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Abstract In this paper, we consider a module over a I'-nearring (also known as, MT-group)
G. We introduce the notions (i,2)-absorbing, i € {c,3} ideals of G, as a generalization of i-
prime ideal of G. We prove several properties and exhibit examples that indicate these classes are
different from the existing classes of prime ideals. Further, we prove the properties such as ho-
momorphic images, inverse images of (c,2)-absorbing ideals of G, and the properties involving
Notherian quotients of (i, 2)-absorbing ideals of G, i € {c,3}.

1 Introduction

A module over a nearring (or N-group) is a generalization of a module over an arbitrary ring.
Precisely, it is an action of a group (not necessarily abelian) over a nearring. Juglal et.al. [19]
generalized prime ideal in modules over rings to modules over nearrings in several ways. They
obtained some characterizations of prime nearring modules and exhibited interesting properties.
More importantly, the connection between a prime ideal of module over a nearring and the
corresponding annihilators in a nearring were investigated. Badawi [1] introduced the idea of
2-absorbing ideal of a commutative ring with identity, as a generalization of a prime ideal in
a commutative ring, and explored several properties. Darani and Soheilnia [14] introduced a
weakly 2-absorbing submodule of a module over a commutative ring with identity. 2-absorbing
modules over non-commutative rings were studied by Groenewald and Nguyen [15]. Indeed,
there are several means to generalize these to prime ideals of nearrings. Prime ideals in nearrings
have been introduced in Holcombe [18], and later studied by [19, 4, 5]. The concept of I'-ring
was introduced by Nobusawa [25], and a generalization of this concept namely, a I"-nearring
was introduced by Bhavanari [2]. Further, the module structure over a I'-nearring was explored
in Bhavanari [2, 8]. The comprehensive study of I'-nearrings is due to [6, 12, 13, 10, 11, 21].
Recently, Hamsa et.al. [17] defined quasi associativity in ®I'-/N-groups (as generalized MT-
groups), and proved the fundamental isomorphism theorems. In this paper, we introduce (i, 2)-
absorbing ideals (i € {c,3}) of a module over gamma nearrings and illustrate that these classes
are different from the classes of prime ideals introduced in [27]. In section 2, we prove properties
such as homomorphic images, inverse images of (c, 2)-absorbing ideals of G, and the properties
involving Notherian quotients of (c, 2)-absorbing ideals of G. Section 3 deals with few results
involving the properties of (3, 2)-absorbing ideals of G. Throughout, M denotes a right gamma
nearring, and G stands for an MT-group. Further, all undefined notations and conventions will
be used as in [27, 5]. We assume M to be zero-symmetric whenever necessary.

2 Preliminaries

The notion of I'-nearring was defined by Bhavanari [2, 7] as a generalization of a nearring
(Pilz[27]) and a I'-ring (Nobusawa [25]).

Definition 2.1. Let (M, +) be a group (not necessarily abelian) and I" a non-empty set. Then
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M is said to be a I'-nearring if there exists a mapping M x I x M — M (denote the image of
(m1,7y, mz) by myy1m; for my, my; € M and ; € I) satisfying the following conditions:

(i) (my + ma)yims = myyims + moy,ms and
(i) (miyima)yams = miyi(mayams),

for all my, my, m3 € M and for all v;,v, € T.

IfI" = {-}, then M becomes a nearring.
The following definition is a generalization of an N-group defined in Pilz [27].

Definition 2.2. Let M be a I'-nearring. An additive group G is said to be an MI"-group (or MT-
module or ['-nearring module over M) if there exists a mapping M x I' x G — G (denote the
image of (m,~, g) by myg form € M and v € ', g € Q) satisfying the following conditions:

@) (m1 +m2)yig = miyig + moyig and

(i) (miyima)yag = mivi(mang),
for all mj,my, € M and forall v,,v, € 'and g € G.

Example 2.3. Let G = Z4 = {0, 1,2, 3}, the ring of integers modulo 4 and X = {a,b}. Write
M = {glg: X = G,g(a) = 0} = {g0, 91,92, 93}, where g;(a) = 0, g;(b) = i, for 0 < < 3.
Let ' = {f1, f, f3, fa} where each f; : G — X defined by fi(i) = a (0 < i < 3), fo(i) = a
(0 <4 <2), f3(i) = a, fori € {0,2,3}, f3(1) = b, f4(i) = aifi € {0,2} and f4(z) = b if
i ¢{0,2}. Forge M, f €T,z € G write gfz = g(f(x)). Now G becomes an MT-group.

Definition 2.4. [8] A normal subgroup H of G is said to be an ideal of G if my(g+h)—m~yg € H
forme M,yeIl',ge Gand h € H.

Definition 2.5. [27] A proper ideal P of M is called prime if for any two ideals S and 7" of M
with ST C P implies that S C P or ' C P; and P is completely prime (denoted as, c-prime)
if st € P implies s € P ort € P. In case of commutative rings, the notions prime and c-prime
will coincide.

