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Abstract In this article, we examine the first-order retarded difference equation

∆v(n) +
m∑
i=1

pi(n)v (δi(n)) = 0, n ≥ 0,

where (δi(n))(i = 1, . . . ,m) are sequences of positive real numbers such that δi(n) ≤ n
for n ≥ 0, and limn→∞ δi(n) =∞ and (pi(n))(i = 1, . . . ,m) are sequences of nonnegative real
numbers, When the delay terms δi(n) are not necessarily monotone, we will give an oscillation
criterion obtained for the differential equation, but not yet obtained for its discrete analogous.
Finally, we give an example to illustrate our result.

1 Introduction

In this article, we present a new sufficient criterion for the oscillation of all solutions of the
retarded difference equations.

∆v(n) +
m∑
i=1

pi(n)v (δi(n)) = 0, n = 0, 1, . . . , (1.1)

where (pi(n)) are sequences of nonnegative real numbers, (δi(n)) are sequences of positive real
numbers and are not necessarily monotone such that

δi(n) ≤ n for n ≥ 0, and lim
n→∞

δi(n) =∞. (1.2)

∆ symbolizes the forward difference operator such that ∆v(n) = v(n+ 1)− v(n). Describe

k = − min
n≥0, 1≤i≤m

δi(n), (Obviously, k is a positive integer).

By a solution of the difference equation (1.1), it means a sequence of real numbers (v(n)) which
satisfies (1.1) for all n ≥ 0. It is obvious that, for every choice of real numbers c−k, c−k+1, ..., c−1, c0,
there is a unique solution (v(n)) of (1.1) which satisfies the initial conditions v(−k) = c−k, v(−k+
1) = c−k+1, ..., v(−1) = c−1, v(0) = c0.
A solution (v(n)) of the difference equation (1.1) is said to be oscillatory, if the terms v(n) of the
sequence are neither eventually positive nor eventually negative. In other situation, the solution
is called nonoscillatory.
If m = 1, Eq. (1.1) reduces to

∆v(n) + p(n)v (δ(n)) = 0, n ∈ N0. (1.3)

The oscillatory behavior of solutions of equations of (1.1) and (1.3) have been the topic of nu-
merous investigations. See [1-23] and the references which are cited here.
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In 1998, Zhang and Tian [23], analyzed (1.3) and established that, if (δ(n)) is not necessarily
monotone and

lim sup
n→∞

p(n) > 0 and lim inf
n→∞

n−1∑
j=δ(n)

p(j) >
1
e
, (1.4)

then all solutions of (1.3) are oscillatory.
When (δ(n)) is not necessarily monotone, in 2008, Chatzarakis et al. [3, 4] considered (1.3)

and found out that, if one of the following conditions

lim sup
n→∞

n∑
j=ϕ(n)

p(j) > 1 (1.5)

or

lim sup
n→∞

n−1∑
j=δ(n)

p(j) <∞ and c := lim inf
n→∞

n−1∑
j=δ(n)

p(j) >
1
e

(1.6)

hold, then all solutions of (1.3) are oscillatory, where ϕ(n) = max0≤s≤n δ(s), n ≥ 0.
In 2008, Chatzarakis, Koplatadze and Stavroulakis [3] and in 2008 and 2009, Chatzarakis,

Philos and Stavroulakis [5, 6] established the following criteria.

Theorem 1.1. (I) Suppose that 0 < c ≤ 1
e . Then either one of the conditions:

lim sup
n→∞

n∑
j=ϕ(n)

p(j) > 1−
(

1−
√

1− c
)2
, (1.7)

or

lim sup
n→∞

n∑
j=ϕ(n)

p(j) > 1− 1
2

(
1− c−

√
1− 2c

)
, (1.8)

or

lim sup
n→∞

n∑
j=ϕ(n)

p(j) > 1− 1
2

(
1− c−

√
1− 2c− c2

)
(1.9)

implies that all solutions of (1.3) are oscillatory.
(II) If 0 < c ≤ 1

e and also, p(n) ≥ 1−
√

1− c for all large n, and

lim sup
n→∞

n∑
j=ϕ(n)

p(j) > 1− c1−
√

1− c√
1− c

, (1.10)

or, if 0 < c ≤ 6− 4
√

2 and also, p(n) ≥ c
2 for all large n, and

lim sup
n→∞

n∑
j=ϕ(n)

p(j) > 1− 1
4

(
2− 3c−

√
4− 12c+ c2

)
, (1.11)

then all solutions of (1.3) are oscillatory.

