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Abstract In this paper, we extend a class of y-continuous functions in /N-neutrosophic crisp
topological spaces into a new class of almost y-continuous functions in N-neutrosophic crisp
topological spaces. In a N-neutrosophic crisp y-open set, an almost ~-continuous functions is
a stronger forms of mapping has equally distributed to their elements in a y-open set. Also, we
investigate and discuss some possible outcomes in almost «y-continuous functions based on V-
neutrosophic crisp topological spaces. In addition, an almost «-continuous functions is related
to other open sets such as semi-open, pre-open and (3-open sets can bring out a results in V-
neutrosophic crisp topological spaces.

1 Introduction

Crisp sets are utilized in our daily routine for the most of our careers. The concepts of neu-
trosophy and neutrosophic set are the recent tools in a topological space. It was first introduced
by Smarandache [11, 12] in the beginning of 20*" century. In 2014, Salama, Smarandache and
Kroumov [8] has given the essential idea of neutrosophic crisp set in a topological space. After
that Al-Omeri [2] likewise explored some essential properties of neutrosophic crisp topological
Spaces. Al-Hamido [1] investigate the chance of extending the idea of neutrosophic crisp topo-
logical spaces into IN-topology and research a portion of their essential properties in N-terms.
By utilizing N-terms, we can characterized as 1,,.ts, 2,,¢ts, - -+, Npts.

In 1996, Andrijevic [4] introduced b-open sets and develop some of their works in general

topology. Ogata [7] characterized an activity v on a topological space and presented ~-open
sets. Additionally, the thought of -open set in topological spaces was first presented by Min
[6] and worked in the field of general topology. Basu et al. [5] presented a kind of continuity
called y-continuous function. Vadivel [15] presented ~-open sets in neutrosophic crisp topo-
logical spaces via N-terms of topology. Also ~y-continuous function in a N-neutrosophic crisp
topological spaces was presented in his paper. The concept of almost continuity in a topolog-
ical spaces was introduced by Singal and Singal [10]. Recently, many authors [3, 13, 19, 20]
worked on almost properties of continuous functions in neutrosophic set, neutrosophic crisp set,
neutrosophic multifunctions, etc.
Research gap: The extension ~y-continuous function in a neutrosophic topological spaces can
never be studied before and also in a neutrosophic crisp topological spaces. An almost concept
of mappings can be defined by very few due to the stronger content of the set. The concept of V-
neutrosophic crisp almost y-continuous functions in a N-neutrosophic crisp topological spaces
cannot be examined before and study in this paper with some of their properties.

In this paper, we discuss a new class of functions called N-neutrosophic crisp almost -
continuous functions in a N-neutrosophic crisp topological spaces. Also, we study and research
about N-neutrosophic crisp almost y-continuous functions and study some of their properties.
Finally, we discuss NN-neutrosophic crisp almost y-continuous functions related to some other
open sets in N-neutrosophic crisp topological spaces.
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2 Preliminaries
Some basic definitions & properties of N,,. topological spaces are discussed in this section.

Definition 2.1. [9] For any non-empty fixed set Y, a neutrosophic crisp set (briefly, ncs) L, is an
object having the form L = (L, L,, L3) where L, L, and L3 are subsets of Y satisfying any
one of the types

(T1) LNLy,=¢ 1 #r &, L, CY,V1,5=1,23.
(T2) LiNLy=¢, e # k& U _ L. =Y,V 1,5 =1,2,3.
(MH N L=0&U_ L, =Y,Vi=12,3.

Definition 2.2. [9] Types of ncs’s )y and Yy in Y are as
(i) Oy may be defined as Oy = (0,0,Y) or (0,Y,Y) or (0, Y, 0) or (0,0, 0).
(ii) Yy may be defined as Yy = (Y, 0,0) or (Y,Y,0) or (Y,(,Y) or (Y,Y,Y).