Definition 2.6. [3] An ideal I of G is said to have insertion of factors property (denoted as, IFP)
ifx € M,g € Gwithzg € I thenzng € I, foralln € M. If (Og) is an IFP ideal, then we call
G an IFP MT-group.

3 Completely 2-absorbing ideals
The following definition generalizes the completely prime (abbr. c-prime) ideal of an I'-nearring.

Definition 3.1. A proper ideal I of M is called c-prime if whenever m, m; € M and v € I" with
mym, € I,thenm € I orm,; € I.

Definition 3.2. A proper ideal I of G with MT'G € I is called c-prime if whenever m € M,
g€ Gandy eI withmyg € I,thenmI'G CTorge I

The following definition is analogous to the Notation 0.1 given in [9].

Notation 3.1. [9] For any non-empty subset A of G we write

AY = {z —ylr,y € A}

A*={g+x—yglzeM, g€Gh

At ={my(g+z) —mygim e M,g € G,yeT',x € A}.

Let X be a non-empty subset of G and write Xy = X, and X, | = X? U X*UX; forall
integers ¢ > 0. Then Xy C X; C X, C --- and clearly U° X is the ideal generated by X,
denoted by (X). If X = {g}, then we denote it as (g).

Definition 3.3. A proper ideal I of G with MT'G ¢ 1 is called strictly c-prime if zyg € I implies
2['(g) CTorgel.



Generalization of prime ideals in M T-groups 445

o O 6 oo
S ®» o oo
o o & O

o o & OO0
O o & O
o o & O|C
O o o OO0

o o v O+
O o o OO0
oo O |

Table 1.

Remark 3.4. Every c-prime ideal is strictly c-prime.

Proof. Suppose [ is c-prime. Let x € M, v € I' and g € G such that zyg € I. Since I is
c-prime, zI'G C T or g € I. Now zI'(g) C 2I'G C I or g € I. Therefore, I is strictly c-prime.
The converse of Remark 3.4 need not be true. We show this in Example 3.8. O

Now we introduce the notion of (¢, 2)-absorbing ideal as a generalization of c-prime ideal.

Definition 3.5. An ideal I of M is called completely 2-absorbing (abbr. (c,2)-absorbing) if
whenever z, y, z € M, € I" with zyyvyz € I then xyy € I oryyz € I or xyz € I. M is called
(c,2)-absorbing if the ideal (0) is (c, 2)-absorbing.

Notation 3.2. Let I be an ideal of G. We denote the Noetherian quotient as (I : I'G) = {x €
M : 2I'G C I}.

We generalize the definition 3.5 as follows, which is a key notion in this paper.

Definition 3.6. A proper ideal I of G is said to be a completely 2-absorbing (abbr. (c,2)-
absorbing) ideal if whenever x,y € M,y € " and g € G with zyyvg € I, then zyy € (I : I'G)
orxzyg € I oryvyg € 1.

Example 3.7. Refer to the nearring M given in E-23, page 408 of Pilz [27], where M =
{0, a, b, c}. Consider M itself is an MT-group with I' = {-} as defined in Table 1. Then clearly,
M is not zero-symmetric. It can be easily seen that, {0} is c-prime and (¢, 2)-absorbing.

Example 3.8. Take G = Zg, I' = {3} and M = Z, nearring of integers. Then G is an MT-
group. Clearly I} = {0,4} and I, = {0,2,4,6} are ideals of G. It can be verified that I;
is a (c,2)-absorbing ideal of G but not c-prime, since 2 -3 6 € I; and neither 2Zg C I; nor
6 € I;. The ideal I is c-prime as well as (c, 2)-absorbing. However, I; is strictly c-prime since
25 (6) ={0,4} C 1.

Example 3.9. Take G = Z¢ and M = Z, nearring of integers. Then G is an MI-group. Clearly
I, = {0} and I, = {0,2,4} are ideals of G. It can be verified that I; is (c,2)-absorbing, but
not c-prime since 2 - 3 € I; and neither 2Z¢ C I; nor 3 € I;. The ideal I, is c-prime as well as
(c,2)-absorbing.

Example 3.10. Let M = (53, +, -) be a nearring (given in H-11, page 410 of Pilz ([27])), which
is not zero-symmetric and non-commutative. Consider M as an MT-group over itself, where we
define I' = {-} as follows in Table 2: Clearly I = {0} is (c, 2)-absorbing but not c-prime, since
r-a€l,anda¢ I, z-G ¢ I

Example 3.11. Consider the nearring M, given in E-3, page 408 of Pilz [27], where M =
{0, a, b, ¢} with operations + as given in Table 1 and - defined as in Table 3.

Observe that M is zero-symmetric. Let I = {0}. Thenba =0 € I butb ¢ I and a ¢ I. There-
fore, I = {0} is not c-prime. However, I = {0} is (c, 2)-absorbing. Thus, M is (¢, 2)-prime.

