in Y which contains p and clearly h(h−1(N)) ⊆ N . Hence, by Theorem 3.9,
h is NncaγCts.



ON ALMOST γ-CONTINUOUS FUNCTIONS IN NNCTS 429

Corollary 3.12. Let (Y,NncΓ) be any Nncts. Let L be an Nncs in (Y,NncΓ) is Nncβos if and
only if Nnccl(L) is Nncrcs.

Theorem 3.13. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the properties are equivalent.

(i) h is NncaγCts.

(ii) Nncγcl(h−1(N)) ⊆ h−1(Nnccl(N)), for each Nncγos N of Z.

(iii) h−1(Nncint(L)) ⊆ Nncγint(h−1(L)), for each Nncγcs L of Z.

(iv) h−1(Nncint(L)) ⊆ Nncγint(h−1(L)), for each NncScs L of Z.

(v) Nncγcl(h−1(N)) ⊆ h−1(Nnccl(N)), for each NncSos N of Z.

Proof. (i) ⇒ (ii) Let N be any Nncγos of Z. It follows from Corollary 3.12, that Nnccl(N) is
Nncrcs in Z. Since h is NncaγCts. Then by Theorem 3.10, h−1(Nnccl(N)) is Nncγcs in Y .
Therefore, we obtain Nncγcl(h−1(N)) ⊆ h−1(Nnccl(N)).

(ii) ⇔ (iii) Let L be any Nncγcs of Z. Then Z \ L is Nncγos of Z and by (ii), we have
Nncγcl(h−1(Z \ L)) ⊆ h−1(Nnccl(Z \ L)) ⇔ Nncγcl(Y \ h−1(L)) ⊆ h−1(Z \Nncint(L)) ⇔
Y \Nncγint(h−1(L)) ⊆ Y \h−1(Nncint(L)). Therefore, h−1(Nncint(L)) ⊆ Nncγint(h−1(L)).

(iii)⇒ (iv) This is obvious since every NncScs is Nncγcs.
(iv) ⇒ (v) Let N be any NncSos of Z. Then Z \ N is NncScs and by (iv), we have

h−1(Nncint(Z\N)) ⊆ Nncγint(h−1(Z\N))⇔ h−1(Z\Nnccl(N)) ⊆ Nncγint(Y \h−1(N))⇔
Y \ h−1(Nnccl(N)) ⊆ Y \Nncγcl (h−1(N)). Therefore, Nncγcl(h−1(N)) ⊆ h−1(Nnccl(N)).

(v) ⇒ (i) Let L be any Nncrcs of Z. Then L is NncSos of Z. By (v), we have Nncγcl
(h−1(L)) ⊆ h−1(Nnc cl(L)) = h−1(L). This shows that h−1(L) is Nncγcs in Y . Therefore, by
Theorem 3.10, h is NncaγCts.

Corollary 3.14. Let (Y,NncΓ) be any Nncts. Let L be an Nncs in (Y,NncΓ). Then

(i) L ∈ NncSO(Y ), then NncPcl(L) = Nnccl(L).

(ii) L ∈ NncβO(Y ), then Nncαcl(L) = Nnccl(L).

(iii) L ∈ NncβO(Y ), then Nncδcl(L) = Nnccl(L).

Theorem 3.15. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the statements are equivalent.

(i) h is NncaγCts.

(ii) Nncγcl(h−1(N)) ⊆ h−1(Nnccl(N)), for each Nncβos N of Z.

(iii) Nncγcl(h−1(N)) ⊆ h−1(Nncδcl(N)), for each Nncβos N of Z.

(iv) Nncγcl(h−1(N)) ⊆ h−1(Nncγcl(N)), for each NncSos N of Z.

(v) Nncγcl(h−1(N)) ⊆ h−1(NncPcl(N)), for each NncSos N of Z.

Proof. (i)⇒ (ii) Follows from Theorem 3.13 and Corollary 3.14 (ii).
(ii)⇒ (iii) This is obvious, since Nncαcl(N) ⊆ Nncδcl(N) in general.
(iii)⇒ (iv) and (iv)⇒ (v) Follows from Corollary 3.14.
(v)⇒ (i) Follows from Theorem 3.13 and Corollary 3.14 (i).

Corollary 3.16. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the statements are equivalent.

(i) h is NncaγCts.

(ii) h−1(Nncint(N)) ⊆ Nncγint(h−1(N)), for each Nncβcs N of Z.

(iii) h−1(Nncδint(N)) ⊆ Nncγint(h−1(N)), for each Nncβcs N of Z.

(iv) h−1(Nncγint(N)) ⊆ Nncγint(h−1(N)), for each NncScs N of Z.

(v) h−1(NncPint(N)) ⊆ Nncγint(h−1(N)), for each NncScs N of Z.

Theorem 3.17. A function h : (Y,NncΓ) → (Z,NncΨ) is NncaγCts if and only if h−1(N) ⊆
Nncγint(h−1(Nncint (Nnccl(N)))) for each NncPos N of Z.
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Proof. Necessity. Let N be any NncPos of Z. Then N ⊆ Nncint(Nnccl(N)) and Nncint(Nnc
cl(N)) is Nncros in Z. Since h is NncaγCts, by Theorem 3.10, h−1(Nncint(Nnccl(N))) is
Nncγos in Y and hence we obtain that h−1(N) ⊆ h−1(Nncint(Nnccl(N))) = Nncγint(h−1

(Nncint(Nnccl(N)))).
Sufficiency. Let N be any Nncros of Z. Then N is NncPos of Z. By hypothesis, we have

h−1(N) ⊆ Nncγint(h−1(Nncint (Nnccl(N)))) = Nncγint(h−1(N)). Therefore, h−1(N) is
Nncγos in Y and hence by Theorem 3.10, h is NncaγCts.

