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Abstract In this paper, we continue to study the sharing value problems for higher order
derivatives of meromorphic functions with its linear difference and q-difference operators. Some
of our results generalize and improve the results of Meng–Liu (J. Appl. Math. and Informatics,
37(2019), 133–148) to a large extent.

1 Introduction

Let f and g be two non-constant meromorphic functions defined in the open complex plane C.
If for some a ∈ C∪{∞}, f −a and g−a have the same set of zeros with the same multiplicities,
we say that f and g share the value a CM (counting multiplicities), and if we do not consider the
multiplicities into account, then f and g are said to share the value a IM (ignoring multiplicities).
We assume that the readers are familiar with the standard notations and symbols such as T (r, f),
N(r, a; f) (N(r, a; f)), m(r, f) etc. of Nevanlinna’s value distribution theory (see [11]).

In 2001, Lahiri ([19], [17]) introduced the definition of weighted sharing which plays a key
role in uniqueness theory as far as relaxation of sharing is concerned. In the following, we
explain the notion.

Definition 1.1. [19] Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞}, we denote by
Ek(a, f) the set of all a-points of f , where an a point of multiplicity m is counted m times if
m ≤ k, and k+ 1 times if m > k. If Ek(a, f) = Ek(a, g), we say that f , g share the value a with
weight k.

We write f , g share (a, k) to mean that f, g share the value a with weight k. Clearly, if f, g
share (a, k) then f, g share (a, p) for any integer p, 0 ≤ p < k. Also we note that f, g share a
value a IM or CM if and only if f, g share (a, 0) or (a,∞) respectively.

Definition 1.2. [16] For a ∈ C ∪ {∞}, we denote by N(r, a; f |= 1), the counting function of
simple a-points of f. For a positive integer m, we denote by N(r, a; f |≤ m) (N(r, a; f |≥ m))
the counting function of those a-point of f whose multiplicities are not greater (less) than m,
where each a-point is counted according to its multiplicity.

N(r, a; f |≤ m) (N(r, a; f |≥ m)) are defined similarly except that in counting the a-points
of f we ignore the multiplicity. Also N(r, a; f |< m), N(r, a; f |> m), N(r, a; f |< m) and
N(r, a; f |> m) are defined similarly.

Definition 1.3. [19] We denote by N2(r, a; f) the sum N(r, a; f) +N(r, a; f |≥ 2).

Definition 1.4. [19] Let f and g share a value a IM. We denote by N∗(r, a; f, g) the counting
function of those a-points of f whose multiplicities differ from the multiplicities of the corre-
sponding a-points of g.

Let c be a nonzero complex constant, and let f(z) be a meromorphic function. The shift
operator of f(z) is denoted by f(z + c). Also, we use the notations ∆cf and ∆k

cf to denote the
difference and k-th order difference operators of f , which are respectively defined as

∆cf = f(z + c)− f(z), ∆
k
cf(z) = ∆c(∆

k−1
c f(z)), k ∈ N, k ≥ 2.
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We note that ∆cf and ∆k
cf are nothing but linear combination of different shift operators. So

for generalization of those operators, it is reasonable to introduce the linear difference operators
L(z, f) as follows:

L(z, f) =
p∑

j=0

ajf(z + cj), (1.1)

where p ∈ N ∪ {0} and aj and cj’s are complex constants with at-least one aj’s are non-zero.
For a non-zero complex constant q and a meromorphic function f , the q-shift and q-difference

operators are defined, respectively by f(qz) and ∆qf = f(qz) − f(z). Here also we generalize
these operators as follows:

Lq(z, f) =
r∑

j=0

bjf(qjz + dj), (1.2)

where r is a non-negative integer, and qj , bj , dj’s are complex constants with at-least one of bj
is non-zero.

It was Rubel–Yang [30] who first initiated the problem of uniqueness of meromorphic func-
tions sharing two values, and obtained the following result.

Theorem 1.5. [30] Let f be a non-constant entire function. If f shares two distinct finite values
CM with f ′, then f ≡ f ′.

Mues–Steinmetz [26] improved the above result by relaxing the nature of sharing two values
from CM to IM. After that Mues–Steinmetz [27], and Gundersen [9] improved Theorem A to
non-constant meromorphic functions.

