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Abstract We prove an entropy solutions for a class of strongly nonlinear parabolic problems
with lower order terms in Musielak-Sobolev spaces, without sign condition on the nonlinearities
and with measure data.

1 Introduction

Let Q be the cylinder Q x (0,7), T > 0, Q is a bounded domain of RY with the segment
property, In this work, we consider the following boundary value problem:

8b((;:’w + A(u) + div(®(z, t,u)) + g(z,t,u,Vu) = p  inQ
u(z,t) =0 on 9Q x [0, 7] (1.1)
b(z, u)‘t:O = b(z,u) on Q

where b : Q x R — R be a Carathedory function (see the hypothesis (6.1) and (6.2),
the operator of Leray-Lions type A(u) = — div(a(z, t, u, Vu)) satisfies the classical Leray Lions
assumptions of Musielak type (see assumptions ((6.3)-(6.5)), the term ®(z, ¢, u) is a Cratheodory
function assumed to be continuous on v and satisfy only the growth condition ®(x,¢,u) <
c(z,t)@' ¢ (x, apu) , the nonlinearities g satisfying the growth condition (see (6.6)) and the datum
w is assumed to be in L'(Q) + W12 E,(Q).

Under these assumptions, the above problem does not admit, in general, a weak solution since

the field a(z, t, u, Vu) does not belong to (L}OC(Q))N in general. To overcome this difficulty we
use in this paper the framework of entropy solutions.

The study of the nonlinear partial differential equations in Musielak-sobolev spaces is strongly
motivated by the problems related to non-Newtonian fluids of strongly inhomogeneous behavior
with a high ability of increasing their viscosity under a different stimulus, like the shear rate,
magnetic or electric field (see for examples [22] and [23]).

Several work have treated the same problem ,we can’t recite all examples but i will just
choose some of them, for instance :

In the setting of classical Sobolev spaces, where A is a Leary-Lions operator defined on
LP (0, T; W'(Q)) Porretta [27] proved the existence of solutions for the problem (1.1), where
¢ is a nonlinearity with natural growth condition and which satisfies the classical sign condition
g(x,t,5,&)s > 0, the same problems of (1.1) have been studied by L. Boccardo and T. Gallouét
in [8] where they proved the existence of solutions of (1.1) where b(z, u) = u.

In the variable exponent case, in [3] the authors have studied the problem (1.1) where b(z, u) =
b(u) and F = 0.

In the setting of Orlicz spaces where @ = div(F') = 0, the existence of entropy solutions
for parabolic problems of the form (1.1) has been proved by A. Elmahi and D. Meskine in [20]
where f belongs to L!(Q) and g be a carathéodory function satisfying

lg(z,t,5,€)| < b(|s])(c(z, t) + M([E])),
gz, t,8,&)s > 0.
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Recently, in the framework of Musielak spaces, Agnieszka, Swierczewska and Gwiazda in
[32] studied the existence of weak solutions of problem (1.1) in the case where ® = g = 0
and f € L*°(Q), M.S.B. Elemine Vall and all in [18] have proved the existence of entropy
solutions of (1.1) in the case where b(z,u) = b(u), g(z,t,s,§) = —div(0O(z,t,u)) where ® a
Carathéodory function does not satisfy any growth condition and F' = 0, also in [23] proved the
existence of renormalized solutions of (1.1) where a = a(z,¢) and ® = g = 0 with the right
hand side f € L'(Q).

A large number of research deals with existence solutions of elliptic and parabolic problems
under different assumptions in order to get a classical results see [5, 10, 11, 12, 13, 14, 15, 16, 17]
for more details.

Our purpose in this note is to give an existence result of entropy solutions of the problem
(1.1) in the setting of inhomogeneous Musielak- Orlicz-Sobolev spaces Wol’ng,(Q) without A,
condition, losing the reflexivity of the spaces L., (Q) and W/} Ly(Q). The difficulty encountered
during the proof of the existence of the solution is that the lower order term g does not check the
sign condition, no hypothesis of coercivity is assumed on ® and the fact that the second term is
a bounded measure.

This paper is organized as follows. In the second section we present some preliminaries
results of Musielak Orlicz Sobolev spaces. The third section contains some important lemmas
useful to prove our main results. In the fourth section we introduce some new approximations
results in inhomogeneous Musielak-Orlicz-Sobolev spaces, and trace results. The fifth section
consecrate to the compactness results used in this paper. We introduce in the final section some
assumptions on b(z, s), a(z,t, s,£), ®(x,t,s) and g(z,t, s, &) for which our problem has a solu-
tion, and will be state and proved our main results.

2 Background

Here we give some definitions and properties that concern Musielak-Orlicz spaces (see [25]).

2.1 Musielak-Orlicz functions

Let Q be an open subset of R™.
A Musielak-Orlicz function ¢ is a real-valued function defined in Q x R such that
a) ¢(z,t) is an N-function i.e. convex, nondecreasing, continuous, ¢(z,0) = 0, p(x,t) > 0 for
allt > 0 and
— .

. t .
lim sup A G) =0, lim inf
t=0,c0 ¢ t—00 z€Q

b) ¢(+,t) is a Lebesgue measurable function.

Now, let ¢, (t) = ¢(x,t) and let ¢ ! be the non-negative reciprocal function with respect to
t, i.e the function that satisfies

oz (p(a,1) = o (2,05 (1)) = t.