We remark that
(i) When 0 < c ≤ 1

e , it is easy to affirm that

1
2

(
1− c−

√
1− 2c− c2

)
> c

1−
√

1− c√
1− c

>
1
2

(
1− c−

√
1− 2c

)
>
(

1−
√

1− c
)2
,

and therefore condition (1.9) is weaker than conditions (1.7), (1.8) and (1.10).
(ii) When 0 < c ≤ 6− 4

√
2, it is easy to obtain that

1
4

(
2− 3c−

√
4− 12c+ c2

)
>

1
2

(
1− c−

√
1− 2c− c2

)
,
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and therefore in this case, condition (1.11) is better than condition (1.9).
Now, we consider the equation (1.1). In 2006, Berezansky and Braverman [1] found out the

following result for (1.1). If (δi(n)) are not necessarily monotone, and

lim sup
n→∞

m∑
i=1

pi(n) > 0 and lim inf
n→∞

n−1∑
j=δ(n)

m∑
i=1

pi(j) >
1
e
, (1.12)

where δ(n) = max1≤i≤m δi(n), then every solution of (1.1) is oscillatory.
In 2013, Chatzarakis et al. [7], studied (1.1) and proved that, if (δi(n)) are nondecreasing

and

lim sup
n→∞

n∑
j=δ(n)

m∑
i=1

pi(j) > 1, (1.13)

where δ(n) = max1≤i≤m δi(n), then every solution of (1.1) is oscillatory.
Set

ϕi(n) := max
s≤n

δi(s), n ≥ 0 and ϕ(n) = max
1≤i≤m

ϕi(n), (1.14)

and

α := lim inf
n→∞

n−1∑
j=δ(n)

m∑
i=1

pi(j). (1.15)

Clearly, (ϕi(n)) are nondecreasing, and δi(n) ≤ ϕi(n) ≤ ϕ(n) for all n ≥ 0 and 1 ≤ i ≤ m.
In 2015, Braverman et al. [2], considered the equation (1.1) and proved that, if (δi(n)) are

not necessarily monotone and

lim sup
n→∞

n∑
j=ϕ(n)

m∑
i=1

pi(j) > 1, (1.16)

or

lim sup
n→∞

n∑
j=ϕ(n)

m∑
i=1

pi(j) > 1− 1
2

(
1− α−

√
1− 2α− α2

)
, (1.17)

where ϕ(n) is described by (1.14), then every solution of (1.1) is oscillatory.
In 2020, Kılıç and Öcalan [15], examined the equation (1.1) and established that, if (δi(n))(i =

1, . . . ,m) are not necessarily monotone and

lim inf
n→∞

n−1∑
j=δ(n)

m∑
i=1

pi(j) = lim inf
n→∞

n−1∑
j=ϕ(n)

m∑
i=1

pi(j) >
1
e
, (1.18)

where ϕ(n) is described by (1.14), then every solution of (1.1) is oscillatory.
There is a huge concern for Eq. (1.1), due to the fact that retarded difference equation (1.1)

which symbolizes a discrete analogue of the differential equation with delay

y′(t) +
m∑
i=1

pi(t)y (δi(t)) = 0, t ≥ t0, (1.19)

where δi(t) ≤ t and limt→∞ δi(t) =∞ for i = 1, . . . ,m.
In the literature, the first method of proving many lemmas and theorems for oscillation in

difference equations, which are discrete analogs of differential equations, is the method of cal-
culating with direct sequences. However, in some cases, this proof technique is not valid. In
cases where the first method cannot be used, the second method is the use of continuous func-
tions in the interval of n ≤ t < n+ 1, where n ∈ N, t ∈ R. (See [6] and [11] ).