Recently, the difference analogue of classical Nevanlinna theory for meromorphic functions
of finite order was established by Halburd–Korhonen [12, 13], Chiang–Feng [8], independently,
and developed by Halburd–Korhonen–Tohge [14] for hyper order strictly less than 1. After
that, there has been an increasing interest in studying the uniqueness problems of meromorphic
functions related to their shift or difference operators (see [7, 15, 21, 23, 28, 4, 5, 6, 22, 34]).

As we know that the time-delay differential equation f(x) = f(x−k), k > 0 plays an impor-
tant roll in real analysis, and it has been rigorously studied. For complex variable counterpart,
Liu-Dong [24] studied the complex differential-difference equation f(z) = f(z + c), where c is
a non-zero constant.

In 2018, Qi et al. [29] looked at this complex differential-difference equation from a different
perspective. In fact, they considered the value sharing problem related to f ′(z) and f(z + c),
where c is a complex number, and obtained the following result.

Theorem 1.6. [29] Let f be a non-constant meromorphic function of finite order, n ≥ 9 be an
integer. If [f ′(z)]n and fn(z+c) share a(6= 0) and∞ CM, then f ′(z) = tf(z+c), for a constant
t that satisfies tn = 1.

In 2019, Meng–Liu [25] reduced the nature of sharing values from CM to finite weight and
obtained the following results.

Theorem 1.7. [25] Let f be a non-constant meromorphic function of finite order, n ≥ 10 an
integer. If [f ′(z)]n and fn(z+ c) share (1, 2) and (∞, 0), then f ′(z) = tf(z+ c), for a constant
t that satisfies tn = 1.

Theorem 1.8. [25] Let f be a non-constant meromorphic function of finite order, n ≥ 9 an
integer. If [f ′(z)]n and fn(z+c) share (1, 2) and (∞,∞), then f ′(z) = tf(z+c), for a constant
t that satisfies tn = 1.

Theorem 1.9. [25] Let f be a non-constant meromorphic function of finite order, n ≥ 17 an
integer. If [f ′(z)]n and fn(z+ c) share (1, 0) and (∞, 0), then f ′(z) = tf(z+ c), for a constant
t that satisfies tn = 1.
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For further investigation of Theorems 1.6–1.9, we pose the following questions.
Question 1.1. Could we determine the relationship between the k-th derivative f (k)(z) and the
linear difference polynomial L(z, f) as defined in (1.1) of a meromorphic (or entire) function
f(z) under relax sharing hypothesis?
Question 1.2. Could we further reduce the lower bound of n in Theorems 1.7–1.9?

In this direction, we prove the following result.

Theorem 1.10. Let f be a non-constant meromorphic function of finite order, n, k are posi-
tive integers, and L(z, f) are defined in (1.1). Suppose [f (k)]n and [L(z, f)]n share (1, l) and
(∞,m), where 0 ≤ l <∞ and 0 ≤ m ≤ ∞, and one of the following conditions holds:

(i) l ≥ 2, m = 0 and n ≥ 8;

(ii) l ≥ 2, m =∞ and n ≥ 7;

(iii) l = 1, m = 0 and n ≥ 9;

(iv) l = 0, m = 0 and n ≥ 12.

Then f (k)(z) = tL(z, f), for a non-zero constant t that satisfies tn = 1.

We give the following example in the support of Theorem 1.10.

Example 1.11. Let f(z) = ez/n, where n is a positive integer. Suppose L(z, f) = f(z +
c) + c0f(z), where c0 is a non-zero complex constant such that c0 6= 1/n, and c = n log((1 −
c0n)/n).Then one can easily verify that (f ′)n and (L(z, f))n satisfy all the conditions of Theo-
rem 1.10. Here f ′(z) = tL(z, f), where t is a constant such that tn = 1.

Remark 1.12. Let us suppose that cj = jc, j = 0, 1, . . . , p and ap(z) = (p0), ap−1 = −(p1),
ap−2 = (p2). Then from (1.1), it is easily seen that L(z, f) = ∆p

cf . Therefore, we obtain the
following corollary from Theorem 1.10.

