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Abstract In this paper, we consider a module over a Γ-nearring (also known as, MΓ-group)
G. We introduce the notions (i, 2)-absorbing, i ∈ {c, 3} ideals of G, as a generalization of i-
prime ideal ofG. We prove several properties and exhibit examples that indicate these classes are
different from the existing classes of prime ideals. Further, we prove the properties such as ho-
momorphic images, inverse images of (c, 2)-absorbing ideals of G, and the properties involving
Notherian quotients of (i, 2)-absorbing ideals of G, i ∈ {c, 3}.

1 Introduction

A module over a nearring (or N -group) is a generalization of a module over an arbitrary ring.
Precisely, it is an action of a group (not necessarily abelian) over a nearring. Juglal et.al. [19]
generalized prime ideal in modules over rings to modules over nearrings in several ways. They
obtained some characterizations of prime nearring modules and exhibited interesting properties.
More importantly, the connection between a prime ideal of module over a nearring and the
corresponding annihilators in a nearring were investigated. Badawi [1] introduced the idea of
2-absorbing ideal of a commutative ring with identity, as a generalization of a prime ideal in
a commutative ring, and explored several properties. Darani and Soheilnia [14] introduced a
weakly 2-absorbing submodule of a module over a commutative ring with identity. 2-absorbing
modules over non-commutative rings were studied by Groenewald and Nguyen [15]. Indeed,
there are several means to generalize these to prime ideals of nearrings. Prime ideals in nearrings
have been introduced in Holcombe [18], and later studied by [19, 4, 5]. The concept of Γ-ring
was introduced by Nobusawa [25], and a generalization of this concept namely, a Γ-nearring
was introduced by Bhavanari [2]. Further, the module structure over a Γ-nearring was explored
in Bhavanari [2, 8]. The comprehensive study of Γ-nearrings is due to [6, 12, 13, 10, 11, 21].
Recently, Hamsa et.al. [17] defined quasi associativity in ΘΓ-N -groups (as generalized MΓ-
groups), and proved the fundamental isomorphism theorems. In this paper, we introduce (i, 2)-
absorbing ideals (i ∈ {c, 3}) of a module over gamma nearrings and illustrate that these classes
are different from the classes of prime ideals introduced in [27]. In section 2, we prove properties
such as homomorphic images, inverse images of (c, 2)-absorbing ideals of G, and the properties
involving Notherian quotients of (c, 2)-absorbing ideals of G. Section 3 deals with few results
involving the properties of (3, 2)-absorbing ideals of G. Throughout, M denotes a right gamma
nearring, and G stands for an MΓ-group. Further, all undefined notations and conventions will
be used as in [27, 5]. We assume M to be zero-symmetric whenever necessary.

2 Preliminaries

The notion of Γ-nearring was defined by Bhavanari [2, 7] as a generalization of a nearring
(Pilz[27]) and a Γ-ring (Nobusawa [25]).

Definition 2.1. Let (M,+) be a group (not necessarily abelian) and Γ a non-empty set. Then
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M is said to be a Γ-nearring if there exists a mapping M × Γ ×M → M (denote the image of
(m1, γ,m2) by m1γ1m2 for m1,m2 ∈M and γ1 ∈ Γ) satisfying the following conditions:

(i) (m1 +m2)γ1m3 = m1γ1m3 +m2γ2m3 and

(ii) (m1γ1m2)γ2m3 = m1γ1(m2γ2m3),

for all m1,m2,m3 ∈M and for all γ1, γ2 ∈ Γ.

If Γ = {·}, then M becomes a nearring.
The following definition is a generalization of an N -group defined in Pilz [27].

Definition 2.2. Let M be a Γ-nearring. An additive group G is said to be an MΓ-group (or MΓ-
module or Γ-nearring module over M ) if there exists a mapping M × Γ × G → G (denote the
image of (m, γ, g) by mγg for m ∈M and γ ∈ Γ, g ∈ G) satisfying the following conditions:

(i) (m1 +m2)γ1g = m1γ1g +m2γ1g and

(ii) (m1γ1m2)γ2g = m1γ1(m2γ2g),

for all m1,m2 ∈M and for all γ1, γ2 ∈ Γ and g ∈ G.

Example 2.3. Let G = Z4 = {0, 1, 2, 3}, the ring of integers modulo 4 and X = {a, b}. Write
M = {g|g : X → G, g(a) = 0} = {g0, g1, g2, g3}, where gi(a) = 0, gi(b) = i, for 0 ≤ i ≤ 3.
Let Γ = {f1, f2, f3, f4} where each fi : G → X defined by f1(i) = a (0 ≤ i ≤ 3), f2(i) = a
(0 ≤ i ≤ 2), f3(i) = a, for i ∈ {0, 2, 3}, f3(1) = b, f4(i) = a if i ∈ {0, 2} and f4(i) = b if
i /∈ {0, 2}. For g ∈M , f ∈ Γ, x ∈ G write gfx = g(f(x)). Now G becomes an MΓ-group.

Definition 2.4. [8] A normal subgroupH ofG is said to be an ideal ofG ifmγ(g+h)−mγg ∈ H
for m ∈M,γ ∈ Γ, g ∈ G and h ∈ H .

Definition 2.5. [27] A proper ideal P of M is called prime if for any two ideals S and T of M
with ST ⊆ P implies that S ⊆ P or T ⊆ P ; and P is completely prime (denoted as, c-prime)
if st ∈ P implies s ∈ P or t ∈ P . In case of commutative rings, the notions prime and c-prime
will coincide.

Definition 2.6. [3] An ideal I of G is said to have insertion of factors property (denoted as, IFP)
if x ∈ M, g ∈ G with xg ∈ I then xng ∈ I , for all n ∈ M . If (0G) is an IFP ideal, then we call
G an IFP MΓ-group.