Example 3.12. Let G = Dy = ({0,s | 0* = s =¢, 0s = s07'})

= {e,0,0%,0%,5,50,50%,s0°}, where o is the rotation in an anti-clockwise direction about the
origin through 7 radians and s is the reflection about the line of symmetry. Take G = M (listed
as no. K(139) on p. 418 of Pilz [27]), ' = {x}, and has + and * given in Table 4 (also, refer to

Hamsa et.al. [17]):
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+]/0 a b ¢ x vy 0 a b c x vy
00 a b ¢ x vy 00 0 0 0 0 O
ajla 0 y x ¢ b ala a a a a a
b|lb x 0 y a c bjla a ¢c b b ¢
clc x y O b a cla a b ¢ ¢ b
x|x b c a y O x|0 0 y x x Yy
yly ¢ a b 0 x y|l0 0 x y y x
Table 2.
0 a b ¢
0[O0 0 0 O
a|l0 0 a a
b0 O b b
c|0 0 ¢ ¢
Table 3.
+ e g 0'2 O'3 S SO 80'2 80'3
e e g 0'2 0'3 S SO 80'2 SO
g g 0'2 0'3 e 80'3 S SO SO
0'2 0'2 O'3 e a 80'2 SU3 S SO
(T3 O'z (& ag 0'2 SO 50'2 80'3 S
S S SO 50'2 80'3 e g 0'2 0'3
SO SO 80'2 50’3 S 0'3 e g 0'2
80'2 50’2 80'3 S SO 0'2 0'3 e ag
80'3 50’3 S SO SU2 ag 0'2 0'3 e
* e o o’ o’ s so SO so
e e e € e e e e e
ag (& ag 0'2 0,"5 S SO 80'2 80'3
0'2 [+ 0'2 € 0'2 e e e e
O'3 e 0'3 0'2 e S SO 80'2 8(7'3
S e S € S 80'2 e 80'2 e
SO e SO 0'2 SO’3 0'2 SO e 80'3
80'2 e SO’2 € 50'2 80'2 e 80'2 e
50'3 e SO’3 0'2 SO 0'2 SO e 80'3
Table 4.

Then G is an MT-group, where M is non-abelian. I = {e, o2} is (c,2)-absorbing but not c-
prime, since so x s =o0> € I,buts ¢ I and so + G ¢ I.

Definition 3.13. [8] For two MT-groups G and G’, a group homomorphism ¢ : G — G’ is said
to be an MT-homomorphism if ¢(myg) = my¢(g), forallm € M,y eTand g € G.

Theorem 3.14. Let ¢ be an MT-homomorphism of G onto G'. If I is a (c,2)-absorbing ideal of
G containing ker ¢, then ¢(I) is a (c,2)-absorbing ideal of G'.

Proof. Let my,my € M, g’ € G’ with myymavg' € ¢(I). Then miymyyg = ¢(z) for some
x € I. Since ¢ is an MT-epimorphism and ¢’ € G’, it follows that ¢(g) = ¢’ for some g € G.
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Now, ¢(miymayg) = miymayé(g) = miymayg = ¢(z), and hence, ¢(m1ymavg — x) =
O0in G'. Since z € I and mi;ymyayg — x € ker ¢ C I, we have, myymoyg € I. Since I is
(c,2)-absorbing, we have, miymyy € (I : TG) or myyg € I or myyg € I, which implies
miymayG C I or myyg € I or myyg € I. Therefore, ¢(m1ymayG) C ¢(I) or ¢p(myiyg) €
o(I) or ¢p(mavyg) € ¢(I). Now since ¢ is an MT-homomorphism, we have m;ym,y¢(G) C
d(I) or mivo(g) € ¢(I) or myyp(g) € ¢(I). Therefore, miymayG' € ¢(I) or myvg' € ¢(I) or
mavg' € ¢(I). Thatis, miymay € (¢(I) : T'G') or myvg’ € ¢(I) or myyg' € ¢(I), proves ¢(I)
is a (¢, 2)-absorbing ideal of G’ .

]

Theorem 3.15. Let h : G — G’ be an MT-epimorphism. If I' is a (c,2)-absorbing ideal of G',
then h=1(I") is a (c, 2)-absorbing ideal of G.

Proof. Suppose I’ is (c,2)-absorbing ideal of G'. Let a,b € M,g € G and v € T be such that
aybyg € h=1(I"). Since h is a MT-homomorphism, it follows that aybyh(g) = h(aybyg) € I'.
Again, since I’ is (c,2)-absorbing, it follows that, ayg’ € I’ or byg' € I' orayb € (I' : I'G’),
where ¢’ = h(g).
Case (i): If ayb € (I' : TG'), then aybI'G’ C I’ and h~! (aybI'G") C h=1(I"). Now, ayblh~1(G")
aybI'G C h=!(I'), shows that ayb € (h='(I') : T'G).
Case (ii): If ayg’ € I, then ayh~'(g') € h~'(I'), shows that ayg € h~!(I'). Similarly, if
byg' € I', then byg € h='(I"). Thus, h='(I) is (c, 2)-absorbing.