Corollary 1.13. Let f be a non-constant meromorphic function of finite order, n, k are positive
integers, and L(z, f) are defined in (1.1). Suppose [f (k)]n and [∆p

cf ]
n share (1, l) and (∞,m),

where 0 ≤ l <∞ and 0 ≤ m ≤ ∞, and one of the following conditions holds:

(i) l ≥ 2, m = 0 and n ≥ 8;

(ii) l ≥ 2, m =∞ and n ≥ 7;

(iii) l = 1, m = 0 and n ≥ 9;

(iv) l = 0, m = 0 and n ≥ 12.

Then f (k)(z) = t∆p
cf , for a non-zero constant t that satisfies tn = 1.

For entire function we prove the following result which is an improvement of Corollary 1.8
of [25].

Theorem 1.14. Let f be a non-constant entire function of finite order, n, k are positive integers,
and L(z, f) are defined in (1.1). Suppose [f (k)]n and [L(z, f)]n share (1, l), and one of the
following conditions holds:

(i) l ≥ 1 and n ≥ 5;

(ii) l = 0 and n ≥ 8;

Then f (k)(z) = tL(z, f), for a non-zero constant t that satisfies tn = 1.

In the same paper, Meng–Liu [25] also obtained the following results by replacing f(z + c)
with q-shift operator f(qz).

Theorem 1.15. [25] Let f be a non-constant meromorphic function of zero order, n ≥ 10 an
integer. If [f ′(z)]n and fn(qz) share (1, 2) and (∞, 0), then f ′(z) = tf(qz), for a constant t that
satisfies tn = 1.
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Theorem 1.16. [25] Let f be a non-constant meromorphic function of zero order, n ≥ 9 an
integer. If [f ′(z)]n and fn(qz) share (1, 2) and (∞,∞), then f ′(z) = tf(qz), for a constant t
that satisfies tn = 1.

Theorem 1.17. [25] Let f be a non-constant meromorphic function of zero order, n ≥ 17 an
integer. If [f ′(z)]n and fn(qz) share (1, 0) and (∞, 0), then f ′(z) = tf(qz), for a constant t that
satisfies tn = 1.

For the generalizations and improvements of Theorems 1.15–1.17 to a large extent, we obtain
the following result.

Theorem 1.18. Let f be a non-constant meromorphic function of zero order, n, k are positive
integers, and Lq(z, f) are defined in (1.2). Suppose [f (k)]n and [Lq(z, f)]n share (1, l) and
(∞,m), where 0 ≤ l <∞ and 0 ≤ m ≤ ∞, and one of the following conditions holds:

(i) l ≥ 2, m = 0 and n ≥ 8;

(ii) l ≥ 2, m =∞ and n ≥ 7;

(iii) l = 1, m = 0 and n ≥ 9;

(iv) l = 0, m = 0 and n ≥ 12.

Then f (k) = tLq(z, f), for a non-zero constant t that satisfies tn = 1.

In 2018, Qi et al. [29] also proved the following result.

Theorem 1.19. [29] Let f be a meromorphic function of finite order. Suppose that f ′ and ∆cf
share a1, a2, a3, a4 IM, where a1, a2, a3, a4 are four distinct finite values. Then, f ′(z) ≡ ∆cf.

We prove the following uniqueness theorem about the k-th derivative f (k) and linear differ-
ence polynomial L(z, f) of a meromorphic function f , which is an extension of Theorem 1.19.

Theorem 1.20. Let f be a meromorphic function of finite order. Suppose that f (k) and L(z, f)
share a1, a2, a3, a4 IM, where a1, a2, a3, a4 are four distinct finite values. Then,

f (k)(z) ≡ L(z, f).

2 Key Lemmas

In this section, we present some lemmas which will be needed in the sequel. Let F and G be two
non-constant meromorphic functions defined in C. We also denote by H , the following function

H =
(F ′′
F ′
− 2F ′

F − 1

)
−
(G′′
G′
− 2G′

G− 1

)
. (2.1)

Lemma 2.1. [19] Let F , G be two non-constant meromorphic functions such that they share
(1, 1) and H 6≡ 0. Then

N(r, 1;F |= 1) = N(r, 1;G |= 1) ≤ N(r,H) + S(r, F ) + S(r,G).