3 Completely 2-absorbing ideals

The following definition generalizes the completely prime (abbr. c-prime) ideal of an Γ-nearring.

Definition 3.1. A proper ideal I of M is called c-prime if whenever m, m1 ∈M and γ ∈ Γ with
mγm1 ∈ I , then m ∈ I or m1 ∈ I .

Definition 3.2. A proper ideal I of G with MΓG * I is called c-prime if whenever m ∈ M ,
g ∈ G and γ ∈ Γ with mγg ∈ I , then mΓG ⊆ I or g ∈ I .

The following definition is analogous to the Notation 0.1 given in [9].

Notation 3.1. [9] For any non-empty subset A of G we write

A0 = {x− y|x, y ∈ A};
A∗ = {g + x− g|x ∈M, g ∈ G};
A+ = {mγ(g + x)−mγg|m ∈M, g ∈ G, γ ∈ Γ, x ∈ A}.
Let X be a non-empty subset of G and write X0 = X , and Xi+1 = X0

i ∪X∗ ∪X+
i for all

integers i ≥ 0. Then X0 ⊆ X1 ⊆ X2 ⊆ · · · and clearly ∪∞i=0Xi is the ideal generated by X ,
denoted by 〈X〉. If X = {g}, then we denote it as 〈g〉.

Definition 3.3. A proper ideal I ofGwithMΓG * I is called strictly c-prime if xγg ∈ I implies
xΓ〈g〉 ⊆ I or g ∈ I .
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+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

· 0 a b c
0 0 0 0 0
a a a a a
b b b b b
c c c c c

Table 1.

Remark 3.4. Every c-prime ideal is strictly c-prime.

Proof. Suppose I is c-prime. Let x ∈ M , γ ∈ Γ and g ∈ G such that xγg ∈ I . Since I is
c-prime, xΓG ⊆ I or g ∈ I . Now xΓ〈g〉 ⊆ xΓG ⊆ I or g ∈ I . Therefore, I is strictly c-prime.
The converse of Remark 3.4 need not be true. We show this in Example 3.8.

Now we introduce the notion of (c, 2)-absorbing ideal as a generalization of c-prime ideal.

Definition 3.5. An ideal I of M is called completely 2-absorbing (abbr. (c, 2)-absorbing) if
whenever x, y, z ∈M , γ ∈ Γ with xγyγz ∈ I then xγy ∈ I or yγz ∈ I or xγz ∈ I . M is called
(c, 2)-absorbing if the ideal (0) is (c, 2)-absorbing.

Notation 3.2. Let I be an ideal of G. We denote the Noetherian quotient as (I : ΓG) = {x ∈
M : xΓG ⊆ I}.

We generalize the definition 3.5 as follows, which is a key notion in this paper.

Definition 3.6. A proper ideal I of G is said to be a completely 2-absorbing (abbr. (c, 2)-
absorbing) ideal if whenever x, y ∈ M , γ ∈ Γ and g ∈ G with xγyγg ∈ I, then xγy ∈ (I : ΓG)
or xγg ∈ I or yγg ∈ I .

Example 3.7. Refer to the nearring M given in E-23, page 408 of Pilz [27], where M =
{0, a, b, c}. Consider M itself is an MΓ-group with Γ = {·} as defined in Table 1. Then clearly,
M is not zero-symmetric. It can be easily seen that, {0} is c-prime and (c, 2)-absorbing.

Example 3.8. Take G = Z8, Γ = {·8} and M = Z, nearring of integers. Then G is an MΓ-
group. Clearly I1 = {0, 4} and I2 = {0, 2, 4, 6} are ideals of G. It can be verified that I1
is a (c, 2)-absorbing ideal of G but not c-prime, since 2 ·8 6 ∈ I1 and neither 2Z8 ⊆ I1 nor
6 ∈ I1. The ideal I2 is c-prime as well as (c, 2)-absorbing. However, I1 is strictly c-prime since
2 ·8 〈6〉 = {0, 4} ⊆ I1.

Example 3.9. Take G = Z6 and M = Z, nearring of integers. Then G is an MΓ-group. Clearly
I1 = {0} and I2 = {0, 2, 4} are ideals of G. It can be verified that I1 is (c, 2)-absorbing, but
not c-prime since 2 · 3 ∈ I1 and neither 2Z6 ⊆ I1 nor 3 ∈ I1. The ideal I2 is c-prime as well as
(c, 2)-absorbing.

Example 3.10. Let M = (S3,+, ·) be a nearring (given in H-11, page 410 of Pilz ([27])), which
is not zero-symmetric and non-commutative. Consider M as an MΓ-group over itself, where we
define Γ = {·} as follows in Table 2: Clearly I = {0} is (c, 2)-absorbing but not c-prime, since
x · a ∈ I , and a /∈ I, x ·G * I .

Example 3.11. Consider the nearring M, given in E-3, page 408 of Pilz [27], where M =
{0, a, b, c} with operations + as given in Table 1 and · defined as in Table 3.
Observe that M is zero-symmetric. Let I = {0}. Then ba = 0 ∈ I but b /∈ I and a /∈ I . There-

fore, I = {0} is not c-prime. However, I = {0} is (c, 2)-absorbing. Thus, M is (c, 2)-prime.

Example 3.12. Let G = D8 =
〈
{σ, s | σ4 = s2 = e, σs = sσ−1}

〉
= {e, σ, σ2, σ3, s, sσ, sσ2, sσ3}, where σ is the rotation in an anti-clockwise direction about the
origin through π

2 radians and s is the reflection about the line of symmetry. Take G =M (listed
as no. K(139) on p. 418 of Pilz [27]), Γ = {∗}, and has + and ∗ given in Table 4 (also, refer to
Hamsa et.al. [17]):
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+ 0 a b c x y
0 0 a b c x y
a a 0 y x c b
b b x 0 y a c
c c x y 0 b a
x x b c a y 0
y y c a b 0 x

· 0 a b c x y
0 0 0 0 0 0 0
a a a a a a a
b a a c b b c
c a a b c c b
x 0 0 y x x y
y 0 0 x y y x

Table 2.