O

Lemma 3.16. [19] For any ideal I of G, (I : T'G) is an ideal of M.
For completeness, we provide the proof of the following lemma.
Lemma 3.17. If I is a c-prime ideal of G, then (I : TG) is a c-prime ideal in M.

Proof. Since I # G, 1 ¢ (I : T'G), and so (I : T'G) is proper. Suppose that avb € (I : T'G)
and b ¢ (I : TG). Now since, bI'G ¢ I, there exists g € G and v € T with byg ¢ I, and
so ay(byg) = (avyb)yg € I. Since I is c-prime in G, it follows that «I'G C I, and hence
a€ (I:TQ). o

Theorem 3.18. Let M be zero-symmetric. If I is a c-prime ideal of G, then I is (c, 2)-absorbing
in G.

Proof. Let I be a c-prime ideal of G, and let a,b € M,g € G and v € T" with aybyg € I.
Since I is c-prime, it follows that aydI'G C I or g € I. This implies ayb € (I : T'G) or
g€ I. Ifayb € (I : TG), then it is clear. If g € I, we have ayg = ay(0 + g) —ay0 € I or
byg = by(0 + g) — b0 € I. Therefore, I is a (¢, 2)-absorbing ideal in G. ]

We define monogenic and locally monogenic M1 -groups similar to those of given for an V-
group in Pilz [27], and Ke and Meyer [20] respectively.

Definition 3.19. GG is monogenic if there exists g € G and v € I" such that Mvg = G.

Definition 3.20. G is weakly monogenic if there exists ¢ € G such that MT'g = G. In this case
we write G = (g).

Remark 3.21. Every monogenic MT-group is weakly monogenic.

Proof. Suppose G is monogenic by g € G and v € I'. To show G is weakly monogenic. Clearly
MTg C G. Let g; € G. Then there exists m € M such that m~vyg = g;. Now, g = myg € MTg.
Therefore G C MT'g. Hence MT'g = G. O

Definition 3.22. G is called locally monogenic if for every S C G, where S is finite, there exists
a € G and v € I" such that S C M~a.

It is obvious that every locally monogenic MT'-group is monogenic.

Note 3.3. Let I be an ideal of G. Then (I : T'G) C (I : vg) for all ¢ € G\I and v € I'. Further,
equality holds if M is zero-symmetric and G is weakly monogenic by g.
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Proof. Letx € (I : T'G). Then 2I'G C I, implies ayg € I, for all g € G and v € I'. That is,
x € (I :vg). Therefore, (I : I'G) C (I : vg). To show the equality, let M be zero-symmetric
and G be weakly monogenic by g. That is, MT'g = G. Let z € (I : vg). Then zyg € I implies
that 2y(g) C I. This shows that zyG C I. Since 7 is arbitrary, we get 2I'G C I. Therefore
z € (I:TG). i

Theorem 3.23. Let G be monogenic over M = My, and I an ideal of G. If (I : TG) is a
(c,2)-absorbing ideal in M, then I is a (c,2)-absorbing ideal of G.

Proof. Let (I : T'G) be a (c,2)-absorbing ideal of M. To prove I is a (c,2)-absorbing ideal
of G, take x,y € M, ~ € I'and g € G with zyyyg € I. Since G is monogenic, we have
G = Mg for some v, € I'and g; € G. Now, g = avy1g1 € I, for some a € M. Then,
zyyyayigr = zyyyg € I implies xyyya € (I : ~g1). Since M = M, by Note 3.3, we
have zyyya € (I : I'G). Since (I : I'G) is (c,2)-absorbing, we have zyy € (I : I'G) or
zyva € (I : TG) oryya € (I : TG). Thatis, zyy € (I : TG) or zyayig1 € I or yyayig1 € I,
implies zyy € (I : T'G) or xyg € I or yvyg € I. Therefore, I is (c,2)-absorbing. ]

The following definition is similar to that of defined for /N-groups by Meldrum [24].

Definition 3.24. M distributes over G, if mvy(g1 + g2) = mvyg1 + mygz forallm € M, v € T,
g1, 92 € G.

Lemma 3.25. If G be locally monogenic. Then M is distributive implies M distributes over G.

Proof. Suppose G is locally monogenic and M is distributive. Take m € M and ¢g1,¢9> € G.
Since G is locally monogenic and {g;, ¢,} C G, there existy € I"and g € G such that {g;,¢,} C
M~g. Therefore, g; = myvg and g» = my~g, for some my,m, € M. Now, mvy(g1 + g2) =
my(mivg + mayg) = my((mi +m2)vg) = (my(mi + ma))yg = (mymy + myma)vg =
mym1yg + mymyyg = myg; + myg,, shows that M distributes over G. O

Theorem 3.26. Let G be locally monogenic over a distributive U-nearring M. If I is a (c,2)-
absorbing ideal of G, then (I : T'G) is a (c,2)-absorbing ideal of M.

