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Abstract Asymptotic properties of solutions of the third-order functional differential equa-
tion

Ly(t) + f(t)yβ(ϕ(t)) = 0,

where Ly(t) = (p(t)(q(t)y′(t))′)′ is a semi-canonical differential operator, are studied. The
main goal is to transform the semi-canonical operator into canonical form; which simplifies the
investigation of the oscillatory properties of solutions. Examples are established to illustrate the
significance of the results obtained.

1 Introduction

The present paper investigates the asymptotic behavior of solutions of the semi-canonical third-
order functional differential equation

Ly(t) + f(t)yβ(ϕ(t)) = 0, t ≥ t0 > 0, (1.1)

where L is the differential operator as below

Ly(t) = (p(t)(q(t)y′(t))′)′, (1.2)

and β is the ratio of positive odd integers.
Throughout the paper, and without further mention, the following terms will be accepted:

(i) q ∈ C(2)([t0,∞), (0,∞)), p ∈ C1([t0,∞), (0,∞)), and f ∈ C([t0,∞), (0,∞));

(ii) ϕ ∈ C1([t0,∞),R), ϕ′(t) ≥ 0, and limt→∞ ϕ(t) =∞;

(iii) The operator L is in semi-canonical form, namely,∫ ∞
t0

1
p(t)

dt =∞ and
∫ ∞
t0

1
q(t)

dt <∞. (1.3)

Recall that a solution of (1.1) is a nontrivial real-valued function y satisfying (1.1) for t ≥ ty for
some ty ≥ t0 such that y ∈ C1([ty,∞),R), qy′ ∈ C1([ty,∞),R), and p(qy′)′ ∈ C1([ty,∞),R).
Solutions vanishing identically in some neighborhood of infinity will be excluded from our con-
sideration and we suppose that (1.1) possesses such solutions. Such a solution y(t) of (1.1) is said
to be oscillatory if it has arbitrarily large zeros on [ty,∞); otherwise it is called non-oscillatory.

In the past several years many papers have appeared in the literature dealing with the oscilla-
tory and asymptotic behavior of solutions of (1.1), see, for example ([1]–[31]) and the references
cited therein. However, most of the papers are dedicated to canonical type equations, that is,∫ ∞

t0

1
p(t)

dt =

∫ ∞
t0

1
q(t)

dt =∞.

This is due to the fact that the investigation of oscillatory properties of canonical type equations
is much simpler than non-canonical ones. In this paper, we introduce a technique to convert the
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semi-canonical equation (1.1) to a canonical equation, and then we obtain some novel criteria
for the oscillatory and asymptotic behavior of solutions of (1.1).

When considering nonoscillatory solution of (1.1), we may restrict our attention only to pos-
itive ones; since if y(t) is a solution of (1.1), then −y(t) is also a solution. It follows from a
well-known result in [21, 24] that the positive solutions of semi-canonical equation (1.1) belong
to the following class:

Lemma 1.1. Assume that y is an eventually positive solution of (1.1) satisfying (1.3). Then there
exists t1 ∈ [t0,∞) such that y satisfies one of the following three cases:

(I) y′(t) > 0, (q(t)y′(t))′ > 0, (p(t)(q(t)y′(t))′)′ < 0,

(II) y′(t) < 0, (q(t)y′(t))′ > 0, (p(t)(q(t)y′(t))′)′ < 0,

(III) y′(t) < 0, (q(t)y′(t))′ < 0, (p(t)(q(t)y′(t))′)′ < 0,

for t ≥ t1.

Therefore, from the above lemma, it is clear that if we wish to obtain oscillation criteria for a
semi-canonical equation (1.1), we have to eliminate three above mentioned cases. To overcome
this, we present a simple condition that converts equation (1.1) to a canonical form that will
simplify the analysis of its solutions. In the process, we consider delay, advanced and ordinary
differential equations.

2 Main Results

The following symbols will be used to facilitate readability:

Q(t) :=
∫ ∞
t

1
q(s)

ds, b(t) := q(t)Q2(t), a(t) :=
p(t)

Q(t)
,

F (t) := Qβ(ϕ(t))f(t), µ(t) :=
∫ t

t1

1
a(s)

ds, and η(t) :=
∫ t

t1

µ(s)

b(s)
ds

for t ≥ t1 for some t1 ≥ t0.