Definition 2.3. [9] Let Y be a non-empty set & the ncs’s L & M in the form L = (L, Ly, L3),
M = <M1,M2, M3>, then

i) LCMEe L CM,Ly C M, &Ly D Msor Ly C My, Ly 2 M, & Lz O M.
(i) LNM = <L10M1,LQQM2,L3UM3> or <L10M1,L2UMQ,L3UM3>
(i) LUM = <L1UM1,L2UM2,L3QM3> OI‘<L1UM1,L20M2,L3QM3>

Definition 2.4. [9] Let L = (L, Ly, L3) a ncs on Y, then the complement of L (briefly, L) may
be defined in three different ways:

(Cl) L¢ = <Llc,L2C,L3C>, or
(C2) L = (L3, Ly, Ly), or
(C3) L¢ = (L3, L,°, Ly).

Definition 2.5. [8] A neutrosophic crisp topology (briefly, ,,.t) on a non-empty set Y is a family
I" of nc subsets of Y satisfying

(i) Oy, Yy €T
() LiNL,eT'VL; &L, €T.
Gii) YL, e, vV L,:teT CT.
Then (Y,T') is a neutrosophic crisp topological space (briefly, ncts for short) in Y. The neutro-

sophic crisp open sets (briefly, ncos) are the elements of I'in Y. A ncs C'is closed (briefly, nces)
iff its complement C is ncos.

Definition 2.6. [1] Let Y be a non-empty set. Then ,,.I'1, .12, -+, ncI N are N-arbitrary crisp
topologies defined on Y and the collection

N N
NoL ={GCY:G=(JG)U([H). G H, € ncT.}

=1 =1

is called N,,.-topology on Y if the axioms are satisfied:

(1) sz YN S Nncr
i) UC, e N )IT'V{C,}>2, € N, .IT.
=1

(iii) N C, € NIV {C,}" | € Ny T

=1
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Then (Y, N,,.I') is called a N,,.-topological space (briefly, N,.ts) on Y. The N,.-open sets
(Npc0s) are the elements of N,.I"in Y and the complement of N, .os is called N, .-closed sets
(N,ccs) in Y. The elements of Y are known as V,,.-sets (V,,.s) on Y.

Definition 2.7. [1] Let (Y, N,,.I') be N,.tsonY and L be an N,.s on Y, then the N, interior
of L (briefly, N,cint(L)), Ny closure of L (briefly, N,.cl(L)) are defined as

Nypcint(L) =U{C:C C L& CisaNyo0sinY}
Npecd(L)y=n{A: LC A& Aisa Ny.csinY}.

Definition 2.8. [1] Let (Y, N,,.I') be any N, ts. Let L be an N,.s in (Y, N,,.I'). Then L is said
to be a N, .-regular (resp. N,.-pre, Ny-semi, Ny .-a, Ny.-y & N,.-0) open set (briefly, V,,.ros
[15] (resp. Ny P0os, NS08, Npewos, Nyeyos [15] & Nyefos [17])) if L = Nycint(Npecl (L))
(resp. L C Nycint(Npecl(L)), L C Npecl(Npeint(L)), L € Npeint(Npccl (Npcint(L))), L C
Nyl (Nypeint (L)) U Npeint(Npecl(L)) & L € Npecl(Npeint(Nyecl(L)))).

The complement of an N, .Pos (resp. N,.S0s, Npcaos, Nyros, Npcyos & Npcfos) is
called an N, .-pre (resp. Np.-semi, N, .-, Ny-regular, N,.-y & N,.-f) closed set (briefly,
Ny Pcs (resp. NpScs, Nycacs, Nperes, Npeyes & Ny fes))inY.

The family of all N,,.Pos (resp. N, Pcs, Npc.Sos, Np.Scs, Nyc.aos, Npcacs, Npcyos,
Nypeyes, Npefos, & Ny.Les) of Y is denoted by N,,.POS(Y) (resp. Np.PCS(Y), NSO
S(Y), NpeSCS(Y), NpeaOS(Y), NpeaCS(Y), NpeyOS(Y), NpeyCS(Y), NpeBOS(Y) &
NpeBCS(Y)).