Proof. Suppose that [ is a (¢, 2)-absorbing ideal of G. To show (I : I'G) is (c,2)-absorbing
in M, let a,b,c € M and v € T such that aybyc € (I : T'G). Assume that ayc ¢ (I :
I'G), byc ¢ (I : TG). In this case, we show that ayb € (I : I'G). Since aycI'G € I
and bycI'G ¢ I, we have ayeyigr ¢ I and bycy,go ¢ I for some g1,9» € G and 71,7, €
I'. Further, since aybyc € (I : T'G), we have aybycag € I forall g € G and o € T. In
particular, aybycy g1, aybycy,g» € I, and since I is an additive subgroup of G, it follows that
aybyeyigr + aybyeyags € I. Now, by Lemma 3.25, ayby(cyig1 + ey2g2) € I. Since I is (¢, 2)-
absorbing, it follows that ay(cyig1 + ¢v292) € I or by(eyigr + ¢y2g2) € Torayb € (I : TG).
If ay(cyigr + cv2g2) € I, then ayeyigi + ayeyage € I. Now if ayeyaga € I, then ayey gy =
aryeyi g1 +ayeyaga —ayeyags € I, acontradiction. Therefore, ay(cy2g:) & 1. Also by(cyagy) ¢ 1
but avby(cy2g2) € I (here, cyag, € G). Since I is (¢, 2)-absorbing, we have ayb € (I : T'G). In
a similar way, if by(cyig1 + ¢vg2) € I, then bycyigr + byeyaga € I. If byeyi g1 € 1, then since
byeyig1 + byeyag, = iy, for some i € I, we get bycy,gp = @ — byey g1 € I, a contradiction.
Therefore, bycyig1 ¢ I, also ayey1g1 ¢ I, but ayby(cyigr) € I. Since I is (¢, 2)-absorbing, it
follows that ayb € (I : T'G). m|

Definition 3.27. We say that G is called connected if for any g1, ¢» € G, there exist g € GG, and
my, my € M and vy € I such that gy = mvg and g, = my~g.

Note 3.4. GG is locally monogenic = G is connected = G is monogenic.

Proof. Suppose G is locally monogenic. Let gi, g, € G. Now, S = {g1, 92} C G implies there
exist g € G and v € I" such that {g1, 9>} € M~g. Therefore, g = myyg and g = my~g, for
some m, my € M, thus G is connected.

Suppose G is connected. Let g; € G, and since 0 € G, there existg € G, m;,mp € M andy €I’
such that g; = m7yg and 0 = my~g. Therefore, GG is monogenic. O

Corollary 3.28. Let G be connected over a distributive U-nearring M. If I is a (c, 2)-absorbing
ideal of G, then (I : TG) is a (c,2)-absorbing ideal of M.
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Proof. Since G is connected, we have G is monogenic, and hence the proof follows from Theo-
rem 3.26. O

Definition 3.29. An ideal I of G is said to have I F'P, if forany m € M,~ € I',and g € G,
mryg € I implies mym/vg € I, for all m’ € M, and G is said to have IF'P, if (0) is an IF'P
ideal.

Proposition 3.30. Let G be locally monogenic over a distributive I'-nearring M. If an ideal I of
G is (¢, 2)-absorbing with IFP, then (I : ~vg) is (c,2)-absorbing in M forall g € G\I and v € T.

Proof. Letge G\l andy € T". If 1 € (I : g), then 1yg = g € I, a contradiction. Therefore,
(I :~vg) # M and hence (I : ~g) is proper. Since 0,79 = Og € I, and so 0 € (I : ~g), hence
(I : ~vg) # ¢. Clearly, (I : ~g) is an ideal of M. To show that (I : vg) is (¢, 2)-absorbing, let
a,b,c € M and v, € T with ay,byic € (I : vg). We need to show ayib € (I : vg) or byjc € (I :
~vg)orayic € (I :vg). Since ayibyic € (I : vg), we have ay (byic)vg = anibyieyig € 1. Since
Iis a (¢, 2)-absorbing ideal of G, it follows that ayg € I or bycyg € I or amibyic € (I : T'G).
Case (i): If ayg € I, then since I has [ F P, we get aym~yg € I for all m € M. In particular,
aybyg € I and so ayb € (I : vg).

Case (ii): If by, cyg € I, then clearly, by,c € (I : T'G).

Case (iii): If ay1byic € (I : T'G), then the proof follows from Theorem 3.26. O

Theorem 3.31. Let I, J be ideals of G with J C I. Then I is a (c, 2)-absorbing ideal of G if and
only zf§ is a (¢, 2)-absorbing ideal of%.

Proof. Let J be an ideal of G. Then % is an MT-group by natural way m~y(g + J) = mvyg + J
I
forallm € M,g € G and vy € I'. Clearly, i is an ideal of%. Leta,be M,ge Gandy €T

I
such that aybyg + J € 7 Then, avybyg + J =i + J for some ¢ € I. Then aybyg —i € J C 1.
Since I is an ideal of G, we have avbyg = aybyg — i + i € I. Now, since [ is (c,2)-absorbing,
we have avb € (I : T'G) or ayg € I or byg € I shows that aybI'G € [ or ayg € I or byg € I.