Theorem 2.1. Assume that ∫ ∞
t0

1
a(t)

dt =∞. (2.1)

Then the semi-canonical operator L has the unique canonical representation as below

Ly(t) =

(
p(t)

Q(t)

(
q(t)Q2(t)

(
y(t)

Q(t)

)′)′)′
. (2.2)

Proof. Direct calculation shows that

p(t)

Q(t)

(
q(t)Q2(t)

(
y(t)

Q(t)

)′)′
=

p(t)

Q(t)
[Q(t)q(t)y′(t) + y(t)]

′

=
p(t)

Q(t)
[Q(t)(q(t)y′(t))′]

= p(t)(q(t)y′(t))′.

Therefore (
p(t)

Q(t)

(
q(t)Q2(t)

(
y(t)

Q(t)

)′)′)′
= (p(t)(q(t)y′(t))′)′.

From (2.1) we observe that ∫ ∞
t0

Q(t)

p(t)
dt =∞,



Semi-canonical third-order functional dif. eqs.... 435

and since ∫ ∞
t0

1
q(t)Q2(t)

dt = lim
t→∞

(
1

Q(t)
− 1
Q(t0)

)
=∞,

we deduce that (2.2) is in canonical form and from [27] this canonical form is unique.

From Theorem 2.1, it follows that under condition (2.1), equation (1.1) takes the equivalent
form (

a(t)

(
b(t)

(
y(t)

Q(t)

)′)′)′
+ f(t)yβ(ϕ(t)) = 0.

Letting z(t) = y(t)
Q(t) and using the notation F (t), we immediately arrive at the following conclu-

sion.

Theorem 2.2. Let (2.1) be satisfied. Then semi-canonical differential equation (1.1) possesses a
solution y(t) if and only if the canonical equation

(a(t)(b(t)z′(t))′)′ + F (t)zβ(ϕ(t)) = 0 (2.3)

has the solution z(t) = y(t)
Q(t) .

Corollary 2.3. Let (2.1) holds. Then semi-canonical differential equation (1.1) has an eventually
positive solution if and only if canonical equation (2.3) has an eventually positive solution.

Corollary 2.3 clearly simplifies examination of (1.1) since for (2.3), and so we are concerned
with only two classes of eventually positive solutions, i.e, either

z(t) > 0, b(t)z′(t) < 0, a(t)(b(t)z′(t))′ > 0, (a(t)(b(t)z′(t))′)′ < 0

and in this case we say z ∈ N0, or

z(t) > 0, b(t)z′(t) > 0, a(t)(b(t)z′(t))′ > 0, (a(t)(b(t)z′(t))′)′ < 0

then we say z ∈ N2.

Theorem 2.4. Let ϕ(t) ≤ t, β > 1, and (2.1) hold. Assume that∫ ∞
t0

1
b(s)

∫ ∞
s

1
a(v)

∫ ∞
v

F (u)dudvds =∞ (2.4)

and

lim sup
t→∞

(
1

µβ(ϕ(t))

∫ ϕ(t)

t0

F (s)ηβ(ϕ(s))µ(s)ds+
1

µβ−1(ϕ(t))

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))ds

+ µ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds

)
=∞. (2.5)

Then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.

Proof. Let y(t) be a non-oscillatory solution of equation (1.1), say y(t) > 0, and y(ϕ(t)) > 0
for t ≥ t1 for some t1 ≥ t0. Then, from Corollary 2.3, the corresponding function z(t) = y(t)

Q(t) is
a positive solution of (2.3) and so either z ∈ N0 or z ∈ N2 for t ≥ t1.

Let’s consider the case when z ∈ N2. Then, we observe that

b(t)z′(t) ≥
∫ t

t1

a−1(s)a(s)(b(s)z′(s))′ds ≥ a(t)(b(t)z′(t))′µ(t),

which implies that (
b(t)z′(t)

µ(t)

)′
≤ 0. (2.6)
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It follows from (2.6) that

z(t) ≥
∫ t

t1

b(s)z′(s)

µ(s)

µ(s)

b(s)
ds ≥ b(t)z′(t)

µ(t)
η(t).