The Musielak-orlicz function ¢ is said to satisfy the A, -condition if for some k£ > 0, and a
non negative function h, integrable in Q, we have

o(x,2t) < kp(x,t) + h(z) forallz € Qand t > 0. 2.1

When 2.1 holds only for ¢ > typ > 0, then ¢ is said to satisfy the A, -condition near infinity.
Let ¢ and v be two Musielak-orlicz functions, we say that ¢ dominate v and we write v < ¢,
near infinity (resp. globally) if there exist two positive constants ¢ and ¢, such that for almost all
x e Q

v(z,t) < p(x,ct) forallt >ty, (resp.forallt>O0ie.t)=0).
We say that v grows essentially less rapidly than ¢ at O (resp. near infinity) and we write v << ¢
if for every positive constant ¢ we have

lim <sup g€ Ct)> =0, (resp. lim (sup 7(:]C’Ct)> = 0) .
=0 \ zeo ©(x,t) t—oo \ yeo (1, 1)
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Remark 2.1. (see [1]) If v << ¢ near infinity, then Ve > 0 there exists a nonnegative integrable
function A, such that

y(z,t) < p(x,et) + h(x). forallt > 0 and fora. e. z € Q. (2.2)

2.2 Musielak-Orlicz-Sobolev spaces

For a Musielak-Orlicz function ¢ and a measurable function v : Q@ — R, we define the func-

tional
poalts) = / o, Ju(z) ) da

The set K,(Q) = {u: Q — R measurable /p, o(u) < oo} is called the Musielak-Orlicz
class (or generalized Orlicz class). The Musielak-Orlicz space (the generalized Orlicz spaces)
L, (Q) is the vector space generated by K,,(Q2), that is, L () is the smallest linear space con-
taining the set K,(Q). Equivalently

L,(Q) = {u : Q — R measurable /p, o (E

A) < o0, for some A > 0}.

For a Musielak-Orlicz function ¢ we put: ¢(x, s) = sup,- o{st — ¢(x,t)}, ¢ is the Musielak-
Orlicz function complementary to ¢ (or conjugate of ¢ ) in the sens of Young with respect to the
variable s in the space L., () we define the following two norms:

||u||909—1nf{)\>0// ( u( >>d <1}

which is called the Luxemburg norm and the so-called Orlicz norm by:

o0 = sup / fu(z)o()|d,

o]l <1

where 1 is the Musielak Orlicz function complementary to . These two norms are equivalent
(see [25])
We will also use the space E.,(Q) defined by

E,(Q) = {u ©Q — R measurable /p, o ()\) < oo, forall A > 0}

A Musielak function ¢ is called locally integrable on Q if p,, (txp) < oo for all ¢ > 0 and all
measurable D C Q with meas (D) < oo Let  a Musielak function which is locally integrable.
Then E,(Q) is separable (see [25], Theorem 7.10) .

We say that sequence of functions u,, € L, (Q) is modular convergent to u € L, () if there
exists a constant A > 0 such that

Up — U\
Jim pea () =0
For any fixed nonnegative integer m we define
WML, (Q) ={u e L,(Q) :V|a| <m,D% € L,(Q)},

and
WTEL,(Q) ={u € E,(Q) :V]a| <m,D € E,(Q)},

where a = (ay, ..., a,) with nonnegative integers «;, || = |a;| + ... + |ay| and D*u denote
the distributional derivatives.
The space W™ L, (Q) is called the Musielak Orlicz Sobolev space.

Let

Po0(u Z Pe.e (D) and [lul|q = inf{)\ >0:p,0 (%) < 1}

la|<m
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foru e WL, (Q).
These functionals are a convex modular and a norm on W™ L, (Q), respectively, and the pair

(Wme(Q% I ||$Q) is a Banach space if ¢ satisfies the following condition (see[25]):
there exist a constant ¢y > 0 such that in}“2 o(z, 1) > cp. 2.3)
e

The space W™ L,,(Q) will always be identified to a subspace of the product [, <, Ly (£2) =
I1L,, this subspace is o (IIL,, I1E,;) closed.

The space W L,(Q) is defined as the o (IIL,,I1E) closure of D(Q) in W™ L, (Q). and
the space W E, () as the (norm) closure of the Schwartz space D(Q) in W™ L, (Q).

Let Wi L, () be the o (TIL,,I1E,) closure of D(Q) in W™ L, (L), the following spaces
of distributions will also be used:

WLy (@) ={ feD(Q):f= 3 (=)D £, with f, € Ly(Q) }.
la|<m
and
WmELNQ) = feD'(Q:f= 3 (~D)ID S, with f, € Ey(Q)
la|<m

We say that a sequence of functions u,, € W™ L,,(2) is modular convergent tou € W™ L, (Q)
if there exists a constant £ > 0 such that

N Up — U\
Jim gea (1) =0

For ¢ and her complementary function ¢, the following inequality is called the Young in-
equality (see[25]):

ts <o(x,t) +¥(x,s), Vi,s>0,x€Q, 2.4

this inequality implies that

”u”lp,Q S p<p7Q(U) + 1. (25)

In L,(€) we have the relation between the norm and the modular
[ullp < pe.a(u)if [ullo0 > 1, (2.6)

lullo.o = pe.a(u)if flullpo < 1. 2.7)

For two complementary Musielak Orlicz functions ¢ and ¢, let u € L,(Q) and v € Ly (),
then we have the Holder inequality (see[25]):

/Qu(x)v(m)das

< ul

e.olllvlllv.e (2.8)

2.3 Inhomogeneous Musielak-Orlicz-Sobolev spaces

Let Q a bounded open subset of R and let Q = Qx]0, T'[ with some given T > 0. Let ¢ and
1) be two complementary Musielak-Orlicz functions. For each o € NV denote by D¢ the dis-
tributional derivative on ) of order v with respect to the variable € RY. The inhomogeneous
Musielak-Orlicz-Sobolev spaces of order 1 are defined as follows.