I 1 I I
That is, aybl’ ¢ C—oray(g+J) € =orby(g+ J) € . Hence, — is a (c, 2)-absorbing
J J J J J
G
id —.
ideal of 7
1. L G .. 1 G .
Conversely, suppose that 7 is a (¢, 2)-absorbing ideal of E Since i * 7 we have I is
1
proper. Let a, b € M and g € G be such that aybyg € I. Then avby(g + I) = aybyg+ J € 7

I I 1 1
Since 5 is (¢, 2)-absorbing, we get ay(g + I) € 5 or by(g+1) € 5 or ayb <§> C 7 This

shows that, ayg € I or byg € I or ayb € (I : T'G). Hence I is (c,2)-absorbing in G.
O

We provide the notion of symmetric ideal which is analogous to the notion defined by [23].

Definition 3.32. An ideal I of G is said to be symmetric if for a,b € M,g € G, and v € T,
aybyg € I implies byayg € 1.

It is clear that if M is commutative, then every ideal of GG is symmetric.

Theorem 3.33. Let M be zero-symmetric. If I = I1 N I, is symmetric where I;, (i = 1,2) are
c-prime ideals of G, then I is a (c,2)-absorbing ideal of G.

Proof. Let I, and I, be c-prime ideals of G. To show I = I} N I, is a (¢, 2)-absorbing ideal of
G,letmy,my; € M, g € Gandy € I" withmymyyg € I. Since I = I} NI, and myymypvyg € 1,
we have miymyyg € I} and m;ymyvyg € I. Now, (miymy)yg € I and I is c-prime, we have
m1ympI'G C I or g € Iy. This implies m;ym, € (I; : I'G) or g € I;. Since I; is c-prime, by
Lemma 3.17 we have (I; : I'G) is c-prime, and so m; € (I : T'G)ormy € (I; : TG)org € 1.
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In a similar argument, we get miymyyg € I implies my € (I, : T'G) or my € (I : T'G) or
g € b
Case (i): If my € (I; : TG)and my € (I : T'G),then my € ((I; : TG)N (I, : TG)) =
(I1 NI, : TG) which implies myg € I} N1, for all g € G. Now, myymvyg = mpy(0+myg) —
myy0 € I1 N I. Since I is symmetric, it follows that m;ymyvg € I} N I, for all g € G. That is,
miymy € (I1NI, : TG). Therefore, in this case, we have obtained that I; NI, is (¢, 2)-absorbing.
Case (ii): Let my € (f; : I'G) and mp € (I, : I'G). Then by Lemma 3.16, we have
miymg € (I :TG)N (I : TG) C (I1 NI : T'G). Hence, I N1 is a (¢, 2)-absorbing ideal of G.
Case (iii): Letm; € (I; : TG) and g € I,. Thenm;yg € I, forall g € G. Since g € I and I,
is an ideal of G, it follows that mivg = m;v(0g + g) — m170¢ € I,. Therefore, miyg € I} N L.
Hence, I N I, is a (¢, 2)-absorbing ideal of G.
O

From Theorem 3.18 and Theorem 3.33, we have the following Corollary.

Corollary 3.34. Ler M be zero-symmetric, and I;, (i = 1,2) be (c,2)-absorbing ideals of G,
I =1 N L. If I is symmetric, then I is (c,2)-absorbing.

Theorem 3.35. Let I be a (c,2)-absorbing ideal of G. Then (I : TG) is a c-prime ideal of M
implies (I : ~vg) is a c-prime ideal of M forall g € G\I, v € T.

Proof. Suppose (I : I'G) is a c-prime ideal of M. Let my,my € M, g € G\I and ; € I with
miymy € (I : vg). Then myymyvyg € I. Since I is (c,2)-absorbing, we have m;vyg € I or
mavyg € I or myym, € (I : TG).

Case (i): If myyg € I, thenm; € (I : vg).

Case (ii): If myyg € I, then m; € (I : vg).

Case (iii): Let mjym, € (I : I'G). Since (I : I'G) is c-prime, we have m; € (I : T'G) or
my € (I :T'G). Now, by Note 3.3, we get m; € (I : vg) or my € (I : vg). Therefore, (I : vg) is
a c-prime ideal of M. O

4 (3,2)-absorbing ideal

In this section, we introduce a (3, 2)-absorbing ideal of G as a generalization of a 3-prime ideal
of M as well as G.

Definition 4.1. An ideal I of G with MT'G Q 1 is said to be 3-prime if wheneverm € M, g € G
and v € I' with myM~g C I, thenmI'G C Torg € I.

Definition 4.2. A proper ideal I of G is said to be a (3, 2)-absorbing ideal if whenever m € M,
v€eTland g € G withmyM~g C I, thenmI'G CTorg e I or Mg C I.

Lemma 4.3. Every 3-prime ideal of G is (3,2)-absorbing.