· 0 a b c
0 0 0 0 0
a 0 0 a a
b 0 0 b b
c 0 0 c c

Table 3.

+ e σ σ2 σ3 s sσ sσ2 sσ3

e e σ σ2 σ3 s sσ sσ2 sσ3

σ σ σ2 σ3 e sσ3 s sσ sσ2

σ2 σ2 σ3 e σ sσ2 sσ3 s sσ

σ3 σ3 e σ σ2 sσ sσ2 sσ3 s

s s sσ sσ2 sσ3 e σ σ2 σ3

sσ sσ sσ2 sσ3 s σ3 e σ σ2

sσ2 sσ2 sσ3 s sσ σ2 σ3 e σ

sσ3 sσ3 s sσ sσ2 σ σ2 σ3 e

* e σ σ2 σ3 s sσ sσ2 sσ3

e e e e e e e e e

σ e σ σ2 σ3 s sσ sσ2 sσ3

σ2 e σ2 e σ2 e e e e

σ3 e σ3 σ2 e s sσ sσ2 sσ3

s e s e s sσ2 e sσ2 e

sσ e sσ σ2 sσ3 σ2 sσ e sσ3

sσ2 e sσ2 e sσ2 sσ2 e sσ2 e

sσ3 e sσ3 σ2 sσ σ2 sσ e sσ3

Table 4.

Then G is an MΓ-group, where M is non-abelian. I = {e, σ2} is (c, 2)-absorbing but not c-
prime, since sσ ∗ s = σ2 ∈ I , but s /∈ I and sσ ∗G * I .

Definition 3.13. [8] For two MΓ-groups G and G′, a group homomorphism φ : G → G′ is said
to be an MΓ-homomorphism if φ(mγg) = mγφ(g), for all m ∈M , γ ∈ Γ and g ∈ G.

Theorem 3.14. Let φ be an MΓ-homomorphism of G onto G′. If I is a (c, 2)-absorbing ideal of
G containing ker φ, then φ(I) is a (c, 2)-absorbing ideal of G′.

Proof. Let m1,m2 ∈ M, g′ ∈ G′ with m1γm2γg
′ ∈ φ(I). Then m1γm2γg

′ = φ(x) for some
x ∈ I . Since φ is an MΓ-epimorphism and g′ ∈ G′, it follows that φ(g) = g′ for some g ∈ G.
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Now, φ(m1γm2γg) = m1γm2γφ(g) = m1γm2γg
′ = φ(x), and hence, φ(m1γm2γg − x) =

0 in G′. Since x ∈ I and m1γm2γg − x ∈ ker φ ⊆ I, we have, m1γm2γg ∈ I. Since I is
(c, 2)-absorbing, we have, m1γm2γ ∈ (I : ΓG) or m1γg ∈ I or m2γg ∈ I , which implies
m1γm2γG ⊆ I or m1γg ∈ I or m2γg ∈ I. Therefore, φ(m1γm2γG) ⊆ φ(I) or φ(m1γg) ∈
φ(I) or φ(m2γg) ∈ φ(I). Now since φ is an MΓ-homomorphism, we have m1γm2γφ(G) ⊆
φ(I) or m1γφ(g) ∈ φ(I) or m2γφ(g) ∈ φ(I). Therefore, m1γm2γG

′ ∈ φ(I) or m1γg
′ ∈ φ(I) or

m2γg
′ ∈ φ(I). That is, m1γm2γ ∈ (φ(I) : ΓG′) or m1γg

′ ∈ φ(I) or m2γg
′ ∈ φ(I), proves φ(I)

is a (c, 2)-absorbing ideal of G′ .

Theorem 3.15. Let h : G → G′ be an MΓ-epimorphism. If I ′ is a (c, 2)-absorbing ideal of G′,
then h−1(I ′) is a (c, 2)-absorbing ideal of G.

Proof. Suppose I ′ is (c, 2)-absorbing ideal of G′. Let a, b ∈ M, g ∈ G and γ ∈ Γ be such that
aγbγg ∈ h−1(I ′). Since h is a MΓ-homomorphism, it follows that aγbγh(g) = h(aγbγg) ∈ I ′.
Again, since I ′ is (c, 2)-absorbing, it follows that, aγg′ ∈ I ′ or bγg′ ∈ I ′ or aγb ∈ (I ′ : ΓG′),
where g′ = h(g).
Case (i): If aγb ∈ (I ′ : ΓG′), then aγbΓG′ ⊆ I ′ and h−1(aγbΓG′) ⊆ h−1(I ′). Now, aγbΓh−1(G′) =
aγbΓG ⊆ h−1(I ′), shows that aγb ∈ (h−1(I ′) : ΓG).
Case (ii): If aγg′ ∈ I ′, then aγh−1(g′) ∈ h−1(I ′), shows that aγg ∈ h−1(I ′). Similarly, if
bγg′ ∈ I ′, then bγg ∈ h−1(I ′). Thus, h−1(I ′) is (c, 2)-absorbing.

Lemma 3.16. [19] For any ideal I of G, (I : ΓG) is an ideal of M .

For completeness, we provide the proof of the following lemma.

Lemma 3.17. If I is a c-prime ideal of G, then (I : ΓG) is a c-prime ideal in M .

Proof. Since I 6= G, 1 /∈ (I : ΓG), and so (I : ΓG) is proper. Suppose that aγb ∈ (I : ΓG)
and b /∈ (I : ΓG). Now since, bΓG * I, there exists g ∈ G and γ ∈ Γ with bγg /∈ I , and
so aγ(bγg) = (aγb)γg ∈ I . Since I is c-prime in G, it follows that aΓG ⊆ I , and hence
a ∈ (I : ΓG).