Lemma 2.2. [3] Let F , G be two non-constant meromorphic functions sharing (1, t), where
0 ≤ t <∞. Then

N(r, 1;F ) +N(r, 1;G)−N1)
E (r, 1;F ) +

(
t− 1

2

)
N∗(r, 1;F,G)

≤ 1
2
(N(r, 1;F ) +N(r, 1;G)).

Lemma 2.3. [20] Suppose F , G share (1, 0), (∞, 0). If H 6≡ 0, then,

N(r,H) ≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r, 1;F,G)

+N∗(r,∞;F,G) +N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G),

where N0(r, 0;F ′) is the reduced counting function of those zeros of F ′ which are not the zeros
of F (F − 1), and N0(r, 0;G′) is similarly defined.
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Lemma 2.4. [31] Let f be a non-constant meromorphic function and P (f) = a0 +a1f+a2f
2 +

. . .+ anf
n, where a0, a1, a2, . . . , an are constants and an 6= 0. Then

T (r, P (f)) = nT (r, f) +O(1).

Lemma 2.5. [18] If N
(
r, 0; f (k) | f 6= 0

)
denotes the counting function of those zeros of f (k)

which are not the zeros of f , where a zero of f (k) is counted according to its multiplicity then

N
(
r, 0; f (k) | f 6= 0

)
≤ kN(r,∞; f) +N (r, 0; f |< k) + kN (r, 0; f |≥ k) + S(r, f).

Lemma 2.6. [33] Let F and G be two non-constant meromorphic functions such that they share
(1, 0), and H 6≡ 0, then

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,G).

Similar inequality holds for G also.

Lemma 2.7. [1] If F , G be two non-constant meromorphic functions such that they share (1, 1).
Then

2NL(r, 1;F ) + 2NL(r, 1;G) +N
(2
E(r, 1;F )−NF>2(r, 1;G)

≤ N(r, 1;G)−N(r, 1;G).

Lemma 2.8. [2] If two non-constant meromorphic functions F , G share (1, 1), then

NF>2(r, 1;G) ≤ 1
2
(N(r, 0;F ) +N(r,∞;F )−N0(r, 0;F ′)) + S(r, F ),

where N0(r, 0;F ′)) is the counting function of those zeros of F ′ which are not the zeros of
F (F − 1).

Lemma 2.9. [2] Let F and G be two non-constant meromorphic functions sharing (1, 0). Then

NL(r, 1;F ) + 2NL(r, 1;G) +N
(2
E(r, 1;F )−NF>1(r, 1;G)−NG>1(r, 1;F )

≤ N(r, 1;G)−N(r, 1;G).

Lemma 2.10. [2] If F and G share (1, 0), then

NL(r, 1;F ) ≤ N(r, 0;F ) +N(r,∞;F ) + S(r, F )

NF>1(r, 1;G) ≤ N(r, 0;F ) +N(r,∞;F )−N0(r, 0;F ′) + S(r, F ).

Similar inequalities hold for G also.

Lemma 2.11. [33] Let F andG be two non-constant meromorphic functions such that they share
(1, 0) and H 6≡ 0. Then

N
1)
E (r, 1;F ) ≤ N(r,∞;H) + S(r, F ) + S(r,H).

Lemma 2.12. [32] Let f and g be two distinct non-constant rational functions and let a1, a2, a3, a4
be four distinct values. If f and g share a1, a2, a3, a4 IM, then f(z) = g(z).

Lemma 2.13. [10] Suppose f and g are two distinct non-constant meromorphic functions, and
a1, a2, a3, a4 ∈ C ∪ {∞} are four distinct values. If f and g share a1, a2, a3, a4 IM, then

(i) T (r, f) = T (r, g) +O(log(rT (r, f))), as r 6∈ E and r →∞,

(ii) 2T (r, f) =
∑4

j=1 N

(
r,

1
f − aj

)
+ O(log(rT (r, f))), as r 6∈ E and r → ∞, where E ⊂

(1,∞) is of finite linear measure.
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3 Proof of the theorems

We prove only Theorems 1.10 and 1.20 as the proof of the rest of the theorems are very much
similar to the proof of Theorem 1.10.