From this and (2.3), we observe that x(t) = b(t)z′(t) is a positive increasing solution of the
retarded differential inequality

(a(t)x′(t))′ +
F (t)ηβ(ϕ(t))

µβ(ϕ(t))
xβ(ϕ(t)) ≤ 0, (2.7)

and also from (2.6) we deduce that x(t)/µ(t) is nonincreasing. An integration of (2.7) from t to
∞ gives

x′(t) ≥ 1
a(t)

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
xβ(ϕ(s))ds,

from which, we see that

x(t) ≥
∫ t

t1

1
a(s)

∫ ∞
s

F (u)ηβ(ϕ(u))

µβ(ϕ(u))
xβ(ϕ(u))duds

=

∫ t

t1

1
a(s)

∫ t

s

F (u)ηβ(ϕ(u))

µβ(ϕ(u))
xβ(ϕ(u))duds

+

∫ t

t1

1
a(s)

∫ ∞
t

F (u)ηβ(ϕ(u))

µβ(ϕ(u))
xβ(ϕ(u))duds

=

∫ t

t1

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
xβ(ϕ(s))ds

+ µ(t)

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
xβ(ϕ(s))ds. (2.8)

Hence,

x(ϕ(t)) ≥
∫ ϕ(t)

t1

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
xβ(ϕ(s))ds+ µ(ϕ(t))

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
xβ(ϕ(s))ds

+ µ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
xβ(ϕ(s))ds.

Using the monotonicity properties of x(t) and x(t)/µ(t), we obtain

x(ϕ(t)) ≥ xβ(ϕ(t))

µβ(ϕ(t))

∫ ϕ(t)

t1

F (s)ηβ(ϕ(s))µ(s)ds+
xβ(ϕ(t))

µβ−1(ϕ(t))

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))ds

+ µ(ϕ(t))xβ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds,

or

x1−β(ϕ(t)) ≥ 1
µβ(ϕ(t))

∫ ϕ(t)

t1

F (s)ηβ(ϕ(s))µ(s)ds+
1

µβ−1(ϕ(t))

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))ds

+ µ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds. (2.9)

Since x(t) is positive and increasing, there exists a constant B > 0 such that x(t) ≥ B, and so
we have x1−β(ϕ(t)) ≤ B1−β . Using this in (2.9) yields

B1−β ≥ 1
µβ(ϕ(t))

∫ ϕ(t)

t1

F (s)ηβ(ϕ(s))µ(s)ds+
1

µβ−1(ϕ(t))

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))ds

+ µ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds.
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Now take the lim sup as t→∞ of the resulting inequality, we obtain a contradiction to (2.5).
Next, we assume that z ∈ N0. Then limt→∞ z(t) = m ≥ 0. We assert thatm = 0. Otherwise,

we have z(t) ≥ m > 0. Integrating (2.3) from t to∞ gives

a(t)(b(t)z′(t))′ ≥
∫ ∞
t

F (s)zβ(ϕ(s))ds ≥ mβ

∫ ∞
t

F (s)ds.

Hence
−b(t)z′(t) ≥ mβ

∫ ∞
t

1
a(u)

∫ ∞
u

F (s)dsdu,

from which
z(t1) ≥ mβ

∫ ∞
t1

1
b(u)

∫ ∞
u

1
a(v)

∫ ∞
v

F (s)dsdvdu,

which yields a contradiction to (2.4) and so the following is followed

lim
t→∞

z(t) = lim
t→∞

y(t)

Q(t)
= 0.

This completes the proof of the theorem.

Theorem 2.5. Let ϕ(t) ≤ t, β = 1, and (2.1) hold. If (2.4) and

lim sup
t→∞

(
1

µ(ϕ(t))

∫ ϕ(t)

t0

F (s)η(ϕ(s))µ(s)ds+

∫ t

ϕ(t)

F (s)η(ϕ(s))ds

+ µ(ϕ(t))

∫ ∞
t

F (s)η(ϕ(s))

µ(ϕ(s))
ds

)
> 1 (2.10)

are fulfilled, then the conclusion of Theorem 2.4 remains intact.

Proof. The proof is followed by putting β = 1 in Theorem 2.4, so the details are omitted.