Theorem 3.18. Let M be zero-symmetric. If I is a c-prime ideal of G, then I is (c, 2)-absorbing
in G.

Proof. Let I be a c-prime ideal of G, and let a, b ∈ M, g ∈ G and γ ∈ Γ with aγbγg ∈ I .
Since I is c-prime, it follows that aγbΓG ⊆ I or g ∈ I . This implies aγb ∈ (I : ΓG) or
g ∈ I . If aγb ∈ (I : ΓG), then it is clear. If g ∈ I , we have aγg = aγ(0 + g) − aγ0 ∈ I or
bγg = bγ(0 + g)− bγ0 ∈ I . Therefore, I is a (c, 2)-absorbing ideal in G.

We define monogenic and locally monogenic MΓ-groups similar to those of given for an N -
group in Pilz [27], and Ke and Meyer [20] respectively.

Definition 3.19. G is monogenic if there exists g ∈ G and γ ∈ Γ such that Mγg = G.

Definition 3.20. G is weakly monogenic if there exists g ∈ G such that MΓg = G. In this case
we write G = 〈g〉.

Remark 3.21. Every monogenic MΓ-group is weakly monogenic.

Proof. Suppose G is monogenic by g ∈ G and γ ∈ Γ. To show G is weakly monogenic. Clearly
MΓg ⊆ G. Let g1 ∈ G. Then there exists m ∈M such that mγg = g1. Now, g1 = mγg ∈MΓg.
Therefore G ⊆MΓg. Hence MΓg = G.

Definition 3.22. G is called locally monogenic if for every S ⊆ G, where S is finite, there exists
a ∈ G and γ ∈ Γ such that S ⊆Mγa.

It is obvious that every locally monogenic MΓ-group is monogenic.

Note 3.3. Let I be an ideal of G. Then (I : ΓG) ⊆ (I : γg) for all g ∈ G\I and γ ∈ Γ. Further,
equality holds if M is zero-symmetric and G is weakly monogenic by g.
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Proof. Let x ∈ (I : ΓG). Then xΓG ⊆ I , implies xγg ∈ I , for all g ∈ G and γ ∈ Γ. That is,
x ∈ (I : γg). Therefore, (I : ΓG) ⊆ (I : γg). To show the equality, let M be zero-symmetric
and G be weakly monogenic by g. That is, MΓg = G. Let x ∈ (I : γg). Then xγg ∈ I implies
that xγ〈g〉 ⊆ I . This shows that xγG ⊆ I . Since γ is arbitrary, we get xΓG ⊆ I . Therefore
x ∈ (I : ΓG).

Theorem 3.23. Let G be monogenic over M = M0, and I an ideal of G. If (I : ΓG) is a
(c, 2)-absorbing ideal in M , then I is a (c, 2)-absorbing ideal of G.

Proof. Let (I : ΓG) be a (c, 2)-absorbing ideal of M . To prove I is a (c, 2)-absorbing ideal
of G, take x, y ∈ M , γ ∈ Γ and g ∈ G with xγyγg ∈ I . Since G is monogenic, we have
G = Mγ1g1 for some γ1 ∈ Γ and g1 ∈ G. Now, g = aγ1g1 ∈ I , for some a ∈ M . Then,
xγyγaγ1g1 = xγyγg ∈ I implies xγyγa ∈ (I : γg1). Since M = M0, by Note 3.3, we
have xγyγa ∈ (I : ΓG). Since (I : ΓG) is (c, 2)-absorbing, we have xγy ∈ (I : ΓG) or
xγa ∈ (I : ΓG) or yγa ∈ (I : ΓG). That is, xγy ∈ (I : ΓG) or xγaγ1g1 ∈ I or yγaγ1g1 ∈ I ,
implies xγy ∈ (I : ΓG) or xγg ∈ I or yγg ∈ I . Therefore, I is (c, 2)-absorbing.

The following definition is similar to that of defined for N -groups by Meldrum [24].

Definition 3.24. M distributes over G, if mγ(g1 + g2) = mγg1 +mγg2 for all m ∈ M , γ ∈ Γ,
g1, g2 ∈ G.

Lemma 3.25. If G be locally monogenic. Then M is distributive implies M distributes over G.

Proof. Suppose G is locally monogenic and M is distributive. Take m ∈ M and g1, g2 ∈ G.
Since G is locally monogenic and {g1, g2} ⊆ G, there exist γ ∈ Γ and g ∈ G such that {g1, g2} ⊆
Mγg. Therefore, g1 = m1γg and g2 = m2γg, for some m1,m2 ∈ M . Now, mγ(g1 + g2) =
mγ(m1γg + m2γg) = mγ((m1 + m2)γg) = (mγ(m1 + m2))γg = (mγm1 + mγm2)γg =
mγm1γg +mγm2γg = mγg1 +mγg2, shows that M distributes over G.

Theorem 3.26. Let G be locally monogenic over a distributive Γ-nearring M . If I is a (c, 2)-
absorbing ideal of G, then (I : ΓG) is a (c, 2)-absorbing ideal of M.