Definition 2.9. [14] Let (Y, N,,.I') & (Z, N,,.¥) be any two N,.ts’s. Amap h : (Y, N,.I') —
(Z, N, W) is said to be N,,.-continuous (briefly, N,,.Cts) if the inverse image of every N,,.o0s in
(Z, Np W) is a Nyeos in (Y, N, I).

Definition 2.10. [18] Let (Y, N,,.I') be N,.ts on Y and L be an N,.s on Y, then the N,.0
interior of L (briefly, N,,.dint(L)) and N,,.d closure of L (briefly, Ny,.dcl(L)) are defined as

Npedint(L) =U{A: AC L& Aisa N,.ros}
Npcocl(L) = U{y € Y : Npcint(Npecl (L)) NL # ¢, y € L & Lisa Ny.0s}or
Ny (L)=n{A: LC A& Aisa Nyeresin Y}

Definition 2.11. [18] Let (Y, N,,.I') be any N,.ts. Let L be an N, s in (Y, N,.I'). Then L is
said to be a N,,.6 open set (briefly, N,,.d0s) if L = N,,.dint(L).

The complement of an N,,.dos is called an N,,.-d closed set (briefly, N,,.dcs) in Y.

3 N, Almost ~v-Continuous Function
Here we study about N,,. almost y-continuous function and its properties in IV, .ts.

Definition 3.1. [16] Let (Y, N,,.I') & (Z, N,,.¥) be any two N, ts’s. Amap h : (Y, N,I) —
(Z, Ny, W) is said to be N,,.y-continuous (briefly, N,,.vC's) if the inverse image of every N, o0s
in (Z, N, W) is a Nyeyos in (Y, Ny D).

Definition 3.2. [16] Let L = (L;, Ly, L3) a N,.s on Y, then p = (pt;, pts, pt3), pt; # pty #*
pt3 € Y is called a N-neutrosophic crisp point (briefly, N, p).

A Npcp, p = (pt1, pta, pt3) belongs to a Ny,.s L = (L1, Ly, L3) of Y, denoted by p € L, if it
may be defined in two ways

@) {pt1} C Ly, {pto} C L, & {pt3} D Lz or
(i) {pt1} C Ly, {pta} D Ly & {pt3} D Ls.
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Definition 3.3. A function & : (Y, N,.I') — (Z, N,,;¥) is called N-neutrosophic crisp almost
continuous at a N,.pp € Y if V N,.0s M in Z containing h(p), there exists a Np.0s LinY
containing p 3 hA(L) C Npcint(N,ccl(M)). If h is N-neutrosophic crisp almost continuous at
every N,.p of Y, then it is called N-neutrosophic crisp almost continuous (briefly, N,.aC'ts).

Definition 3.4. A function & : (Y, N, .I') — (Z, N,,.'P) is called N-neutrosophic crisp almost
~-continuous at a Np,.p,p € Y if Vp € Y and each N,,.os M of Z containing h(p), there exists a
Nyeyos L of Y containing p 3 h(L) C Nyeint(Npecl(M)). If h is N-neutrosophic crisp almost
~-continuous at every N,.p of Y, then it is called N-neutrosophic crisp almost y-continuous
(briefly, N,,c.ayCts).

Remark 3.5. The following implications are easily shown and the converses are not true.