Theorem 2.6. Let ϕ(t) ≤ t, 0 < β < 1, and (2.1) hold. If (2.4) and

lim sup
t→∞

(
1

µ(ϕ(t))

∫ ϕ(t)

t0

F (s)ηβ(ϕ(s))µ(s)ds+

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))ds

+ µβ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds

)
=∞ (2.11)

hold, then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.

Proof. Let y(t) be a non-oscillatory solution of equation (1.1), say y(t) > 0, and y(ϕ(t)) > 0
for t ≥ t1 for some t1 ≥ t0. Then, from Corollary 2.3, the corresponding function z(t) = y(t)

Q(t) is
a positive solution of (2.3) and so either z ∈ N0 or z ∈ N2 for t ≥ t1.

First, we assume that z ∈ N2. Proceeding as in the proof of Theorem 2.4, we are lead to
(2.9). Now dividing (2.9) by µ1−β(ϕ(t)), we observe that(

x(ϕ(t))

µ(ϕ(t))

)1−β

≥ 1
µ(ϕ(t))

∫ ϕ(t)

t1

F (s)ηβ(ϕ(s))µ(s)ds+

∫ t

ϕ(t)

F (s)ηβ(ϕ(s))ds

+ µβ(ϕ(t))

∫ ∞
t

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds. (2.12)

Since x(ϕ(t))/µ(ϕ(t)) is decreasing and 0 < β < 1, there exists a constant M1 > 0 such that(
x(ϕ(t))

µ(ϕ(t))

)1−β

≤M1−β
1 .

Using this in (2.12) and taking the lim sup as t → ∞, we establish a contradiction with (2.11),
and therefore z 6∈ N2.

Next, we assume that z ∈ N0. Proceeding similarly to the proof of Theorem 2.4, we again
see that condition (2.4) implies limt→∞

y(t)
Q(t) = 0. This completes the proof.
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Remark 2.7. The assertions of Theorems 2.4–2.6 can be restated as follows:
If y(t) is a non-oscillatory solution of (1.1), then for any B > 0 is a constant, we have

|y(t)| ≤ BQ(t).

The method used for obtaining asymptotic criteria for retarded functional differential equa-
tions (RFDE) can be used also for advanced type functional differential equations (AFDE) as
well.

Theorem 2.8. Let ϕ(t) ≥ t, β > 1, and (2.1) hold. If (2.4) and

lim sup
t→∞

(
1

µβ(ϕ(t))

∫ t

t0

F (s)ηβ(ϕ(s))µ(s)ds+

∫ ϕ(t)

t

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
ds

+ µ(ϕ(t))

∫ ∞
ϕ(t)

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds

)
=∞, (2.13)

then the coclusion of Theorem 2.4 holds.

Proof. Let y(t) be a non-oscillatory solution of equation (1.1), say y(t) > 0, and y(ϕ(t)) > 0
for t ≥ t1 for some t1 ≥ t0. Then, from Corollary 2.3, the corresponding function z(t) = y(t)

Q(t) is
a positive solution of (2.3) and so either z ∈ N0 or z ∈ N2 for t ≥ t1.

First, we assume that z ∈ N2. Proceeding as in the proof of Theorem 2.4, we again lead to
(2.8) for t ≥ t1. From (2.8),

x(ϕ(t)) ≥
∫ t

t1

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
xβ(ϕ(s))ds+

∫ ϕ(t)

t

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
xβ(ϕ(s))ds

+ µ(ϕ(t))

∫ ∞
ϕ(t)

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
xβ(ϕ(s))ds. (2.14)

Using the monotonicity properties of x(t) and x(t)/µ(t), we observe from (2.14) that

x(ϕ(t)) ≥ xβ(ϕ(t))

µβ(ϕ(t))

∫ t

t1

F (s)ηβ(ϕ(s))µ(s)ds+ xβ(ϕ(t))

∫ ϕ(t)

t

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
ds

+ µ(ϕ(t))xβ(ϕ(t))

∫ ∞
ϕ(t)

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds,

or

x1−β(ϕ(t)) ≥ 1
µβ(ϕ(t))

∫ t

t1

F (s)ηβ(ϕ(s))µ(s)ds+

∫ ϕ(t)

t

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
ds

+ µ(ϕ(t))

∫ ∞
ϕ(t)

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds. (2.15)

Since x(t) is increasing, there exists M2 > 0 such that x1−β(ϕ(t)) ≤ M1−β
2 for t ≥ t1. Using

this in (2.15) and then letting lim sup as t→∞, we contradict (2.13).
In the case when z ∈ N0, as did in Theorem 2.4, we contradict (2.4). This completes the

proof.