Proof. Suppose [ is 3-prime. Let m € M, v € I'and g € G with myM~g C I. Since I is
3-prime, we have mI'G C T or g € I. O

Remark 4.4. The converse of Lemma 4.3 need not be true, in general. Consider the following
example.

Example 4.5. (i) Take M = Zg = G, nearring of integers, and I' = {v} as given in Table 5.
Then G is an MT'-group. Here I = {0,4} is a (3, 2)-absorbing ideal of G but not 3-prime since
2yM~3 = {0} C I butneither2 € I nor3 € I.

(i) Let I" = {~,~1} in (i), given in Table 5 and 6. Then G is an MT-group. Here I = {0, 4} is
a (i, 2)-absorbing ideal of G but not i-prime, i € {c, 3}, since 6y3 = {0} C I, and 6y, M~,3 =
{0} C I but neither 6 € I'nor3 € I.

Lemma 4.6. If M has unity, then every c-prime ideal of G is 3-prime.

Proof. Suppose I is c-prime. To show I is 3-prime, let m € M and g € G such that myM~g C I.
If g € I, then it is clear. Suppose g ¢ I. Since 1 € M, we have myg = mylyg € myM~g C I,
and [ is c-prime implies mI'G C I. Therefore I is 3-prime. O
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~10 1 2 3 4 5 6 7
0/0 0 0O O O 0 O
110 1 2 3 4 5 6 7
210 0 00O OO 0 O
310 3 6 1 4 7 2 5
4170 0 0O O OO OO
500 5 2 7 4 1 6 3
6/0 0 00O OO 0 O
710 7 6 5 4 3 2 1
Table 5.

vl 0 1 2 3 4 5 6 7
0j]0 0 0 OO O 0 O
10 1 2 3 4 5 6 7
210 0 0 OO O O O
3]0 3 6 1 4 7 2 5
410 0 0O OO O 0O
510 1 2 3 4 5 6 7
6|10 0 0 OO O 0 O
710 3 6 1 4 7 2 5

Table 6.

Remark 4.7. The converse of Lemma 4.6 need not be true, in general (refer the Example 4.11).

Theorem 4.8. Let M be a I'-nearring with 1. If I is a (c,2)-absorbing ideal of G, then I is
(3,2)-absorbing in G.

Proof. Let I be a (c,2)-absorbing ideal of G, and let m € M, g € G and v € I with myM~g C
I. This implies mymvyg € I for all my € M. Since I is (c,2)-absorbing, it follows that
mymy € (I : T'G)ormyg € I ormyyg € I. Thatis, mymI'G C I ormyg € I ormyvg € I
for all m; € M. Since 1 € M, we have mI'G C I or m~yg € I or myg € I. Therefore, I is a
(3,2)-absorbing ideal in G. i

Corollary 4.9. Let M be aU-nearring with 1. Then every 3-prime ideal of G is a (c, 2)-absorbing
ideal of G.

Example 4.10. Let M = Z¢ = G with I' = {~,,7} where 7,7, are given by scheme 1:
(0,1,0,0,0,0) and scheme 2: (0,0,1,0,0,0) (see p. 409, Pilz [27]), and + given in Table 7:

wn A WD = O+
whn A WD = OO
—_ O W AW NN
N = O R W
W N = O s
B WD = O Ul

S W b W ==

Table 7.
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+|0 a b ¢
0/0 a b c
ala 0 ¢ b
b|b ¢ 0 a
clc b a 0
Table 8.

z, ify=1 and z, ify=2
Ty = Tyy =
n 0, otherwise Y 0, otherwise

Then G is an MT-group. Clearly, I = {0} is 3-prime as well as (¢, 2)-absorbing, but not c-prime.
Here, 27,3 = 0 € I whereas 3 ¢ I and 2I'G = {0,2} ¢ I.

Example 4.11. Here M = {0, a,b, ¢} = G. We define binary operations -+ given in Table 8 and
I' = {71, 72} as follows:

if o € {a, c} z, ify=c
, ifzed{a,c .
VY = Y X and zmy=<qa, ifze{a,c}, ye M\ {c}
0, otherwise .
0, otherwise

Then M is an MT-group over itself. Here I = {0} is (¢, 2)-absorbing but not c-prime, as
byja=0€I,a ¢ I,and bI'M = {0,b} ¢ I. Also, I is not 3-prime as byM~a = {0} € I, but
a¢lTandbI'M ¢ 1.

Example 4.12. Here M = {0, a,b, ¢} = G. We define binary operations -+ given in Table 8 and
I' = {71, 72} as follows:

b, ifzx,ye€{a,c}
x pr—
ny 0, otherwise

z, ifr=y

and x =
Y {0, otherwise

Then M is an MT-group over itself. Here I = {0} is not (¢, 2)-absorbing, as ay;cyia =0 €
Ibutayic=0b¢ I,cyyja=0b¢ I,and ayja = b ¢ I. I is not c-prime, as cy2b = 0 € I but
b¢ Iand cI'M = {0,b,c} ¢ I. Also, I is not 3-prime, as byM~c = {0} € I but ¢ ¢ I and
bCM = {0,b} ¢ I.