’ N,.yCts ‘ — ’ NyeayCts ‘ — ’ N,.aCts ‘

Example 36.LetY = {l,m,n}, nell = {¢N,YN,A,B,C}, neln = {¢N7 YN,D}. A =
{1} {8}, {m,n}), B = ({m},{¢},{l,n}), C = {l,m}, {¢},{n}), D = ({l,n},{¢},{m}),
then we have chF = {¢N, YN, A, B, C, D} ncq)l = {gf)N, YN,T, U, V}, ncq)z = {gf)N, YN, W}
T = {1}, {o}, {m,n}), U = {m},{o}, {l,n}), V = ({l,m},{¢},{n}), W = ({I,n},{¢},
{m}), then we have 2,,,® = {¢n,Yn,T,U, V,W}. Let h : (Y,2,.I') — (Y,2,.P) be defined
as h(l) = n, h(m) = m and h(n) = [. an identity function. Then h is 2,,.ayCts but not
2,.7Cts, because ({I}, {¢}, {m,n}) is a 2,c0s in (Y, 2,,.P) containing h({{n}, {¢}, {I,m})) =
{1}, {¢}, {m,n}), but there exist no 2,,.yos, ({n},{¢},{l,m}) in (Y,2,.I') containing ({n},
{¢},{l,m}) such that A(({n}, {9}, {l,m}))  ({I},{e},{m,n}).

Example 3.7. In Example 3.6, h(vy) = Y, forall v € 2,,.I". Then h is 2,,.aC'ts but not 2,,.ayCts.

Corollary 3.8. Let (Y, N,,.I') be any Ny.ts. Let L be an Ny.sin (Y, N, .I'). Then L € N,,,POS(Y)
if and only if N,,.Scl(L) = Npcint(Nyccl(L)).

Theorem 3.9. For a function h : (Y, N,,.I') = (Z, N,..\V), then the statements
(i) his NpcayCts.

(ii) V p € Y and each N,.os N of Z containing h(p), there exists a Ny.yos L in'Y containing
p 3 h(L) C NpScl(N).

(iii) Vp € Y and each Ny .ros N of Z containing h(p), there exists a N,.yos L inY containing
p>3h(L) CN.

(iv) Vp € Y and each Ny.00s N of Z containing h(p), there exists a N,.yos L in'Y containing
p>h(L) CN.

Proof. (i) = (ii) Let p € Y and Let N be any N, .o0s of Z containing /(p). By (i), there exists
a Nyyos L of Y containing p 3 h(L) C Nycint(Npcl(N)). Since N is N,.o0s and hence N is
N,Pos. By Corollary 3.1, N,,cint(Npcl(N)) = NpScl(N). Therefore, h(L) C N, Scl(N).

(ii) = (iii) Let p € Y and Let N be any N,.ros of Z containing h(p). Then N is an
N,c0s of Z containing h(p). By (ii), there exists a N,.yos L in Y containing p 3 h(L) C
NpScl(N). Since N is N,.ros and hence N is N,.Pos. By Corollary 3.1, N, .Scl(N) =
Nyeint(Npecl(N)). Therefore, h(L) C Npcint(Nyecl(N)). Since N is Ny ros, then h(L) C N.

(iii) = (iv) Let p € Y and Let N be any N,.00s of Z containing h(p). Then for each
h(p) € N, there exists a N,.0s G containing h(p) 3 G C N, int(N,.cl(G)) € N. Since
Npeint(Npecl(GR)) is Nperos of Z containing h(p). By (iii), there exists a N,.yos L in Y
containing p 3 h(L) C Npcint (Npcl(G)) C N.

(iv) = (i) Let p € Y and Let N be any N,,.0s of Z containing h(p). Then N,,.int(N,.cl(N))
is N,c00s of Z containing h(p). By (iv), there exists a Ny, yos L in Y containing p > h(L) C
Nycint(Npecl(N)). Therefore, h is Np.ayCts. O

Theorem 3.10. For a function h : (Y, Ny .I') = (Z, Ny V), then the statements are equivalent.
(i) his Np.ayCts.
(ii) h™'(Npeint(Npecl(N))) is Nyeyos in Y, for each Ny.os N in Z.
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(iii) h='(Nyecl(Npeint(F))) is Npeyes in'Y, for each Nyecs F in Z.
(iv) h~! (F) is Nyeyesin'Y, for each Nycres F oof Z.
(v) h"(N) is N,yos inY, for each N,.ros N of Z.