Proof of Theorem 1.10. Case 1: Suppose H 6≡ 0.
Let F = (L(z, f))n and G = (f (k))n.
Keeping in view of Lemma 2.4, we get by applying Second fundamental theorem of Nevan-

linna on F and G that

n(T (r, L(z, f)) + T (r, f (k)))

≤ N(r, 0;F ) +N(r, 1;F ) +N(r,∞;F ) +N(r, 0;G) +N(r, 1;G)

+N(r,∞;G)−N0(r, 0;F ′)−N0(r, 0;G′) + S(r, F ) + S(r,G), (3.1)

where N0(r, 0;F ′) and N0(r, 0;G′) are defined as in Lemma 2.3.
(i). Suppose l ≥ 2 and m = 0.
Then using Lemmas 2.1, 2.2 and 2.3 in (3.1) we obtain

n

2
(T (r, L(z, f)) + T (r, (f (k))))

≤ N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G)−
(
l − 3

2

)
N∗(r, 1;F,G) + S(r, F ) + S(r,G)

≤ 2N(r, 0;L(z, f)) + 2N(r, 0; f (k)) +N(r,∞;L(z, f))

+N(r,∞; f (k)) +
1
2
(N(r,∞;L(z, f)) +N(r,∞; f (k))

+S(r, F ) + S(r,G)

≤ 7
2
(T (r, L(z, f)) + T (r, f (k)) + S(r, F ) + S(r,G).

This implies that

(n− 7)(T (r, L(z, f)) + f (k)) ≤ S(r, L(z, f)) + S(r, f (k)), (3.2)

which contradict to the fact that n ≥ 8.
(ii). Suppose l ≥ 2 and m =∞. Then using Lemmas 2.1, 2.2 and 2.3 in (3.1) we obtain

n

2
(T (r, L(z, f)) + T (r, f (k)))

≤ N2(r, 0;F ) +N2(r, 0;G) +N(r,∞;F ) +N(r,∞;G)

−
(
l − 3

2

)
N∗(r, 1;F,G) + S(r, F ) + S(r,G)

≤ 2N(r, 0;L(z, f)) + 2N(r, 0; f (k)) +N(r,∞;L(z, f))

+N(r,∞; f (k)) + S(r, F ) + S(r,G)

≤ 3(T (r, L(z, f)) + T (r, f (k))) + S(r, F ) + S(r,G).

This implies that

(n− 6)(T (r, L(z, f)) + T (r, f (k))) ≤ S(r, L(z, f)) + S(r, f (k)),

which contradict to the fact that n ≥ 7.
(iii). Suppose l = 1 and m = 0.
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Using Lemmas 2.1, 2.3, 2.7 and 2.8, we obtain

N(r, 1;F )

≤ N(r, 1;F |= 1) +NL(r, 1;F ) +NL(r, 1;G) +N
(2
E(r, 1;F )

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r, 1;F,G) +N∗(r,∞;F,G)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2
E(r, 1;F ) +N0(r, 0;F ′) +N0(r, 0;G′)

+S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G) + 2NL(r, 1;F )

+2NL(r, 1;G) +N
(2
E(r, 1;F ) +N0(r, 0;F ′) +N0(r, 0;G′)

+S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G) +N(r, 1;G)

−N(r, 1;G) +NF>2(r, 1;G) +N0(r, 0;F ′) +N0(r, 0;G′)

+S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G) +N(r, 0;G | G 6= 0)

+
1
2
N(r, 0;F ) +

1
2
N(r,∞;F ) +N0(r, 0;F ′) + S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N2(r, 0;G) +N∗(r,∞;F,G) +N(r,∞;G)

+
1
2
N(r, 0;F ) +

1
2
N(r,∞;F ) +N0(r, 0;F ′) + S(r, F ) + S(r,G). (3.3)

Similarly, we obtain

N(r, 1;G)

≤ N(r, 0;G |≥ 2) +N2(r, 0;F ) +N∗(r,∞;F,G) +N(r,∞;F )

+
1
2
N(r, 0;G) +

1
2
N(r,∞;G) +N0(r, 0;G′) + S(r, F ) + S(r,G). (3.4)

Putting the values of N(r, 1;F ) and N(r, 1;G) from (3.3) and (3.4) to (3.1), a simple calcu-
lation reduces to

n(T (r, L(z, f)) + T (r, f (k)))

≤ 2N2(r, 0;F ) + 2N2(r, 0;G) +
1
2
(N(r, 0;F ) +N(r, 0;G))