WL, (Q) = {u € L,(Q) : V]|a| < 1D%u € L,(Q)}

et
WY E,(Q) = {u € E,(Q) : V]a| < 1Dju € E,(Q)} .
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This second space is a subspace of the first one, and both are Banach spaces under the norm

lull = > IDull,q

o<1

These spaces constitute a complementary system since € satisfies the segment property.These
spaces are considered as subspaces of the product space 1L, (Q) which has (N + 1) copies.

We shall also consider the weak topologies o (I1L,,, I1Ey) and o (I1L,, I1Ly) If u € WH*L,(Q)
then the function ¢t — u(t) = wu(-,t) is defined on [0,7] with values in W!'L,(Q). If u €
W2 E,(Q), then u € W!E,(Q) and it is strongly measurable. Furthermore, the imbedding
W E,(Q) c L' (0,7, W'E,()) holds. The space W'*L(Q) is not in general separable,
for u € W L, (Q) we cannot conclude that the function u(¢) is measurable on [0, 7.

However, the scalar function ¢ — |[u(t)||,q is in L'(0,7T). The space WOI’””E@(Q) is defined
as the norm closure of D(Q) in WH*E,(Q). We can easily show as in [21] that when Q has
the segment property, then each element w of the closure of D(Q) with respect of the weak x
topology o (I1L,,,I1E,) is a limit in W'*L,(Q) of some subsequence (v;) € D(Q) for the
modular convergence, i.e. there exists A > 0 such that for all |o| < 1

D% — D
/Lp(a:, (M))dwdt%Oasj%oo,
Q

this implies that (v;) converges to u in W* L, (Q) for the weak topology o (I1L,,I1L,) Con-

sequently
(TIL,,I1L,)

wa(annEw) _ Wa

The space of functions satisfying such a property will be denoted by WOI’mLI,,(Q) Furthermore,
Wy Ep(Q) = Wy " Ly(Q) NTIE,(Q). Thus, both sides of the last inequality are equivalent
norms on Wol””Lg,(Q). We then have the following complementary system:

Wy L,(Q) F
Wy "Ey(Q) Fo

where F states for the dual space of I/VO1 " E,(Q). and can be defined, except for an isomorphism,

as the quotient of 1L, by the polar set W " E,,(Q)*. It will be denoted by F = W~ L,,(Q),
where

WL, (Q) =4 f = Z DS fo: fa € Ly(Q)

lal<1

This space will be equipped with the usual quotient norm

171 =inf D [lfallyq

la| <1

where the infimum is taken over all possible decompositions

F= D¢far fo€Ly(Q)

o<1
The space Fj is then given by
Fo=<f=> Difa:fa€ Es(Q)
o<1

and is denoted by Fy = W~12E,(Q) .
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3 Truncation Operator

Ty, k > 0, denotes the truncation function at level & defined on R by T} (r) = max(—k, min(k, r)).
The following abstract lemmas will be applied to the truncation operators.

Definition 3.1. A Musielak function ¢ satisfies the log-Ho6lder continuity condition on Q if there
exists a constant A > 0 such that

sl Ce=) (1)

forallt > 1 and forall z,y € Q with [z — y| < §

Lemma 3.2. [1] Let Q be a bounded Lipschitz domain in RN (N > 2) and let ¢ be a Musielak
function satisfying the log-Holder continuity such that

oz, 1) <c¢;  a.einQfor somecy >0 (3.2)
Then D (Q) is dense in L,(Q) and in W} L,(Q) for the modular convergence.

Remark 3.3. Note that if lim;_, o, inf,cq 222 = oo, then (3.2) holds (see [1]).

Example 3.4. Let p € P(Q) a bounded variable exponent on Q, such that there exists a constant
A > 0 such that for all points =,y € Q with |z — y| < %, we have the inequality

A
Ip(x) —p(y)| < W

|z—yl

We can verify that the Musielak function defined by ¢(z,t) = t7*) log(1 + t) satisfies the
conditions of Lemma 3.2.

Proof : (see [1]).

Lemma 3.5. [1] (Poincare’s inequality: Integral form) Let Q be a bounded Lipschitz domain of
RN (N > 2) and let p be a Musielak function satisfying the conditions of Lemma 3.2. Then there
exists positive constants [3,m and X\ depending only on Q and  such that

/ oz, |v])dz < B+ 77/ o(z, \|Vo|)dz for all v € W) L,(Q). (3.3)
Q Q

Lemma 3.6. [ 1] (Poincare’s inequality) Let Q be a bounded Lipchitz domain of RN (N > 2)
and let ¢ be a Musielak function satisfying the same conditions of Lemma 3.5. Then there exists
a constant C' > 0 such that

lolly < ClIVlly Vo € WoLy(Q).

Lemma 3.7. [27]. Let F : R — R be uniformly Lipschitzian, with F(0) = 0. Let ¢ be a
Musielak- Orlicz function and let u € Wi L,(Q). Then F(u) € Wi L,(Q). Moreover; if the set
D of discontinuity points of F' is finite, we have

d B F’(u)dT“ a.ein{z € Q:u(z) € D}.
&TZF(U) B { 0 6a.e in{reQ:u(z) ¢ D}.