Proof. (i) = (ii) Let N be any N,.0s in Z. We have to show that h~!(N,.int (N,.cl(N)))
is N,.yos in Y. Let p € h™'(Npeint (Nyecl(N))). Then h(p) € Npeint(Nyecl(N)) and
Npcint(Npecl(N)) is a Nycros in Z. Since h is N,.ayCts. Then by Theorem 3.9, there exists
a Nycvos L of Y containing p 3 h(L) C Npcint(Npccl(N)). Which implies that p € L C
h=Y(Nyeint(Npecl(N))). Therefore, =1 (N, cint(Nycl(N))) is Nyyosin Y.

(i) = (iii) Let F be any N,,.cs of Z. Then Z\ F is an N,,.0s of Z. By (ii), h =" (Npcint(Ny.cl
(Z\ F)))is Npeyosin Y and h™! (Npeint(Npecl(Z \ F))) = h™Y(Npeint(Z \ Npeint(F))) =
h=YZ\ Nyl (Npeint(F))) = Y\ h~Y(Npecl(Nyeint(F))) is Npeyosin Y and hence b~ (N,
cl(Npeint(F))) is Npyeyesin Y.

(iii) = (iv) Let F be any Ny.rcs of Z. Then F is a Nyccs of Z. By (iii), h~! (Npecl(Npeint
(F)))is Npeyesin Y. Since Fis Nyeres. Then h™' (Nyecl (Nyeint(F))) = b~ (F). Therefore,
h=Y(F)is NyeyesinY.

(iv) = (v) Let N be any N,.ros of Z. Then Z \ N is N,.rcs of Z and by (iv), we have
=Y (Z\ N) =Y \ h~'(N)is NpycsinY and hence h~'(N) is N,,.y0osin Y.

(v) = (i) Let p € Y and let N be any N,,.ros of Z containing h(p). Then p € h~!(N). By
(v), we have h~!(N) is N,,.yos in Y. Therefore, we obtain h(h~!(N)) C N. Hence by Theorem
3.9, his N,.ayCts. O

Theorem 3.11. For a function h : (Y, Ny .I') = (Z, Ny, V), then the statements are equivalent.
(i) his NpcayCts.

(ii) h(Npeyel(L)) C Nypcdcl(h(L)), for each subset L of Y.

(iii) Npeyel(h=Y(N)) € h=Y(N,.6cl(N)), for each subset N of Z.

(iv) h=Y(L) is Nyeyes inY, for each N, dcs L of Z.
(v) h"Y(N) is Nyyos inY, for each N, .50s N of Z.

(vi) h=Y(Npedint(N)) C Nypeyint(h~'(N)), for each subset N of Z.

(vii) Nyeoint(h(L)) C h(Nyeyint(L)), for each subset L of Y.

Proof. (i) = (ii) Let L be a subset of Y. Since N,.0cl(h(L)) is Np.dcs in Z. Then, we have
L C h™Y (N6 cl(h(L))). By (i) and Theorem 3.10, h=' (N,,.dcl(h(L))) is Nycyes of Y. Hence
Npevel(L) € h=Y(Nyedcl (h(L))). Therefore, we obtain h(N,.vcl(L)) € Ny.bcl(h(L)).

(i) = (iii) Let N be any subset of Z. Then h~!(IV) is a subset of Y. By (ii), we have
h(Nneyel (B (N))) € Nypedcl(h(h~'(N))) = Npedcl(N).

Hence N,.vel(h~Y(N)) € h= (N,.5cl(N)).

(ili) = (iv) Let L be any N,.dcs of Z. By (iii), we have N,.vel(h~1(L)) € h~Y(N,.6
cl(L)) = h~'(L) and hence h ' (L) is N,.ycsin Y.