+
7
2
(N(r,∞;F ) +N(r,∞;G)) + S(r, F ) + S(r,G)

≤ 9
2
(N(r, 0;L(z, f)) +N(r, 0; f (k)) +

7
2
N(r,∞;L(z, f))

+
7
2
N(r,∞; f (k)) + S(r, F ) + S(r,G)

≤ 8(T (r, L(z, f) + T (r, f (k))) + S(r, L(z, f)) + S(r, f (k)),

which is a contradiction since n ≥ 9.
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(iv). Suppose l = 0 and m = 0. Using Lemmas 2.11, 2.3, 2.5, 2.9 and 2.10, we obtain

N(r, 1;F )

≤ N
1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2
E(r, 1;F )

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r, 1;F,G) +N∗(r,∞;F,G)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2
E(r, 1;F ) +N0(r, 0;F ′) +N0(r, 0;G′)

+S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G) + 2NL(r, 1;F )

+2NL(r, 1;G) +N
(2
E(r, 1;F ) +N0(r, 0;F ′) +N0(r, 0;G′)

+S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G) +NL(r, 1;F )

+NF>1(r, 1;G) +NG>1(r, 1;F ) +N(r, 1;G)−N(r, 1;G) +N0(r, 0;F ′)

+N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ N(r, 0;F |≥ 2) +N(r, 0;G |≥ 2) +N∗(r,∞;F,G) + 2N(r, 0;F )

+2N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) +N(r, 1;G)−N(r, 1;G)

+N0(r, 0;F ′) +N0(r, 0;G′) + S(r, F ) + S(r,G)

≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, 0;F ) + 2N(r,∞;F ) +N(r,∞;G)

+N∗(r,∞;F,G) +N(r, 0;G′ | G 6= 0) +N0(r, 0;F ′) + S(r, F ) + S(r,G)

≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, 0;F ) +N(r, 0;G) + 2N(r,∞;F )

+2N(r,∞;G) +N∗(r,∞;F,G) +N0(r, 0;F ′) + S(r, F ) + S(r,G). (3.5)

Similarly, we can obtain

N(r.1;G)

≤ N2(r, 0;F ) +N2(r, 0;G) +N(r, 0;F ) +N(r, 0;G) + 2N(r,∞;F )

+2N(r,∞;G) +N∗(r,∞;F,G) +N0(r, 0;G′) + S(r, F ) + S(r,G). (3.6)

Using (3.5) and (3.5), (3.1) reduces to

n(T (r, L(z, f)) + T (r, f (k)))

≤ 2(N2(r, 0;F ) +N2(r, 0;G)) + 3(N(r, 0;F ) +N(r, 0;G))

+2N∗(r,∞;F,G) + 3(N(r,∞;F ) +N(r,∞;G))

+S(r, F ) + S(r,G)

≤ 7(N(r, 0;L(z, f)) +N(r, 0; f (k))) + 4N(r,∞;L(z, f))

+4N(r,∞; f (k)) + S(r, L(z, f)) + S(r, f (k))

≤ 11(T (r, L(z, f)) + T (r, f (k))) + S(r, L(z, f)) + S(r, f (k)).

This implies that

(n− 11)(T (r, L(z, f)) + T (r, f (k))) ≤ S(r, L(z, f)) + S(r, f (k)),

which is a contradiction since n ≥ 12.
Case 2: Suppose H ≡ 0. Then by integration we get

F =
AG+B

CG+D
, (3.7)

where A, B, C and D are complex constants such that AD −BC 6= 0.



470 Goutam Haldar

From (3.7), it is easily seen that T (r, L(z, f)) = T (r, f (k)) +O(1).
Subcase 2.1: Suppose AC 6= 0. Then F − A/C = −(AD − BC)/C(CG+D) 6= 0. So F

omits the value A/C. Therefore, by the second fundamental theorem, we get

T (r, F ) ≤ N(r,∞;F ) +N(r, 0;F ) +N

(
r,
A

C
;F
)
+ S(r, F ).