Lemma 3.8 (Poincaré inequality). [/ ]Let ¢ a Musielak Orlicz function which satisfies the as-

sumptions of lemma 3.2, suppose that ¢(x,t) decreases with respect of one of coordinate of x.
Then, that exists a constant ¢ > 0 depends only of Q such that

/gp(cc, lu(z)|)dz < /<p(x,0|Vu(x)|)d:c, Yu € Wy L,(Q). (3.4)
Q Q
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Lemma 3.9. [7] Let u,,,u € L,(Q). If u, — u with respect to the modular convergence, then
Up — ufor o(Ly(Q), Ly (Q)).

Lemma 3.10 (The Nemytskii Operator). [2]. Let Q be an open subset of RN with finite measure
and let p and 1) be two Musielak-Orlicz functions. Let f : Q x R — R be a Carathéodory
function such that for a.e. v € Qand all s € R :

|f (. 8)| < e(x) + kivy ol kas)). (3.5

where ki and ky are real positives constants and c(.) € Ey(Q).
Then the Nemytskii Operator Ny defined by Ny(u)(x) = f(z,u(x)) is continuous from

P(EW(Q), klz) _ {u € L(Q) : d(u, E,(Q)) < klz}

into L(Q).
Furthermore if ¢(-) € E.(Q) and v << 1 then Ny is strongly continuous from P(Ev(Q), k%)
to E,(Q).

Lemma 3.11. Assume that (6.3)-(6.5) are satisfies and let (z,),, be a sequence in W} L,(Q)
such that

i) 2, — 2z in W) Ly, (Q) for o (1L, I1E,,),
ii) (a(-,t,2n, Vzy,)), is bounded in (Lw(Q))N,

iii) / (a(z,t,2n,Van) —a(z,t,2,,V2xs)) (Vz, — Vaxs)de — 0asn, s — oo,
Q

where x s is the characteristic function of
Q,={reQ:|Vz <s}.
Then, we have z, — z  for the modular convergence in Wi L,(Q).

Proof: It is easily adapted from that given in [4].

4 Approximation and trace results

In this section, Q be a bounded Lipschitz domain in RY with the segment property and I is a
subinterval of R (both possibly unbounded) and Q = Q x I. It is easy to see that () also satisfies
Lipschitz domain.

Definition 4.1. We say that u,, — u in W~1%L,,(Q) + L'(Q) for the modular eonvergence if
Wwe can write

ZD"“—&—u and u:ZDﬁuOW-uO

|| <1 la|<1

with u® — u® in L, (Q) for the modular convergence for all |a| < 1, and u% — u° strongly

in L'(Q)

The following approximation theorem, plays a fundamental role when the existence of solu-
tions for parabolic problems is proved.

Theorem 4.2. Let p be an Musielak-Orlicz function satisfies the assumption (3.1).
Ifue WL, (Q)NL(Q) (resp. W)L, (Q)N L (Q)) and 28 € WL, (Q)+L' (Q),

then there exists a sequence (v;) in D (Q) (resp. D (I, D (Q)) ) such that v; — win W'* L, (Q)
and
S5 g MWLy (@) +L0(Q)

for the modular convergence.
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Proof.

Igzzt 1{6 WwL@a(%) N LO1 (Q) anda% e WL, (Q)+ L' (Q), t}gen for1 any € > 0. Writing
9t = 2jaj<1 Dgu® +u’, where u® € Ly (Q) forall [af < 1and v” € L' (Q), we will show
that there exits A > 0 (depending Only on v and N and there exists v € D (Q) for which we can
write 2% = > jal<1 Do + v with v*, 1% € D (@) such that

/ 0 (z W) dedt < e,V|a| < 1 (4.1)
o )
lo = ullpyg) <€ 4.2)
0 0
H’U — U HLI(Q) <e “4.3)
/ " <x ”“) dedt < e, Vla| <1 (4.4)
o )

The equation (4.1) flows from a slight adaptation of the arguments [6], the equations (4.2)-
(4.3) flows also from classical approximation results. For The equation (4.4) we know that D ( )
is dense in Ly, (Q) for the modular convergence. The case where u € W, L, (Q) N L' (Q) )
can be handled similarly without essential difficulty as it mentioned [6]. O

Lemma 4.3. [26] Let a < b € R and let Q be a bounded Lipschitz domain in RN . Then

du

{u € Wy ™ Ly(Qx]a, b]) : B

€ WLy (Qx]a,b]) + Ll(Qx]a,b[)}

is a subset of C(Ja,b [, L'(Q)).

In order to deal with the time derivative, we introduce a time mollification of a function
u € W&””LW(Q) Thus we define, for all > 0 and all (z,t) € Q

w(z,t) = / " (o) exp(ulo — )do 4.5)

— 00

where @i(z,t) = u(x,t)xp,7)(t) Throughout the paper the index i always indicates this mol-
lification.

Lemma 4.4. [26] If u € L,(Q) then u, is measurable in Q and agt“ = p(u—wuy,) and if
u € K,(Q) then

/ap(%uu)dxdtg/ o(z,u)dzdt
Q Q

Lemma 4.5. [19]
(1) If u € L,(Q) then u, — u for the modular convergence in L, (Q) as

p— 00.
(2) If u € Wy " L,(Q) then u,, — u for the modular convergence in W, L, (Q)
as p — oo.