In 2017, Chatzarakis and Péics [9] (See also [16]) established that if δi(t) are not necessarily
monotone and

lim sup
t→∞

t∫
ϕ(t)

m∑
i=1

pi(s)ds >
1 + lnλ1

λ1
− 1

2

(
1− α1 −

√
1− 2α1 − α2

1

)
, (1.20)
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where ϕi(t) := sups≤t δi(s), t ≥ 0 and ϕ(t) = max1≤i≤m ϕi(t) and λ1 ∈ [1, e] is the smaller root

of the equation λ = eα1λ with α1 = lim inft→∞
t∫

δ(t)

m∑
i=1

pi(s)ds (where δ(t) = max1≤i≤m δi(t)) ,

then all solutions of (1.19) oscillate.
A significant question originates whether there is a discrete analogue of condition (1.20).

Clearly, the two methods mentioned above failed to answer this question. Therefore, our purpose
in this article is to present a positive answer to this question by using a different proof technique.

2 Main Results

We established a new sufficient condition for the oscillatory behaviour of all solutions of (1.1),
under the assumption that the delay terms (δi(n)) are not necessarily monotone.

The next lemmas were given in [10], which they will be a key role in our main result.

Lemma 2.1. Suppose that (1.1) is satisfied and α is defined by (1.15) with 0 ≤ α ≤ 1
e , and

(v(n)) is an eventually positive solution of (1.1). Then we have

lim inf
n→∞

v(ϕ(n))

v(n)
≥ λ0, (2.1)

where ϕ(n) is defined by (1.14) and λ0 ∈ [1, e] is the smaller root of the equation λ = eαλ.

Lemma 2.2. Suppose that (1.1) is satisfied and ϕ(n) is defined by (1.14), 0 < α ≤ 1
e and v(n)

is an eventually positive solution of (1.1). Then

lim inf
n→∞

v(n+ 1)
v(ϕ(n))

≥ 1
2

(
1− α−

√
1− 2α− α2

)
.

Now, we are ready for the main result.

Theorem 2.3. Suppose that (1.1) holds and α is defined by (1.15) with 0 ≤ α ≤ 1
e . If

lim sup
n→∞

n∑
j=ϕ(n)

m∑
i=1

pi(j) >
1 + lnλ0

λ0
− 1

2

(
1− α−

√
1− 2α− α2

)
, (2.2)

where ϕ(n) is defined by (1.14), then all solutions of (1.1) oscillate.

Proof. Assume, for the sake of contradiction, that there exists an eventually positive solution
v(n) of (1.1). If v(n) is an eventually negative solution of (1.1), the proof of the theorem can
be done similarly. Then there exists n1 > n0 such that v(n), v (δi(n)) , v (ϕ(n)) > 0, for all
n ≥ n1. Thus, from (1.1) we have

∆v(n) = −
m∑
i=1

pi(n)v (δi(n)) ≤ 0, for all n ≥ n1,

and it means that (v(n)) is an eventually nonincreasing sequence of positive numbers. On the
other hand, since δi(n) ≤ ϕi(n) ≤ ϕ(n) for all n ≥ 0, we have

∆v(n) +
m∑
i=1

pi(n)v (ϕ(n)) ≤ 0, for all n ≥ n1. (2.3)

By Lemma 2.1, inequality (2.1) is fulfilled. Therefore

v(ϕ(n))

v(n)
> λ0 − ε, for all n ≥ n2 ≥ n1, (2.4)

where ε is an arbitrary real number with 0 < ε < λ0. Since the function

f(s) =
v(ϕ(n))

v [s]
, s ∈ R,
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where [·] denotes the greatest integer function, is nondecreasing, we can find t∗ ≤ t∗ ∈ [ϕ(n), n],
t∗, t

∗ ∈ R such that [t∗]− [t∗] = 0 and

v(ϕ(n))

v [t∗]
≥ λ0 − ε, for all n ≥ n2, (2.5)

and
v(ϕ(n))

v [t∗]
≤ λ0 − ε, for all n ≥ n2. (2.6)

We note that if t∗ = t∗ = ϕ(n), then we get λ0 = 1 and we return to the condition (1.16). Thus,
we assume that t∗ ≤ t∗ ∈ (ϕ(n), n].