Theorem 2.9. Let ϕ(t) ≥ t, β = 1, and (2.1) hold. If (2.4) and

lim sup
t→∞

(
1

µ(ϕ(t))

∫ t

t0

F (s)η(ϕ(s))µ(s)ds+

∫ ϕ(t)

t

F (s)η(ϕ(s))µ(s)

µ(ϕ(s))
ds

+ µ(ϕ(t))

∫ ∞
ϕ(t)

F (s)η(ϕ(s))

µ(ϕ(s))
ds

)
> 1, (2.16)

then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.
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Proof. The proof follows from Theorem 2.8 by setting β = 1 in (2.15). This completes the
proof.

Theorem 2.10. Let ϕ(t) ≥ t, 0 < β < 1, and (2.1) hold. If (2.4) and

lim sup
t→∞

(
1

µ(ϕ(t))

∫ t

t0

F (s)ηβ(ϕ(s))µ(s)ds+
1

µ1−β(ϕ(t))

∫ ϕ(t)

t

F (s)ηβ(ϕ(s))µ(s)

µβ(ϕ(s))
ds

+ µβ(ϕ(t))

∫ ∞
ϕ(t)

F (s)ηβ(ϕ(s))

µβ(ϕ(s))
ds

)
=∞, (2.17)

then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.

Proof. The proof is similar to that of Theorem 2.6 and hence the details are omitted.

For the special case ϕ(t) ≡ t, we obtain the following results for the ordinary equation

(p(t)(q(t)y′(t))′)′ + f(t)yβ(t) = 0. (2.18)

From the above theorems, we immediately get the following corollaries.

Corollary 2.11. Assume that β > 1, (2.1), and (2.4) are satisfied. If

lim sup
t→∞

(
1

µβ(t)

∫ t

t0

F (s)ηβ(s)µ(s)ds+ µ(t)

∫ ∞
t

F (s)ηβ(s)

µβ(s)
ds

)
=∞, (2.19)

then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.

Corollary 2.12. Let β = 1, (2.1), and (2.4) are fullfiled. If

lim sup
t→∞

(
1
µ(t)

∫ t

t0

F (s)η(s)µ(s)ds+ µ(t)

∫ ∞
t

F (s)η(s)

µ(s)
ds

)
> 1, (2.20)

then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.

Corollary 2.13. Let 0 < β < 1, (2.1), and (2.4) are satisfied. If

lim sup
t→∞

(
1
µ(t)

∫ t

t0

F (s)ηβ(s)µ(s)ds+ µβ(t)

∫ ∞
t

F (s)ηβ(s)

µβ(s)
ds

)
=∞, (2.21)

then every non-oscillatory solution y(t) of (1.1) satisfies limt→∞
y(t)
Q(t) = 0.

Based on each of the results obtained, it is possible to formulate an oscillation theorem. As
an example, we do it for Corollary 2.12.

Theorem 2.14. Let β = 1. If conditions (2.1), (2.4) and (2.20) hold, then any solution y(t) of
(2.18) is either oscillatory or satisfies limt→∞

y(t)
Q(t) = 0.

3 Examples

Here we will demonstrate the applicability of the results obtained above through some examples.

Example 3.1. Consider semi-canonical differential equation of the third-order(
1
t

(
t3/2y′(t)

)′)′
+

1
t13/6 y

5/3
(
t

2

)
= 0, t ≥ 1. (3.1)

Here p(t) = 1/t, q(t) = t3/2, f(t) = 1/t13/6, β = 5/3, and ϕ(t) = t/2. A simple computation
shows that Q(t) = 2/