Remark 4.6.If u € E,(Q), we can choose \ arbitrary small since D(Q) is (norm) dense in
E,(Q) Thus, for all A > 0, we have

/(p(x,u”)\u>dzdt—>0 as g — +oo
Q

and u,, — u strongly in E,(Q). Idem for WH*E,(Q).

Lemma 4.7. [19] If u,, — u in Wol’qu,(Q) strongly (resp., for the modular conver- gence ),
then (“”)u — uy, strongly (resp., for the modular convergence).
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5 Compactness results

For each h > 0, define the usual translated 7, f of the function f by 7, f(¢t) = f(t + h).
If f is defined on [0, T'] then 7, f is defined on [—h, T — h).

Lemma 5.1. [26] Let ¢ be a Musielak function and ) the complementary function of , we
assume that there exists ¢ > 0 such that ¢(x,1) < c a.e. in Q. Let Y be a Banach space such
that the following continuous embedding holds L'(Q) C Y. Then for all ¢ > 0 and all X > 0,

there is C; > 0 such that for all u € Wol’”:Ly,(Q) with @ € K,(Q), we have

\Y
lulli < e (/ ® (sc, |>\u|) dxdt —|—T> + CEHUHLI(O’TJ/)
Q

The following lemma allows us to enlarge the space Y whenever necessary.

Lemma 5.2. [26] Let ¢ be a Musielak function and 1 the complementary function of , we
assume that there exists ¢ > 0 such that ¥ (z,1) < c a.e. in Q.

If F is bounded in WOI"tLq;(Q) and is relatively compact in L'(0,T,Y) then F is relatively
compact in L'(Q) (and also in E.(Q) for all Musielak function v < ¢ ).

Remark 5.3.1f F c L'(0,T, B) is such that {% L fe F} is bounded in F © L'(0, T, B) then
I7nf = fllpio.r,) — 0as h — O uniformly with respect to f € F'.

Lemma 5.4. [26] Let  be a Musielak function. If F is bounded in W' L ,(Q) and { % i fe F}
is bounded in W="%L,,(Q), then F is relatively compact in L'(Q).

Theorem 5.5. Let ¢ be a Musielak function. Let (uy,), be a sequence of W% L (Q) such that
up, —u  weaklyin W' L,(Q) for o(IlL,,I1L,) and

ou, .y

with (hy,),, bounded in W="*L(Q) and (k»,),, bounded in the space M(Q) set of measures on

Qi(Tf;en uy, — u strongly in Ll (Q) If further u,, € WOI’IL#,(Q) then u, — u strongly in
LYQ).

Proof. It is easily adapted from that given in [9] by using Theorem 4.4 and Remark 4.3
instead of Lemma 8 of [31] .

6 Assumptions and Existence results

Let Q be a bounded open subset of RV (N > 2) satisfying the segment property, 7' > 0 and set
Q = Qx]0, 7. In the sequel, we denote by @, = Qx]0,7[ for every 7 € [0,T]. Let  and v
two Musielak Orlicz functions such that v < ¢, we denote by 1) the Musielak complementary
function of . We assume that ¢ and v satisfy the assumptions of Lemma 3.2 and that ¢(z, t)
decreases with respect to one of coordinates of x.
Let
b: Q xR — Ris a Carathédory function such that (6.1)

for every x € Q : b(w, s) is a strictly increasing C'! -function, with b(x, 0) = 0.
For any k > 0, there exists A\, > 0, a function A, in L>°(€2) and a function By, € L,(Q)
such that
ob(z, s)
0Os

for almost every x € Q, for every s such that |s| < k.
Let A: D(A) C Wol’mLsa(Q) — W12 L, (Q) be a mapping given by

< Ag(z) and ‘Vz <8b(x,s)>‘ < Bi(x), 6.2)

Ak

IN

Os

A(u) = —div(a(z, t, u, Vu)),
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where a : Q x (0,7) x R x RY — R¥ is a Carathéodory function (that is, measurable with
respect to x in Q for every (¢,s,£) in R x R x RY, and continuous with respect to (s, &) in
R x RY for almost every z in Q) such that for all £ and £* in RY, ¢ # ¢£*,

a(z,t,5,€).£ > ap(, €]) + o(z, [s]), (6.3)
[a(z,t, 575) - a(x7tv 575*)][5 - f*] > 07 (6~4)
la(z,t,5,€) < B (ao(x, t) + 05 'y (2, ki) + 45 '@ (2, ki[€])) (6.5)

with  ao(.) € Ey (Q), k1 € RT and o, 3 > 0. We assume that g : Q x [0,¢] x R x RN — RV
be a Caratheodory function satisfying for a.e. (z,t) € Q x [0,t] and Vs € R, £ € RV :

l9(x, 1, 5,6)] < h(x,t) +d(s)p(x, [€]), (6.6)
where d : R — R* is continuous positive function which belong L'(R) and P(.,.) belong

L'(Q).

Furthermore @ : Q x R — R is a Carathéodory function such that

|@(x,t,5)| < c(z, ), Lo (x, a0)s]) (6.7)

where |[c(., )|/~ (g) < @and 0 < ap < min (1,1).

fer(Q), and Fe(By(Q)", (6.8)

ug € L'(Q) such that b (., up) € L1(Q). (6.9)

We consider the following parabolic problem

%f;u) + A(u) + div(®(z,t,u)) + g(z, t,u, Vu) = f —div(F) inQ
u(z,t) =0 ondQ x [0,7]  (6.10)
b(w,u)|,_g = b(z,u0) on Q

We will show that the problem (6.10) has at least one entropy solution in the following sense.