(iv) = (v) Let N be any N,.d0s of Z. Then Z \ N is N, dcs of Z and by (iv), we have
h=Y(Z\N)=Y \ h™'(N)is N,.ycsin Y. Hence h~!(N) is N, yosinY.

(v) = (vi) For each subset N of Z. We have N,,.dint(N) C N. Then h~!(N,.dint(N)) C
h=Y(N). By (v), b 1(Nnedint(N)) is Npeyos in Y. Then A~ (N,.dint(N)) C N,.yint
(R~ ().

(vi) = (vii) Let L be any subset of Y. Then i(L) is a subset of Z. By (vi), we obtain
that h='(N,,.0int(h(L))) € Nyeyint(h~'(h(L))). Hence h=' (N,.0int(h(L))) C Nyyint(L).
Which implies that N,,.dint(h(L)) C h(Nyyint(L)).

(vii)) = (i) Let p € Y and N be any N,.ros of Z containing h(p). Then p € h~!(N)
and h~'(N) is a subset of Y. By (vii), we get N,.dint(h(h~'(N))) C h(Nnoyint(h~'(N)))
implies that N,,.6int(N) C h(Npyint(h~'(N))). Since N is N,,.ros and hence N is N,,.dos,
then N C h(N,.yint(h='(N))) this implies that h='(N) C N,y int(h~'(N)). Therefore,
h='(N)is N,.vos in Y which contains p and clearly h(h~'(N)) C N. Hence, by Theorem 3.9,
his Npc.ayCts. O
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Corollary 3.12. Let (Y, N,,.I') be any Nyts. Let L be an Ny.s in (Y, Ny, .I') is Ny,.Bos if and
only if Npccl(L) is Nycres.

Theorem 3.13. For a function h : (Y, Ny .I') = (Z, Ny, o\V), then the properties are equivalent.
(i) his NpcayCts.

(ii) Npeyel(h=Y(N)) € h=Y(Npecl(N)), for each Ny.yos N of Z.

(iii) h='(Nyeint(L) Nncfymt(h Y(L)), for each N, ycs L of Z.

(iv) h=Y(Nyeint(L) Nnc'ymt(h Y(L)), for each N,,.Scs L of Z.
(v) Npeyel(h=Y(N)) € h=Y(N,cl(N)), for each N, .Sos N of Z.

) C
) C

Proof. (i) = (ii) Let N be any N, .yos of Z. It follows from Corollary 3.12, that N,.cl(N) is
N,.rcs in Z. Since h is Nmaths Then by Theorem 3.10, h= ' (N,cl(N)) is Nyeycs in Y.
Therefore, we obtain N,,.ycl(h~'(N)) € h™ ! (N,ecl(N)).

(i) < (iii) Let L be any Npeyes of Z. Then Z \ L is Nncfyos of Z and by (ii), we have
Npevel(h=Y(Z\ L)) C ™Y nccl(Z \ L)) & Noevel(Y \ h~1(L)) C h="(Z \ Npeint(L)) <
Y\ Npeyint(h=1(L)) C Y \h~!(N,int(L)). Therefore, =1 (N, int(L)) C N,.vint(h~(L)).

(iii) = (iv) This is obvious since every N,,.Scs is Nycycs.

(iv) = (v) Let N be any N, Sos of Z. Then Z \ N is N,.Scs and by (iv), we have
h~ l(Nmint(Z\N)) C Nooyint(h=Y(Z\N)) & h=Y(Z\Npecl(N)) C Nyeyint(Y\hL1(N)) &
Y\ b= Y (Npecl(N)) €Y\ Nyeyel (h'(N)). Therefore, N,vel(h™'(N)) € h™ 1 (Npecl(N)).