√
t, a(t) = 1/2

√
t, b(t) = 4

√
t, F (t) = 4

√
2/t3, µ(t) ≈ 4t3/2/3 and

η(t) ≈ t2/6. The transformed equation(
1√
t
(
√
tz′(t))′

)′
+

2
√

2
t3

z5/3
(
t

2

)
= 0
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is canonical. It is easy to see that conditions (2.1) and (2.4) are satisfied. Further, condition (2.5)
becomes

lim sup
t→∞

[
41/3

t5/2

∫ t/2

1
s11/6ds+

25/6

t

∫ t

t/2
s1/3ds+

t3/2

25/6

∫ ∞
t

1
s13/6 ds

]
=∞,

that is, (2.5) holds. Now, all terms of Theorem 2.4 are provided. Hence, every non-oscillatory
solution y(t) of (3.1) satisfies

lim
t→∞

√
ty(t) = 0.

Example 3.2. Consider semi-canonical differential equation of the third-order(
1√
t

(
t2y′(t)

)′)′
+

41/7

t9/7 y
5/7
(
t

2

)
= 0, t ≥ 1. (3.2)

Here p(t) = 1/
√
t, q(t) = t2, f(t) = 41/7/t9/7, ϕ(t) = t/2, and β = 5/7. A simple calculation

shows that Q(t) = 1/t, a(t) =
√
t, b(t) = 1, F (t) = 2/t2, µ(t) ≈ 2

√
t and η(t) = 4t3/2/3. The

transformed equation (√
tz′′(t)

)′
+

2
t2
z5/7

(
t

2

)
= 0

is canonical. It is easy to see that conditions (2.1) and (2.4) hold. Further, condition (2.11)
becomes

lim sup
t→∞

[
81/7

t1/2

∫ t/2

1

1
s3/7 ds+

1
21/14

∫ t

t/2

1
s13/14 ds+

t5/14

2−13/14

∫ ∞
t

1
s9/7 ds

]
=∞,

that is, (2.11) is satisfied. Hence, by Theorem 2.6, every non-oscillatory solution y(t) of (3.2)
satisfies

lim
t→∞

ty(t) = 0.

Example 3.3. Consider semi-canonical differential equation of the third-order(
1
t

(
t2y′(t)

)′)′
+

1
t2
y

(
t

2

)
= 0, t ≥ 1. (3.3)

Here p(t) = 1/t, q(t) = t2, f(t) = 1/t2, ϕ(t) = t/2, and β = 1. A simple calculation shows
that Q(t) = 1/t, a(t) = b(t) = 1, F (t) = 2/t3, µ(t) ≈ t and η(t) ≈ t2/2. The transformed
equation

z′′′(t) +
2
t3
z

(
t

2

)
= 0

is canonical. Clearly conditions (2.1) and (2.4) are satisfied. Further, condition (2.10) becomes

lim sup
t→∞

[
2
t

∫ t/2

1

1
2
ds+

∫ t

t/2

1
2s
ds+

t

2

∫ ∞
t

1
s2 ds

]
= 1 +

1
2

log 2 > 1,

that is, (2.10) is satisfied. Hence, by Theorem 2.5, every non-oscillatory solution y(t) of (3.3)
satisfies

lim
t→∞

ty(t) = 0.

Example 3.4. Consider the semi-canonical ordinary differential equation of third-order(
1
t

(
t2y′(t)

)′)′
+

6
t2
y(t) = 0, t ≥ 1. (3.4)

Here p(t) = 1/t, q(t) = t2, f(t) = 6/t2, ϕ(t) = t, and β = 1. A simple calculation shows that
Q(t) = 1/t, a(t) = b(t) = 1, F (t) = 6/t3, µ(t) ≈ t and η(t) ≈ t2/2. Clearly all conditions
of Corollary 2.12 hold, so any non-oscillatory solution y of (3.4) satisfies limt→∞ ty(t) = 0. In
fact, y(t) = 1/t2 is one such solution of (3.4).
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4 Concluding Remarks

In the present paper, we introduced semi-canonical third-order differential operators and then
we transform this type of operators to a canonical form. This approach was then used to study
the asymptotic behavior of nonoscillatory solutions of (1.1). Results were obtained for the delay,
advanced and ordinary cases of semi-canonical equations. Examples to illustrate the main results
were presented.

Finally, we note that additional results on the behavior of solutions of (1.1) can be obtained
from known results for canonical equations applied to (2.3) and (2.18).
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