Lemma 4.13. [f I is a 3-prime ideal of G, then (I : T'G) is a 3-prime ideal in M.

Proof. SinceI # G,1 ¢ (I :T'G)andso (I : T'G) is proper. Suppose that myM~ym, C (I : TG)
and m; ¢ (I : TG). SomI'G SZ I implies there exists g € G, v, € ' with my,g9 ¢ I. Now,
myM~ym; C (I : I'G) implies myM~mI'G C I. Hence, myM~(miv2g2) C I forally, € T
and g, € G. Since I is 3-prime, we have mI'G C I. This shows that m € (I : I'G). Therefore,
(I :T'G) is a 3-prime ideal of M. i

Theorem 4.14. Let M be a I'-nearring with 1, G be monogenic and I be an ideal of G. If
(I :T'G)is a (3,2)-absorbing ideal in M, then I is a (3,2)-absorbing ideal of G.

Proof. Let (I : T'G)be a (3,2)-absorbing ideal of M. To prove I is a (3,2)-absorbing ideal of G,
take m € M,y € I'and g € G with myM~g C I. Since G is monogenic, we have G = M~g
for some g; € G. Now, g = mivg; € I, forsome m; € M. Then, myM~ymivg, = myM~g C I
implies myM~ymy C (I : vg1). Hence, by Note 3.3, we have myM~m; C (I : I'G). Since
(I :T'G)is (3,2)-absorbing, we have mI'M C (I : TG)orm; € (I :T'G)or Mym; C (I :T'G).
That is, mI'MTG C T orm; € (I : TG) or Mymy; C (I : T'G). Since 1 € M, we get
mI'G = mI'ITG C I. Therefore, I is (3, 2)-absorbing. O

Theorem 4.15. Let G be locally monogenic over a distributive T-nearring M. If I is a (3,2)-
absorbing ideal of G, then (I : TG) is a (3,2)-absorbing ideal of M.
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Proof. Suppose that I is (3,2)-absorbing in G. To show (I : I'G) is (3,2)-absorbing in M,
let m,m; € M, v € I such that myM~ym; C (I : I'G). Assume that m; ¢ (I : I'G)
and mym; ¢ (I : T'G). In this case, we show that mI'M C (I : I'G). Since miI'G ¢ I
and M~ymI'G SZ I, we have myvig1 ¢ I and moymiy2g2 ¢ I, for some ¢1,9, € G and
1,72 € I. Further, since myM~ym; C (I : T'G), we have myM~ym;I'G C I. In particular,
mymyymivyigi, mymaymiy2g2 € I, and since I is an additive subgroup of G, it follows that
mymyymiy1 g1 +mymaymiyaga € I. Now, by Lemma 3.25, mymyy(mivy191 +mi7292) € I for
all mp € M. Since [ is (3,2)-absorbing in G, it follows that mI'G C I or mjyi1g1 + miy2g2 € I
or Mvy(miyig1 + miv29) C I.

Case (i): If mI'G C I, then myg € I forally € I"and g € G. Now, m'amfBg = m'a(0 +
mpBg) —m’'a0 € I for all m' € M. Since I is symmetric, we have mam’Bg € I forallm’ € M,
a,8 €T and g € G. Hence, nI' MT'G C I implies mI'M C (I : T'G).

Case (ii): If My(miy191 + mi7292) C I, then we have m’~v(miv1g1 + miy2g2) € I for all
m’ € M. In particular, myy(miv1g1 + mi17y292) € I, implies myymy1g1 + mayymiy292) € I.
If myymiy2g2 € I, then mayyminag: = —mpymimigr + maymivigr + mayminage € I, a
contradiction. Therefore, myymiy1g1 ¢ I, implies M~ymiv1g; g I. Also, miyig1 ¢ I. But
myM~(miyig1) C I. Since I is a (3,2)-absorbing ideal of G, we have mI'G C I. Hence by
Case (i), we get mI'M C (I : TG).

Case (iii): Let m1v191 + m172g2 € I. If myyags € I, we have miyig1 = miyig1 + mi7292 —
miv292 € I, acontradiction. Therefore, mv2g2 ¢ I. Also, mayymvy29, ¢ I implies Mym v292 g
I. But myM~ymyy2g92 C I. Since I is a (3,2)-absorbing ideal in G, we have mI'G C I. Hence
by Case (i), we get mI'M C (I : T'G).

Therefore, (I : I'G) is a (3, 2)-absorbing ideal of M. o

5 Conclusion

We have defined the concepts (i,2)-absorbing, i € {c,3} ideals of G, as a generalization of i-
prime ideal of G. We have proved significant properties and exhibited examples which indicate
the classes are different from the existing classes of prime ideals. Further, one can be extend the
concept to study the corresponding radicals and their properties of (i, 2)-absorbing ideals.
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