Proof. Suppose that I is a (c, 2)-absorbing ideal of G. To show (I : ΓG) is (c, 2)-absorbing
in M, let a, b, c ∈ M and γ ∈ Γ such that aγbγc ∈ (I : ΓG). Assume that aγc /∈ (I :
ΓG), bγc /∈ (I : ΓG). In this case, we show that aγb ∈ (I : ΓG). Since aγcΓG * I
and bγcΓG * I, we have aγcγ1g1 /∈ I and bγcγ2g2 /∈ I for some g1, g2 ∈ G and γ1, γ2 ∈
Γ. Further, since aγbγc ∈ (I : ΓG), we have aγbγcαg ∈ I for all g ∈ G and α ∈ Γ. In
particular, aγbγcγ1g1, aγbγcγ2g2 ∈ I, and since I is an additive subgroup of G, it follows that
aγbγcγ1g1 + aγbγcγ2g2 ∈ I . Now, by Lemma 3.25, aγbγ(cγ1g1 + cγ2g2) ∈ I . Since I is (c, 2)-
absorbing, it follows that aγ(cγ1g1 + cγ2g2) ∈ I or bγ(cγ1g1 + cγ2g2) ∈ I or aγb ∈ (I : ΓG).
If aγ(cγ1g1 + cγ2g2) ∈ I, then aγcγ1g1 + aγcγ2g2 ∈ I . Now if aγcγ2g2 ∈ I, then aγcγ1g1 =
aγcγ1g1+aγcγ2g2−aγcγ2g2 ∈ I, a contradiction. Therefore, aγ(cγ2g2) /∈ I . Also bγ(cγ2g2) /∈ I
but aγbγ(cγ2g2) ∈ I (here, cγ2g2 ∈ G). Since I is (c, 2)-absorbing, we have aγb ∈ (I : ΓG). In
a similar way, if bγ(cγ1g1 + cγg2) ∈ I, then bγcγ1g1 + bγcγ2g2 ∈ I . If bγcγ1g1 ∈ I, then since
bγcγ1g1 + bγcγ2g2 = i1, for some i ∈ I , we get bγcγ2g2 = i − bγcγ1g1 ∈ I, a contradiction.
Therefore, bγcγ1g1 /∈ I, also aγcγ1g1 /∈ I, but aγbγ(cγ1g1) ∈ I . Since I is (c, 2)-absorbing, it
follows that aγb ∈ (I : ΓG).

Definition 3.27. We say that G is called connected if for any g1, g2 ∈ G, there exist g ∈ G, and
m1, m2 ∈M and γ ∈ Γ such that g1 = m1γg and g2 = m2γg.

Note 3.4. G is locally monogenic =⇒ G is connected =⇒ G is monogenic.

Proof. Suppose G is locally monogenic. Let g1, g2 ∈ G. Now, S = {g1, g2} ⊆ G implies there
exist g ∈ G and γ ∈ Γ such that {g1, g2} ⊆ Mγg. Therefore, g1 = m1γg and g2 = m2γg, for
some m1,m2 ∈M , thus G is connected.
Suppose G is connected. Let g1 ∈ G, and since 0 ∈ G, there exist g ∈ G, m1,m2 ∈M and γ ∈ Γ

such that g1 = m1γg and 0 = m2γg. Therefore, G is monogenic.

Corollary 3.28. Let G be connected over a distributive Γ-nearring M . If I is a (c, 2)-absorbing
ideal of G, then (I : ΓG) is a (c, 2)-absorbing ideal of M .
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Proof. Since G is connected, we have G is monogenic, and hence the proof follows from Theo-
rem 3.26.

Definition 3.29. An ideal I of G is said to have IFP , if for any m ∈ M , γ ∈ Γ, and g ∈ G,
mγg ∈ I implies mγm′γg ∈ I , for all m′ ∈ M , and G is said to have IFP , if 〈0〉 is an IFP
ideal.

Proposition 3.30. Let G be locally monogenic over a distributive Γ-nearring M . If an ideal I of
G is (c, 2)-absorbing with IFP, then (I : γg) is (c, 2)-absorbing in M for all g ∈ G\I and γ ∈ Γ.

Proof. Let g ∈ G\I and γ ∈ Γ. If 1 ∈ (I : γg), then 1γg = g ∈ I, a contradiction. Therefore,
(I : γg) 6= M and hence (I : γg) is proper. Since 0Mγg = 0G ∈ I , and so 0 ∈ (I : γg), hence
(I : γg) 6= φ. Clearly, (I : γg) is an ideal of M . To show that (I : γg) is (c, 2)-absorbing, let
a, b, c ∈M and γ1 ∈ Γ with aγ1bγ1c ∈ (I : γg). We need to show aγ1b ∈ (I : γg) or bγ1c ∈ (I :
γg) or aγ1c ∈ (I : γg). Since aγ1bγ1c ∈ (I : γg),we have aγ1(bγ1c)γg = aγ1bγ1cγ1g ∈ I . Since
I is a (c, 2)-absorbing ideal of G, it follows that aγg ∈ I or bγ1cγg ∈ I or aγ1bγ1c ∈ (I : ΓG).
Case (i): If aγg ∈ I , then since I has IFP , we get aγmγg ∈ I for all m ∈ M . In particular,
aγbγg ∈ I and so aγb ∈ (I : γg).
Case (ii): If bγ1cγg ∈ I, then clearly, bγ1c ∈ (I : ΓG).
Case (iii): If aγ1bγ1c ∈ (I : ΓG), then the proof follows from Theorem 3.26.

Theorem 3.31. Let I, J be ideals of G with J ⊆ I . Then I is a (c, 2)-absorbing ideal of G if and

only if
I

J
is a (c, 2)-absorbing ideal of

G

J
.

Proof. Let J be an ideal of G. Then
G

J
is an MΓ-group by natural way mγ(g + J) = mγg + J

for all m ∈ M, g ∈ G and γ ∈ Γ. Clearly,
I

J
is an ideal of

G

J
. Let a, b ∈ M , g ∈ G and γ ∈ Γ

such that aγbγg + J ∈ I

J
. Then, aγbγg + J = i+ J for some i ∈ I . Then aγbγg − i ∈ J ⊆ I .

Since I is an ideal of G, we have aγbγg = aγbγg − i+ i ∈ I . Now, since I is (c, 2)-absorbing,
we have aγb ∈ (I : ΓG) or aγg ∈ I or bγg ∈ I shows that aγbΓG ∈ I or aγg ∈ I or bγg ∈ I .