(v) = (i) Let L be any Ny.rcs of Z. Then L is N,.Sos of Z. By (v), we have N, .vcl
(h='(L)) € h™'(Npe cl(L)) = h~'(L). This shows that h~!(L) is N,,.ycs in Y. Therefore, by
Theorem 3.10, h is N, .ayCts. O

Corollary 3.14. Let (Y, N,,.I') be any Nyts. Let L be an Ny.s in (Y, N, .I'). Then
(i) L € N,,.SO(Y), then N,,.Pcl(L) = Nyccl(L).
(ii) L € NpoBO(Y), then Nyoacl(L) = Npocl(L).
(iii) L € NpoBO(Y), then Nyodcl(L) = Nyocl(L).
Theorem 3.15. For a function h : (Y, Ny, .I') = (Z, Ny V), then the statements are equivalent.
(i) his NpcayCts.
(ii) Nyeyel(h™'(N)
(iii) Npeyel(h™'(N)
(iv) Nncyel(h™'(N)
(v) Npeyel(h™'(N)

Proof. (i) = (ii) Follows from Theorem 3.13 and Corollary 3.14 (ii).
(ii) = (iii) This is obvious, since Ny .acl(N) C N,0cl(N) in general.
(iii) = (iv) and (iv) = (v) Follows from Corollary 3.14.
(v) = (i) Follows from Theorem 3.13 and Corollary 3.14 (i). O

“(Npecl(N)), for each Ny.30s N of Z.

N (Npebcl(N)), for each N, .Bos N of Z.

1 (Nueyel(N)), for each N,,.Sos N of Z.
(

) €
) <
) €
) € h=Y(N,.Pcl(N)), for each N,,.Sos N of Z.

Corollary 3.16. For a function h : (Y, N,,.I') = (Z, N,..¥), then the statements are equivalent.
(i) his Np.ayCts.

(ii) h=Y(Npcint(N)) C Nyeyint(h=Y(N)), for each Ny,.cs N of Z.

(iii) h™'(N,e0int(N)) C Npeyint(h~'(N)), for each N,.Bcs N of Z.

(iv) h= 1 (Nyeyint(N)) C Nyeyint(h~'(N)), for each N,,.Scs N of Z.

(v) h=Y(Npn.Pint(N)) C N,.yint(h~'(N)), for each N,,.Scs N of Z.

Theorem 3.17. A function h : (Y, N,.I') — (Z, N,.W) is NyeayCts if and only if h~'(N) C
Npeyint(h~Y(N,cint (N,.cl(N)))) for each N,,.Pos N of Z.
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Proof. Necessity. Let N be any N,,.Pos of Z. Then N C N,,.int(Np.cl(N)) and N, .int(N,
cl(N)) is Nyeros in Z. Since h is N,.ayCts, by Theorem 3.10, h~'(N,.int(Ny.cl(N))) is
N,vos in Y and hence we obtain that h~!(N) C h=Y( N, int(Npecl(N))) = Npeyint(h™
(Npeint(Nyecl(N)))).

Sufficiency. Let N be any N, .ros of Z. Then N is N,.Pos of Z. By hypothesis, we have
h=Y(N) C Nyeyint(h™'(Npeint (Npecl(N)))) = Npevint(h~Y(N)). Therefore, h~1(N) is
Npvos in'Y and hence by Theorem 3.10, h is N .ayC'ts. O

Corollary 3.18. A function h : (Y, N,,.I') = (Z, N,,.¥) is N,.ayCts if and only if h~'(N) C
Npeyint(h~Y (NS cl(N))) for each N, .Pos N of Z.

Corollary 3.19. A function h : (Y, N, .I') — (Z, N,,oW) is NpeayCts if and only if Nyeyel(h™!
(Npecl(Nyeint(L)))) € h~Y (L) for each N, .Pcs L of Z.

Corollary 3.20. A function h : (Y, N, .I') — (Z, N,,.'¥) is Np.ayCts if and only if Nyyel(h™!
(Npn.Sint(L))) € h=1(L) for each N,,.Pcs L of Z.

Theorem 3.21. For a function h : (Y, Ny, .I') = (Z, N,,.V), then the statements are equivalent.
(i) his NpcayCts.
(ii) For each neighborhood N of h(p), p € Nyyint(h™!(NpeScl(N))).