Corollary 3.18. A function h : (Y,NncΓ) → (Z,NncΨ) is NncaγCts if and only if h−1(N) ⊆
Nncγint(h−1(NncS cl(N))) for each NncPos N of Z.

Corollary 3.19. A function h : (Y,NncΓ)→ (Z,NncΨ) is NncaγCts if and only if Nncγcl(h−1

(Nnccl(Nncint(L)))) ⊆ h−1(L) for each NncPcs L of Z.

Corollary 3.20. A function h : (Y,NncΓ)→ (Z,NncΨ) is NncaγCts if and only if Nncγcl(h−1

(NncSint(L))) ⊆ h−1(L) for each NncPcs L of Z.

Theorem 3.21. For a function h : (Y,NncΓ)→ (Z,NncΨ), then the statements are equivalent.

(i) h is NncaγCts.

(ii) For each neighborhood N of h(p), p ∈ Nncγint(h−1(NncScl(N))).

(iii) For each neighborhood N of h(p), p ∈ Nncγint(h−1(Nncint(Nnccl(N)))).

Proof. Follows from Theorem 3.17 and Corollary 3.18.

Theorem 3.22. Let h : (Y,NncΓ) → (Z,NncΨ) is an NncaγCts function and Let N be any
open subset of Z. If p ∈ Nncγcl (h−1(N)) \ h−1(N), then h(p) ∈ Nncγcl(N).

Proof. Let p ∈ Y be such that p ∈ Nncγcl(h−1(N)) \ h−1(N) and suppose h(p) 6∈ Nncγcl(N).
Then there exists a Nncγos H ⊆ h(p) 3 H ∩ N = ∅. Then Nnccl(H) ∩ N = ∅ implies
Nncint(Nnccl(H)) ∩N = ∅ and Nncint(Nnccl(H)) is Nncros. Since h is NncaγCts, by The-
orem 3.9, there exists a Nncγos L in Y containing p 3 h(L) ⊆ Nncint(Nnccl(H)). There-
fore, h(L) ∩ N = ∅. However, since p ∈ Nncγcl(h−1(N)), L ∩ h−1(N) 6= ∅ for every
Nncγos L in Y containing p, so that h(L) ∩ N 6= ∅. We have a contradiction. It follows
that h(p) ∈ Nncγcl(N).

Theorem 3.23. If h : (Y1, NncΓ) → (Y2, NncΨ) is NncaγCts and h′ : (Y2, NncΨ)→ (Y3, Nnc
Φ) is NncCts and open. Then the composition function h′ ◦ h : (Y1, NncΓ) → (Y3, NncΦ) is
NncaγCts.

Proof. Let p ∈ Y1 and N be a Nncos of Y3 containing h′(h(p)). Since h′ is NncCts, h′−1(N)
is a Nncos of Y2 containing h(p). Since h is NncaγCts, ∃ a Nncγos L of Y1 containing p 3
h(L) ⊆ Nncint(Nnccl(h′−1(N))). Also, since h′ is NncCts, then we obtain (h′ ◦ h)(L) ⊆
h′(Nncint(h′−1(Nnccl(N)))). Since h′ is open, we obtain (h′ ◦ h)(L) ⊆ Nncint(Nnccl(N)).
Therefore, h′ ◦ h is NncaγCts.

Definition 3.24. Let (Y,NncΓ) be any Nncts., then Y is said to be N -neutrosophic crisp semi-
regular (briefly, NncSr) function if for any Nncos L of Y and each Nncp, p ∈ L, there exists a
Nncros N of Y 3 p ∈ N ⊆ L.

Theorem 3.25. If h : (Y,NncΓ)→ (Z,NncΨ) is a NncaγCts function and Z is NncSr. Then h
is NncγCts.

Proof. Let p ∈ Y and Let M be any Nncos of Z containing h(p). By NncSr function of Z, there
exists a Nncros G of Z 3 h(p) ∈ G ⊆M . Since h is NncaγCts. By Theorem 3.9, there exists a
Nncγos L of Y containing p 3 h(L) ⊆ G ⊆M . Therefore, h is NncγCts.
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4 Conclusion

We have introduced N -neutrosophic crisp almost γ-continuous functions in a N -neutrosophic
crisp γ-open sets via topological spaces. Also, we have established some properties and re-
sults of almost γ-continuous function in N -neutrosophic crisp topological spaces. Finally, we
study some relation between almost γ-continuous function and γ-continuous function in N -
neutrosophic crisp topological spaces as well as their near open sets such as semi-open set,
pre-open set and β-open set.

By usingN -neutrosophic crisp γ-open set, the notions can be extend toN -neutrosophic crisp
almost contra γ-continuous functions, N -neutrosophic crisp γ open mappings, N -neutrosophic
crisp γ closed mappings, N -neutro-sophic crisp γ homomorphisms and N -neutrosophic crisp
γ irresolute functions in N -neutrosophic crisp topological spaces in future. Additionally, the
notions can be tried in programming languages like C++, MATLAB, Python, etc. to simplify the
results in topology.
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