That is, aγbΓ
(
G

J

)
⊆ I

J
or aγ(g + J) ∈ I

J
or bγ(g + J) ∈ I

J
. Hence,

I

J
is a (c, 2)-absorbing

ideal of
G

J
.

Conversely, suppose that
I

J
is a (c, 2)-absorbing ideal of

G

J
. Since

I

J
6= G

J
, we have I is

proper. Let a, b ∈M and g ∈ G be such that aγbγg ∈ I . Then aγbγ(g + I) = aγbγg + J ∈ I

J
.

Since
I

J
is (c, 2)-absorbing, we get aγ(g + I) ∈ I

J
or bγ(g + I) ∈ I

J
or aγb

(
G

J

)
⊆ I

J
. This

shows that, aγg ∈ I or bγg ∈ I or aγb ∈ (I : ΓG). Hence I is (c, 2)-absorbing in G.

We provide the notion of symmetric ideal which is analogous to the notion defined by [23].

Definition 3.32. An ideal I of G is said to be symmetric if for a, b ∈ M, g ∈ G, and γ ∈ Γ,
aγbγg ∈ I implies bγaγg ∈ I .

It is clear that if M is commutative, then every ideal of G is symmetric.

Theorem 3.33. Let M be zero-symmetric. If I = I1 ∩ I2 is symmetric where Ii, (i = 1, 2) are
c-prime ideals of G, then I is a (c, 2)-absorbing ideal of G.

Proof. Let I1 and I2 be c-prime ideals of G. To show I = I1 ∩ I2 is a (c, 2)-absorbing ideal of
G, let m1,m2 ∈M, g ∈ G and γ ∈ Γ with m1γm2γg ∈ I . Since I = I1 ∩ I2 and m1γm2γg ∈ I ,
we have m1γm2γg ∈ I1 and m1γm2γg ∈ I2. Now, (m1γm2)γg ∈ I1 and I1 is c-prime, we have
m1γm2ΓG ⊆ I1 or g ∈ I1. This implies m1γm2 ∈ (I1 : ΓG) or g ∈ I1. Since I1 is c-prime, by
Lemma 3.17 we have (I1 : ΓG) is c-prime, and so m1 ∈ (I1 : ΓG) or m2 ∈ (I1 : ΓG) or g ∈ I1.
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In a similar argument, we get m1γm2γg ∈ I2 implies m1 ∈ (I2 : ΓG) or m2 ∈ (I2 : ΓG) or
g ∈ I2.

Case (i): If m1 ∈ (I1 : ΓG) and m1 ∈ (I2 : ΓG), then m1 ∈ ((I1 : ΓG) ∩ (I2 : ΓG)) =
(I1∩I2 : ΓG) which impliesm1γg ∈ I1∩I2, for all g ∈ G. Now, m2γm1γg = m2γ(0+m1γg)−
m2γ0 ∈ I1 ∩ I2. Since I is symmetric, it follows that m1γm2γg ∈ I1 ∩ I2 for all g ∈ G. That is,
m1γm2 ∈ (I1∩I2 : ΓG). Therefore, in this case, we have obtained that I1∩I2 is (c, 2)-absorbing.

Case (ii): Let m1 ∈ (I1 : ΓG) and m2 ∈ (I2 : ΓG). Then by Lemma 3.16, we have
m1γm2 ∈ (I1 : ΓG)∩ (I2 : ΓG) ⊆ (I1∩ I2 : ΓG). Hence, I1∩ I2 is a (c, 2)-absorbing ideal of G.

Case (iii): Let m1 ∈ (I1 : ΓG) and g ∈ I2. Then m1γg ∈ I1 for all g ∈ G. Since g ∈ I2 and I2
is an ideal of G, it follows that m1γg = m1γ(0G+ g)−m1γ0G ∈ I2. Therefore, m1γg ∈ I1∩ I2.
Hence, I1 ∩ I2 is a (c, 2)-absorbing ideal of G.

From Theorem 3.18 and Theorem 3.33, we have the following Corollary.

Corollary 3.34. Let M be zero-symmetric, and Ii, (i = 1, 2) be (c, 2)-absorbing ideals of G,
I = I1 ∩ I2. If I is symmetric, then I is (c, 2)-absorbing.

Theorem 3.35. Let I be a (c, 2)-absorbing ideal of G. Then (I : ΓG) is a c-prime ideal of M
implies (I : γg) is a c-prime ideal of M for all g ∈ G\I , γ ∈ Γ.

Proof. Suppose (I : ΓG) is a c-prime ideal of M . Let m1,m2 ∈ M, g ∈ G\I and γ1 ∈ Γ with
m1γm2 ∈ (I : γg). Then m1γm2γg ∈ I . Since I is (c, 2)-absorbing, we have m1γg ∈ I or
m2γg ∈ I or m1γm2 ∈ (I : ΓG).
Case (i): If m1γg ∈ I, then m1 ∈ (I : γg).
Case (ii): If m2γg ∈ I, then m2 ∈ (I : γg).
Case (iii): Let m1γm2 ∈ (I : ΓG). Since (I : ΓG) is c-prime, we have m1 ∈ (I : ΓG) or
m2 ∈ (I : ΓG). Now, by Note 3.3, we get m1 ∈ (I : γg) or m2 ∈ (I : γg). Therefore, (I : γg) is
a c-prime ideal of M .

4 (3, 2)-absorbing ideal

In this section, we introduce a (3, 2)-absorbing ideal of G as a generalization of a 3-prime ideal
of M as well as G.

Definition 4.1. An ideal I of G with MΓG * I is said to be 3-prime if whenever m ∈M , g ∈ G
and γ ∈ Γ with mγMγg ⊆ I , then mΓG ⊆ I or g ∈ I .