Summing up (1.1) from [t∗] to n and using the fact that the function (v(n)) is nonincreasing,
we have

v(n+ 1)− v [t∗] + v(ϕ(n))
m∑
i=1

n∑
j=[t∗]

pi(j) ≤ 0. (2.7)

Hence, we have
m∑
i=1

n∑
j=[t∗]

pi(j) ≤
v [t∗]

v(ϕ(n))
− v(n+ 1)
v(ϕ(n))

,

which, in view of (2.5), we obtain
m∑
i=1

n∑
j=[t∗]

pi(j) ≤
1

λ0 − ε
− v(n+ 1)
v(ϕ(n))

. (2.8)

Dividing (1.1) by v(n), summing up from ϕ(n) to [t∗]− 1, we have

[t∗]−1∑
j=ϕ(n)

∆v(j)

v(j)
+

m∑
i=1

[t∗]−1∑
j=ϕ(n)

pi(j)
v(ϕ(j))

v(j)
≤ 0.

Hence, in view of (2.4) and (2.6), and since ln v[t∗]
v(ϕ(n)) ≤

[t∗]−1∑
j=ϕ(n)

∆v(j)
v(j) , we get

ln
v [t∗]

v(ϕ(n))
+ (λ0 − ε)

m∑
i=1

[t∗]−1∑
j=ϕ(n)

pi(j) ≤ 0,

or
m∑
i=1

[t∗]−1∑
j=ϕ(n)

pi(j) ≤
1

λ0 − ε
ln (λ0 − ε) . (2.9)

Combining the inequalities (2.8) and (2.9), we have

m∑
i=1

n∑
j=ϕ(n)

pi(j) ≤
1

λ0 − ε
+

ln (λ0 − ε)
λ0 − ε

− v(n+ 1)
v(ϕ(n))

. (2.10)

(2.10) is provided for all real numbers ε with 0 < ε < λ0. Hence, for ε→ 0 we have

lim sup
n→∞

m∑
i=1

n∑
j=ϕ(n)

pi(j) ≤
1 + lnλ0

λ0
− v(n+ 1)
v(ϕ(n))

.

Using Lemma 2.2, the last inequality gives

lim sup
n→∞

m∑
i=1

n∑
j=ϕ(n)

pi(j) ≤
1 + lnλ0

λ0
− 1

2

(
1− α−

√
1− 2α− α2

)
,

then the last inequality contradicts to (2.2). The proof is completed.
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Example 2.4. We consider the delay difference equation

∆v(n) + p1(n)v (n− 1) + p2(n)v (n− 2) = 0, n ≥ 0, (2.11)

where p1(2n) = 0.2, p1(2n + 1) = 0.3 and p2(2n) = 0.1, p2(2n + 1) = 0.32. If we observe
that, we find

α = lim inf
n→∞

n−1∑
j=n−1

2∑
i=1

pi(j) = 0, 3 <
1
e
,

which means that condition (1.18) is not applicable for this equation. On the other hand, we have
λ0 = 1.6313 and

lim sup
n→∞

n∑
j=n−1

2∑
i=1

pi(j) = 0.92 < 1− 1− (0.3)−
√

1− (0.6)− (0.3)2

2
∼= 0.928 39

which means that condition (1.17) is not applicable for this equation. On the other hand, it can
be easily seen that

lim sup
n→∞

n∑
j=n−1

2∑
i=1

pi(j) = 0.92 >
1 + ln 1.6313

1.6313
−

(
1− (0.3)−

√
1− (0.6)− (0.3)2

)
2

∼= 0.84139.

Therefore, all criteria of Theorem 2.3 hold, and so every solution of (2.11) oscillates.
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