This implies that

nT (r, L(z, f)) ≤ N(r,∞;L(z, f)) +N(r, 0;L(z, f)) + S(r, L(z, f))

≤ 2T (r, L(z, f)) + S(r, L(z, f),

which is not possible in all cases.
Subcase 2.2: Suppose that AC = 0. Since AD − BC 6= 0, both A and C can not be

simultaneously zero.
Subcase 2.2.1: Suppose A 6= 0 and C = 0. Then (3.7) becomes F ≡ αG + β, where

α = A/D and β = B/D.

If F has no 1-point, then by the second fundamental theorem of Nevanlinna, we have

T (r, F ) ≤ N(r, 0;F ) +N(r, 1;F ) +N(r,∞;F ) + S(r, F )

or,

(n− 2)T (r, L(z, f)) ≤ S(r, L(z, f)),

which is not possible in all cases.
Let F has some 1-point. Then α + β = 1. If β = 0, then α = 1 and then F ≡ G which

implies that
L(z, f) = tf (k),

where t is a constant such that tn = 1.
Let β 6= 0. Then applying the second main theorem of Nevanlinna to F , we obtain

nT (r, L(z, f)) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, β;F ) + S(r, F )

≤ 2T (r, L(z, f)) + T (r, f (k)) + S(r, L(z, f))

≤ 3T (r, L(z, f)) + S(r, L(z, f)),

which is not possible in all cases.
Subcase 2.2.2: Suppose A = 0 and C 6= 0. Then (3.7) becomes

F ≡ 1
γG1 + δ

,

where γ = C/B and δ = D/B.
If F has no 1-point, then applying the second fundamental theorem to F , we have

nT (r, L(z, f)) ≤ N(r,∞;F ) +N(r, 0;F ) +N(r, 1;F ) + S(r, F )

≤ 2T (r, L(z, f)) + S(r, L(z, f)),

which is a contradiction.
Suppose that F has some 1-point. Then γ + δ = 1.
Therefore, F ≡ 1/(γG+ 1− γ). Since C 6= 0, γ 6= 0, and so G omits the value (γ − 1)/γ.
By the second fundamental theorem of Nevanlinna, we have

T (r,G) ≤ N(r,∞;G) +N(r, 0;G) +N

(
r,−1− γ

γ
;G
)
+ S(r,G).

i.e.,

(n− 2)T (r, f (k)) ≤ S(r, f (k)),

which is a contradiction. This completes the proof of the theorem.
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Proof of Theorem 1.20. If f is rational, the conclusion follows by Lemma 2.12. Assume that f
is transcendental meromorphic function. Then f (k) must be transcendental also. Now we discuss
the following two cases.

Case 1: Suppose that f (k) is transcendental and L(z, f) is rational. Then from Lemma 2.13
(i), it follows that

T (r, f (k)) = T (r, L(z, f)) +O(log rT (r, f (k))) = O(log(rT (r, f (k)))),

which is a contradiction.
Case 2: Suppose f and L(z, f) are both transcendental.
Now keeping in view of Lemma 2.13 (ii), and applying the second fundamental theorem of

Nevanlinna to f (k), we obtain

3T (r, f (k)) ≤ N(r, f (k)) +
4∑

j=1

N

(
r,

1
f (k) − aj

)
+ S(r, f (k))

≤ N(r, f (k)) + 2T (r, f (k)) + S(r, f (k))

≤ 3T (r, f (k)) + S(r, f (k)),

which implies that

N(r, f (k)) = N(r, f (k)) + S(r, f (k)).

This implies that

N(r, f) + kN(r, f) = N(r, f (k)) = N(r, f (k)) + S(r, f (k)) = N(r, f) + S(r, f (k)).

This shows that

N(r, f) = N(r, f) = N(r, f (k)) = S(r, f (k)). (3.8)

Again from Lemma 2.13 (i), we have

T (r, f (k)) = T (r, L(z, f)) + S(r, f (k)).

Keeping in view of (3.8), the above equation, and applying the second main theorem to f (k), we
obtain

3T (r, f (k)) ≤ N(r, f (k)) +
4∑

j=1

N

(
r,

1
f (k) − 1

)
+ S(r, f (k))

≤ N(r, f (k)) +N

(
r,

1
f (k) − L(z, f)

)
+ S(r, f (k))

≤ T (r, f (k)) + T (r, L(z, f)) + S(r, f (k))

≤ 2T (r, f (k)) + S(r, f (k)),

which is a contradiction. This completes the proof of the theorem.
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