Definition 4.2. A proper ideal I of G is said to be a (3, 2)-absorbing ideal if whenever m ∈ M ,
γ ∈ Γ and g ∈ G with mγMγg ⊆ I, then mΓG ⊆ I or g ∈ I or Mγg ⊆ I .

Lemma 4.3. Every 3-prime ideal of G is (3, 2)-absorbing.

Proof. Suppose I is 3-prime. Let m ∈ M , γ ∈ Γ and g ∈ G with mγMγg ⊆ I . Since I is
3-prime, we have mΓG ⊆ I or g ∈ I .

Remark 4.4. The converse of Lemma 4.3 need not be true, in general. Consider the following
example.

Example 4.5. (i) Take M = Z8 = G, nearring of integers, and Γ = {γ} as given in Table 5.
Then G is an MΓ-group. Here I = {0, 4} is a (3, 2)-absorbing ideal of G but not 3-prime since
2γMγ3 = {0} ⊆ I but neither 2 ∈ I nor 3 ∈ I .
(ii) Let Γ = {γ, γ1} in (i), given in Table 5 and 6. Then G is an MΓ-group. Here I = {0, 4} is
a (i, 2)-absorbing ideal of G but not i-prime, i ∈ {c, 3}, since 6γ3 = {0} ⊆ I , and 6γ1Mγ13 =
{0} ⊆ I but neither 6 ∈ I nor 3 ∈ I .

Lemma 4.6. If M has unity, then every c-prime ideal of G is 3-prime.

Proof. Suppose I is c-prime. To show I is 3-prime, letm ∈M and g ∈ G such thatmγMγg ⊆ I .
If g ∈ I , then it is clear. Suppose g /∈ I . Since 1 ∈M , we have mγg = mγ1γg ∈ mγMγg ⊆ I ,
and I is c-prime implies mΓG ⊆ I . Therefore I is 3-prime.
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γ 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 0 0 0 0 0 0 0
3 0 3 6 1 4 7 2 5
4 0 0 0 0 0 0 0 0
5 0 5 2 7 4 1 6 3
6 0 0 0 0 0 0 0 0
7 0 7 6 5 4 3 2 1

Table 5.

γ1 0 1 2 3 4 5 6 7
0 0 0 0 0 0 0 0 0
1 0 1 2 3 4 5 6 7
2 0 0 0 0 0 0 0 0
3 0 3 6 1 4 7 2 5
4 0 0 0 0 0 0 0 0
5 0 1 2 3 4 5 6 7
6 0 0 0 0 0 0 0 0
7 0 3 6 1 4 7 2 5

Table 6.

Remark 4.7. The converse of Lemma 4.6 need not be true, in general (refer the Example 4.11).

Theorem 4.8. Let M be a Γ-nearring with 1. If I is a (c, 2)-absorbing ideal of G, then I is
(3, 2)-absorbing in G.

Proof. Let I be a (c, 2)-absorbing ideal of G, and let m ∈M, g ∈ G and γ ∈ Γ with mγMγg ⊆
I . This implies mγm1γg ∈ I for all m1 ∈ M . Since I is (c, 2)-absorbing, it follows that
mγm1 ∈ (I : ΓG) or mγg ∈ I or m1γg ∈ I . That is, mγm1ΓG ⊆ I or mγg ∈ I or m1γg ∈ I
for all m1 ∈ M . Since 1 ∈ M , we have mΓG ⊆ I or mγg ∈ I or m1γg ∈ I . Therefore, I is a
(3, 2)-absorbing ideal in G.

Corollary 4.9. LetM be a Γ-nearring with 1. Then every 3-prime ideal ofG is a (c, 2)-absorbing
ideal of G.

Example 4.10. Let M = Z6 = G with Γ = {γ1, γ2} where γ1, γ2 are given by scheme 1:
(0,1,0,0,0,0) and scheme 2: (0,0,1,0,0,0) (see p. 409, Pilz [27]), and + given in Table 7:

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Table 7.
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+ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Table 8.

xγ1y =

{
x, if y = 1
0, otherwise

and xγ2y =

{
x, if y = 2
0, otherwise

ThenG is anMΓ-group. Clearly, I = {0} is 3-prime as well as (c, 2)-absorbing, but not c-prime.
Here, 2γ13 = 0 ∈ I whereas 3 /∈ I and 2ΓG = {0, 2} * I .

Example 4.11. Here M = {0, a, b, c} = G. We define binary operations + given in Table 8 and
Γ = {γ1, γ2} as follows:

xγ1y =

{
y, if x ∈ {a, c}
0, otherwise

and xγ2y =


x, if y = c

a, if x ∈ {a, c}, y ∈M \ {c}
0, otherwise

Then M is an MΓ-group over itself. Here I = {0} is (c, 2)-absorbing but not c-prime, as
bγ1a = 0 ∈ I , a /∈ I , and bΓM = {0, b} * I . Also, I is not 3-prime as bγMγa = {0} ∈ I , but
a /∈ I and bΓM * I .

Example 4.12. Here M = {0, a, b, c} = G. We define binary operations + given in Table 8 and
Γ = {γ1, γ2} as follows:

xγ1y =

{
b, if x, y ∈ {a, c}
0, otherwise

and xγ2y =

{
x, if x = y

0, otherwise

Then M is an MΓ-group over itself. Here I = {0} is not (c, 2)-absorbing, as aγ1cγ1a = 0 ∈
I but aγ1c = b /∈ I , cγ1a = b /∈ I , and aγ1a = b /∈ I . I is not c-prime, as cγ2b = 0 ∈ I but
b /∈ I and cΓM = {0, b, c} * I . Also, I is not 3-prime, as bγMγc = {0} ∈ I but c /∈ I and
bΓM = {0, b} * I .

Lemma 4.13. If I is a 3-prime ideal of G, then (I : ΓG) is a 3-prime ideal in M .