Definition 6.1. A measurable function » : Qx [0, 7] — R is called entropy solution of (6.10) if,
T (u) belongs to D(A) N Wy* L, (Q) for every k > 0,b (-, ug) belongs to L' (), and u satisfies
the following inequalities

b(z,u) € L™ ([0,T],L'(Q)), (6.11)

lim a(z,t,u,Vu) - Vudz dt =0, (6.12)

m=+00 Jrm<|ul<m+1}
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and,

// ob(x (r — v)Ty(r)drdzdt
o

/Q/(t)< / 36;1;7*)8”( )k(r)dr>dadt

—0—/@/0 a(z,o,u,Vu) - VTi(u)S' (u — v)dodzdt
“
/
I
I

J
J

/ / F VT (u)S (u — v)dodzdt
uo
+T// ob(z, 1) S'(r —v(0))Tk(r)drdz
QJo or

forevery k > 0,and forallv € Wol’”’Lg,(Q)ﬁLOO(Q) such that 2 belongs to W17 L,,(Q)+
L'(Q) (recall that T}, is the usual truncation at height k defined on R by Tk (s) = min(k, max(s, —k))
and for all increasing function S € W?2>°(R) with S’ has a compact support in R ).

Inequality (6.13) is formally obtained through pointwise multiplication of equation (6.10) by
S’(u — v)Ty(u), and integration by parts. However, all the terms in (6.13) have a meaning in
D'(Q) Indeed, if M > 0 is such that supp S’ C [—M, M], the following identifications are made
in (6.13).

% S(u) belongs to L>°(Q) since S is a bounded function

ob(x,r) _, P ™) 9b(z, 1) o
/0 )5~ ) Tur)ir = /O P51 — ) Tu(r)ir € 1¥(Q)
ov

. ewl%ww/m“w &) g1ty — )Ty (r)dr € WLL(Q)
Ja

0o or

x  S'(u—v)a(z,o,u, Vu% - VT (u) identifies with S’ (u — v)a (x, o, Ty (u), VT (u)).

VT (v) ae. in Q. since S’'(u—v) € L>®°(Q) and VT (u) € (Lw(Q))N , we obtain from (6.3)
that S"(u — v)a (z, 0, Ty (u), VT (u)) - VTi(v) € L'(Q)

xS (u—v)P(x,0,u) - VT (u) identifies with S’ (u — v)® (z, 0, Ty (u)).

VT (v) ae. in Q. since S'(u —v) € L>®°(Q) and VTy(u) € (Lw(Q))N , we obtain

S'(u—v)® (x,0,Tp(u)) - VTi(v) € LY(Q).

*  We have

S" (u—v)a(x,o,u, Vu) - V(u —v)Ti(u)

d: S”(u — U)a (33,0’, TM-‘rIlvHoo(u)v VTMHIU\IOO(u)) -V (TM+|IU\|OO(U) — U) Tk(u) a.e. in Q.,

and,

S”(u — v)a (l‘, o, TJWJrHUHoo (u) VTM+\|UHOC (u)) -V (TMH|UH<X> (u) — ’U) Tk(u) eL! (Q)

xS (u—v)g(z,0,u, Vu)Tj(u) identifies with S (u—v)g (@, o, Tars o). (W) V0140 (w) Tr(u)
a.e.in Q.

Since S’ (u — v)Tk(u) € L*(Q), we obtain from (6.3) and (6.6) that

/ S"( a(z,o,u, Vu) - (Vu — Vo) Tj(u)dodxdt
0

Q

+

/ D(z,0,u) - VI (u)S (u — v)dodxdt

O
=

+

/ D(z,0,u) - V(u—0)S" (u—v)Ti(u)dodzdt (6.13)

+
O
=

/ g(x,0,u, Vu)S' (u — v) Tk (u)dodzdt

IA
O
S

/t 1S (u— )Ty (u)dzdt

O
XS

+

/ F-V(u—2v)S"(u—v)Tg(u)dodzdt

Q
> ©

S'(u — ’U)g (I, o, TJW-‘FHUHoc (u), VTM+HUHOO (u)) Tk(u) € LI(Q)

xS (u—v) fTx(u) belongs to L(Q).
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*  Moreover Lemma 4.3 implies that v € C ([0, 7], L'(Q)) , then (6.2) gives

/ /TM*“” ! g” ) 81 (1 — 0(0)) T (r)drd |
< k(M A+ [|olloo) 15 o /QAMHwa(x)d”

We shall prove the following existence theorem.

Theorem 6.2. Assume that (6.1)-(6.9) hold true. Then the problem (6.10) admits at least one
entropy solution solution (in the sense of Definition (6.1))

Remark 6.3. The results obtained in Theorem 6.2, remains true if we replace (6.7) by the
growth condition

[D(x,t,5)| < c(2)7; (@, |s]),
where ¢(.) € E,(Q) and v << ¢.

Remark 6.4. We will use a Galerkin method due to Landes and Mustonen [24], we choose a
sequence {wy, wy, ...} in D(Q) such that UV, with V, = {wy, ..., wp} is dense in H"(Q)
with m large enough such that HJ*(Q) is continuously embedded in C'(Q). For every v €
H"(Q) there exists a sequence (v;) C Up—V}, such that v,, — v in H*(Q) and in C'(Q).