(iii) For each neighborhood N of h(p), p € Npcvyint(h™' (N,cint(Nyecl(N)))).
Proof. Follows from Theorem 3.17 and Corollary 3.18. O

Theorem 3.22. Let h : (Y, N,.I') — (Z, NnC‘P) is an Np.ayCts function and Let N be any
open subset of Z. If p € Npeyel (R~ (N))\ h=Y(N), then h(p) € Nyl (N).

Proof. Letp € Y be such that p € N,,.ycl(h~'(N))\ h~'(N) and suppose h(p) & N,.ycl(N).
Then there exists a Ny.yos H C h(p) > HN N = @. Then N,.cl(H) N N = ( implies
Npeint(Npecl(H)) NN = @ and Npint(Nyecl(H)) is Nyeros. Since h is Ny.ayCts, by The-
orem 3.9, there exists a N,.yos L in Y containing p > h( ) C Nncz'nt(chl(H)). There-
fore, h(L) N N = (. However, since p € N,.ycl(h~'(N)), L N h~'(N) # 0 for every
Nypeyos L in Y containing p, so that h(L) N N # (. We have a contradiction. It follows
that h(p) € Npeycl(N). ]

Theorem 3.23. If h : (Y], Np.I') — (Y2, Npo¥) is NycayCis and B 2 (Ya, NpeP) — (Y, Npe
®) is N,,.Cts and open. Then the composition function b’ o h : (Y1, NpI') — (Y3, Npe®) is
NpcayCts.

Proof. Letp € Y; and N be a N,,.os of Y3 containing 1/(h(p)). Since h’ is N,,.Cts, h'~!(N)
is a Np.0s of Y, containing h(p). Since h is N,.ayCts, 3 a N,.yos L of Y; containing p >
h(L) C Nycint(Nyecl(W='(N))). Also, since b’ is N,,.Cts, then we obtain (b’ o h)(L) C
B! (Npeint(h'~1(Npecl(N)))). Since k' is open, we obtain (h' o h)(L) C N,.int(Npccl(N)).
Therefore, h' o h is N, .ayCts. O

Definition 3.24. Let (Y, N,,.I') be any N,,.ts., then Y is said to be N-neutrosophic crisp semi-
regular (briefly, V,,.Sr) function if for any N,.0s L of Y and each N,,.p, p € L, there exists a
Ny.ros Nof Y 5pe N C L.

Theorem 3.25. If h : (Y, N,,.I') = (Z, Npo¥V) is a NycayCts function and Z is Ny, .Sr. Then h
is NpcyClts.

Proof. Letp € Y and Let M be any N,,.0s of Z containing h(p). By N,,.Sr function of Z, there
exists a N,.ros G of Z 3 h(p) € G C M. Since h is N,.ayCts. By Theorem 3.9, there exists a
Nypeyos L of Y containing p 2 h(L) C G C M. Therefore, h is Ny,,.yCts. O
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4 Conclusion

We have introduced N-neutrosophic crisp almost «y-continuous functions in a /N-neutrosophic
crisp y-open sets via topological spaces. Also, we have established some properties and re-
sults of almost y-continuous function in /N-neutrosophic crisp topological spaces. Finally, we
study some relation between almost y-continuous function and v-continuous function in N-
neutrosophic crisp topological spaces as well as their near open sets such as semi-open set,
pre-open set and S-open set.

By using N-neutrosophic crisp y-open set, the notions can be extend to N-neutrosophic crisp
almost contra -continuous functions, N-neutrosophic crisp v open mappings, N -neutrosophic
crisp 7y closed mappings, /N-neutro-sophic crisp v homomorphisms and N-neutrosophic crisp
~ irresolute functions in N-neutrosophic crisp topological spaces in future. Additionally, the
notions can be tried in programming languages like C++, MATLAB, Python, etc. to simplify the
results in topology.
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