Proof. Since I 6= G, 1 /∈ (I : ΓG) and so (I : ΓG) is proper. Suppose thatmγMγm1 ⊆ (I : ΓG)
and m1 /∈ (I : ΓG). So m1ΓG * I implies there exists g ∈ G, γ1 ∈ Γ with m1γ1g /∈ I . Now,
mγMγm1 ⊆ (I : ΓG) implies mγMγm1ΓG ⊆ I . Hence, mγMγ(m1γ2g2) ⊆ I for all γ2 ∈ Γ

and g2 ∈ G. Since I is 3-prime, we have mΓG ⊆ I . This shows that m ∈ (I : ΓG). Therefore,
(I : ΓG) is a 3-prime ideal of M .

Theorem 4.14. Let M be a Γ-nearring with 1, G be monogenic and I be an ideal of G. If
(I : ΓG) is a (3, 2)-absorbing ideal in M , then I is a (3, 2)-absorbing ideal of G.

Proof. Let (I : ΓG) be a (3, 2)-absorbing ideal ofM . To prove I is a (3, 2)-absorbing ideal ofG,
take m ∈ M , γ ∈ Γ and g ∈ G with mγMγg ⊆ I . Since G is monogenic, we have G = Mγg1
for some g1 ∈ G. Now, g = m1γg1 ∈ I , for somem1 ∈M . Then,mγMγm1γg1 = mγMγg ⊆ I
implies mγMγm1 ⊆ (I : γg1). Hence, by Note 3.3, we have mγMγm1 ⊆ (I : ΓG). Since
(I : ΓG) is (3, 2)-absorbing, we havemΓM ⊆ (I : ΓG) orm1 ∈ (I : ΓG) orMγm1 ⊆ (I : ΓG).
That is, mΓMΓG ⊆ I or m1 ∈ (I : ΓG) or Mγm1 ⊆ (I : ΓG). Since 1 ∈ M , we get
mΓG = mΓ1ΓG ⊆ I . Therefore, I is (3, 2)-absorbing.

Theorem 4.15. Let G be locally monogenic over a distributive Γ-nearring M . If I is a (3, 2)-
absorbing ideal of G, then (I : ΓG) is a (3, 2)-absorbing ideal of M.
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Proof. Suppose that I is (3, 2)-absorbing in G. To show (I : ΓG) is (3, 2)-absorbing in M,
let m,m1 ∈ M , γ ∈ Γ such that mγMγm1 ⊆ (I : ΓG). Assume that m1 /∈ (I : ΓG)
and mγm1 * (I : ΓG). In this case, we show that mΓM ⊆ (I : ΓG). Since m1ΓG * I
and Mγm1ΓG * I, we have m1γ1g1 /∈ I and m2γm1γ2g2 /∈ I , for some g1, g2 ∈ G and
γ1, γ2 ∈ Γ. Further, since mγMγm1 ⊆ (I : ΓG), we have mγMγm1ΓG ⊆ I . In particular,
mγm2γm1γ1g1,mγm2γm1γ2g2 ∈ I, and since I is an additive subgroup of G, it follows that
mγm2γm1γ1g1+mγm2γm1γ2g2 ∈ I . Now, by Lemma 3.25,mγm2γ(m1γ1g1+m1γ2g2) ∈ I for
all m2 ∈M . Since I is (3, 2)-absorbing in G, it follows that mΓG ⊆ I or m1γ1g1 +m1γ2g2 ∈ I
or Mγ(m1γ1g1 +m1γ2g2) ⊆ I .
Case (i): If mΓG ⊆ I , then mγg ∈ I for all γ ∈ Γ and g ∈ G. Now, m′αmβg = m′α(0 +
mβg)−m′α0 ∈ I for all m′ ∈M . Since I is symmetric, we have mαm′βg ∈ I for all m′ ∈M ,
α, β ∈ Γ and g ∈ G. Hence, mΓMΓG ⊆ I implies mΓM ⊆ (I : ΓG).
Case (ii): If Mγ(m1γ1g1 + m1γ2g2) ⊆ I , then we have m′γ(m1γ1g1 + m1γ2g2) ∈ I for all
m′ ∈ M . In particular, m2γ(m1γ1g1 +m1γ2g2) ∈ I , implies m2γm1γ1g1 +m2γm1γ2g2) ∈ I .
If m2γm1γ2g2 ∈ I , then m2γm1γ2g2 = −m2γm1γ1g1 + m2γm1γ1g1 + m2γm1γ2g2 ∈ I , a
contradiction. Therefore, m2γm1γ1g1 /∈ I , implies Mγm1γ1g1 * I . Also, m1γ1g1 /∈ I . But
mγMγ(m1γ1g1) ⊆ I . Since I is a (3, 2)-absorbing ideal of G, we have mΓG ⊆ I . Hence by
Case (i), we get mΓM ⊆ (I : ΓG).
Case (iii): Let m1γ1g1 +m1γ2g2 ∈ I . If m1γ2g2 ∈ I , we have m1γ1g1 = m1γ1g1 +m1γ2g2 −
m1γ2g2 ∈ I , a contradiction. Therefore,m1γ2g2 /∈ I . Also,m2γm1γ2g2 /∈ I impliesMγm1γ2g2 *
I . But mγMγm1γ2g2 ⊆ I . Since I is a (3, 2)-absorbing ideal in G, we have mΓG ⊆ I . Hence
by Case (i), we get mΓM ⊆ (I : ΓG).
Therefore, (I : ΓG) is a (3, 2)-absorbing ideal of M .

5 Conclusion

We have defined the concepts (i, 2)-absorbing, i ∈ {c, 3} ideals of G, as a generalization of i-
prime ideal of G. We have proved significant properties and exhibited examples which indicate
the classes are different from the existing classes of prime ideals. Further, one can be extend the
concept to study the corresponding radicals and their properties of (i, 2)-absorbing ideals.
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