We denote further V,, = C ([0, 7], V},) . Itis easy to see that the closure of U22 ,V;, with respect
to the norm

HU”CI’O(Q) = Ssup {‘st(mvt)‘ : (.%',t) € Q}>

|| <1

contains D(Q). This implies that, for any f € W~ E,(Q), there exists a sequence (f,) C
U2 Vp such that f, — f strongly in W="% £, (Q).

Indeed, let e > 0 be given. Writing f = >~ o, Do f® there exists g* € D(Q) such that
1f* = 9% 4.0 < 3353 Moreover, by setting g = Z\a|<1 D2g~, we see that g € D(Q), and so
there exists v € U>2 V), such that [|g — v[[oc,@ < WS(C))

We deduce that

1f = ollw-rery@ < 2 1% = 9%lyo + g —vlpe <e
l| <1

We shall divide the theorem in several steps.

Step 1: Approximate problems

For each n > 0, we define the approximation

bp(x,8) =b(x,T(s)) + %S, ae. ze€QVseR, (6.14)
an(z,t,5,8) = a(x,t,Th(s),€) ae. (z,t) € Q,Vs € R,VE € RY, (6.15)
D, (z,t,8) = D (2,1, Tn(s)) ae. (z,t) € Q,¥s € R, (6.16)
gn(2,t,5,8) = T (g(x,t,5,€)), ae x€QVsecRVEecRY, (6.17)
ugn, € C5°(Q) such that b, (z,uo,) — b (2, up) strongly in LY(Q), (6.18)

fn € L' (Q) such that f,, — f strongly in L' (Q), and || ful| 1) < If]l11(q)» and

1bn (2, won) | L < (16 (2, wo) [ 1 - (6.19)



486 Ouidad AZRAIBI, Badr EL HAJI and Mounir MEKKOUR

Consider the nonlinear approximate problems

Up € Vi, 2 € L1 (0,T, V), un(2,0) = ugy () ae. in Q
% —div (a (z, un, Vu,)) + div (@, (2, t, un)) + gn (@, t, un, Vu,) = f, —div(F) in
(6.20)

Since g, is bounded for any fixed n > 0, there exists at last one solution w,, € WO1 "L, (Q)
of (6.20) ( see [24]).

6.1 Step 2: A priori estimates.

S

. : . : » 2
In this section we denote by ¢;,7 = 1,2, ... generic positive constants. Let D(s) = = [ d(o)do
«

0
where d is the function in (6.6) For £ > 0 taking T} (u,)exp (D (|u,|)) as a test function in
(6.20), we get

et 1) xp (0 )

+ /Q tn (2,1, 11, Vi) V (exp (D (1)) Th () davlt
+ /Q ®, (2,1, 1un) V (exp (D (1n)) T (un)) dadt

(6.21)
+ / 9n (xat7un7 vun) Tk (u") exp (D (|un|)) dzdt

Q
:/ FnT (un)exp(D(|un|))dxdt+/ F VT (up) exp (D (Jug])) dzdt
ZQ Q
+E/ F -V [Ty ()] d (1) exp (D (Jun])) dad.
Q

For the first term of the left hand side of last equality, we have

[ Pt ) exp (D () ot = [ B (D) o [ B (o) . 622)
0 ot Q Q

n(Z,1)

8 b
whereB,’j(x,s):/ Tk(t)a 5 exp(D(|t]))dt. Then, (6.21) becomes
0

/QB,? (z,un(T)) dz
—l—/Qan (x,t, Un, Vuy) V (exp (D (un)) Tk (uy,)) dzdt
+/ D, (x,t,u,) V (exp (D (un)) Tk (un)) dadt
Q (6.23)
+L%@m%wmnmewwmwm
= / Tk (up) exp (D (|uy])) dedt + / F VT, (uy) exp (D (Juy])) dzdt
Q Q

2
2 [ PV [Ti () d ) exp (D () dde + [ B (z,00,)
Q Q
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By (6.7) and Young inequality we have

/ ®, (i, t,un) V (exp (D (un)) Th (un)) dardt

Q
< M |:Oz() ‘/Q © (x, un) d (un) exp (D (Un)) Tk (un) dadt

+ /Q o (z, Vuy,) d (up) exp (D (un)) Tk (un) dq;dt} (6.24)
+le(... ,)||Loo<Q)ozo/ o (z,up) exp (D (uy)) dzdt
Q

el l~(0) /Q o (2, [V T (un)) exp (D (un)) dardt

then by using the above inequality (6.24) and thanks to (6.3) we have

/Bg (x,un(T))d:c—i—/ 0 (2t 1ty Vi) - VT (wn) exp (D (Jun])) dardt
Q Q

%/ o (2, wn) d () exp (D (1)) T () dadt
Q

12 /Q (2 [Vttn) [T (1) d (1) exp (D (fun])) dvdl

+ / G (22t V1) Ty (1) €xp (D (i) vt

Q
- w {ao /Q o (2 10n) d (tn) €xp (D () T (1) dvdt 6.25)

+/Qcp(ac,Vun)d(un)exp (D (uy)) Ty (un)dxdt}
+||c(...7)||Lm<Q)ao/Qcp(m7un)exp (D () dadt
T e @) /Q o (2. [V T} ()]) exp (D (uy)) dvdt
/anTk (un)exp(D(|un|))dxdt+/QF-VTk (un)exp (D (Juyl)) dedt

2
2 [ PV [T () ) exp (D (fual)) ddt + [ B (z,00,)
Q Q
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Using now the conditions (6.3) and (6.6), we get

/B;?(:E,un(T))d:c—F/ a(z,t,up, V) - VT (un) exp (D (|uy])) dedt
Q Q

%/ o (2, wn) d (1) exp (D (n)) T (un) dadt
Q

+2 / o (2, [Vt ) [T (100)] d (11 xp (D (|1t ])) vt

Q
2||e(., )| nee
Pl CCPI PETE)

” |:Oé0/ o (z,un) d(up)exp (D (uy)) Tk (un,) dadt
Q

+ /Q o (2, Vi) p () exp (D (un)) T (1) dxdt}
+||c(...,)||LW<Q)QO/Q<p(x,un)exp (D (u,)) dadt
+ ey Mz=(e) /Q & (2, [V Tk (un)]) exp (D () dadt
+/ T (un) exp(D(|un|))dzdt+/ F VT (up)exp (D (Jug|)) dzdt
Q Q
[ Wraet) + d () ¢ (o [Vaal)) T () exp (D () ds

Q

2
2 [ Bl ()] d () exp (D (funl)) dde + [ B () do
Q Q

From (6.14) — (6.19), and since
2||d]| .
B o) < exp (SEEE Y o o0

2||d|| 1
< exp (”Of(R)) k ||b (LL', uO)HL'(Q)

we have

/B,:L (l‘,un(T))d.Z‘+/ a(x,t,up, Vuy) - VTi (uy) exp (D (Juy])) dedt
Q

Q
+ /Q & (2, V) | T (1) d () xp (D ([ ])) it

2 DY oo
< e )llz=(@)

% {ao/ o (2, wn) d () exp (D (1)) T (un) dadt
Q

+/ ¢ (z,Vuy,) d(un)exp (D (un)) Tk (un) dadt
Q
+||c(...,)||Loo(Q)ao/ ¢ (z,upn) exp (D (uy)) dzdt
Q
+llee V=) /Q @ (2. [V T (un)]) exp (D () dadt

2||d| 1 (r)

texp (== k(111 ) + 2l gy + 16 (@ w0)ll 1 g )
+/ F Ty (un) exp (D (|un])) dadt
Q

+§/ F - Vun | T ()] d () exp (D (|un|)) dadt
Q

(6.26)
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Then, by using Young’s inequality on the second and third term of the last inequality, we
obtain

/B;; (x,un(T))dx—i-/ 0 (23t Vi) - VT () exp (D (Jun])) dardt
Q Q

i/@gﬁ(m,un)d(un)exp (D () T () devdt
+2 [ (e 90 i () d 1) exp (D () s

Q
< M [O‘O/Qso(x,un)d(un)exp (D (un)) T (un) davdlt

+/ ¢ (z, Vuy) d(un)exp (D (un)) Tk (un)d:cdt}

n ||c(...,)||Loo(Q)ozo/Q<p(x,un)eXp (D (u,)) dadt (6.27)

@ (x,|VT) (un)]) exp (D (uy,)) dedt
( 1 R)>> (17112() + el iy + 115 . 00) )
L exp <2||d||L1 ) » (x’Z(a;—l)wO dadt

¢ (x, IVTk(Un)\)eXP(D(Iunl))dxdt

+[le( e

@\

2(a—|—1) 0
+ [|d|| o exp <”|L> /w T, co| F|) dzdt.

where ¢, is a positive constant depend only on « Then, by using the fact that By (z, u, (7)) >
0, we get
2 [1—aolle(, =]

«

(2ol

/ 12 (;E, un) d (un> exp (D (Un)) Ty, (un) dxdt

) / o (z, Vuy,) d (un) exp (D (un)) Tk (un) dzdt
Q

22(3::_-1) /Q a(x,t, un, Vuy) - VT (un) exp (D (Juyl)) dzdt
< el =@

) {04004/ © (z,upn) exp (D (uy)) dedt + ap (x, VT, (un)) exp (D (uy,)) dzdt
@ Q
+cik + .
(6.28)
If we choose o such that & > |[|¢(., .)|| L () and using again (6.3) we get

2 1 .y . oo
{ atl _fe )l (Qq/a(x,tun,Vun)-VTk () exp (D (|un)) dzdt < cik + cs.
Q

2(a+1) o)
(6.29)
Thus
- m} Lt V) VT () X0 (D () ot < e 2. (630)

R lle(., )L (Q)
Taking ;- = |1 — W]
It follow that

/ a(z,t, up, Vuy,) - VI (un) exp (D (Juy|)) dedt < czerk + czes. (6.31)
Q
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Then by using (6.3), we have

/ o (2, |V Tk (wn)]) dedt < cak + 5 6.32)
Q

By using Lemma 3.8, we have (T}, (u,)) is bounded in W, "* L,,(Q), then there exists v; such
that

{ Ty (un) = vp  in Wy Ly (Q) for o (TILy, T1E,) 633)

Ty (un) — v strongly in E,(Q).

Therefore, we can assume that (7}, (uy,)),, is a Cauchy sequence in measure in €, then for all
k > 0and d,e > 0 there exists ng = ng(k, 4, €) such that

meas {|T (un) — Tk (um)| > 6} < Ym,n > ny. (6.34)

W[ m

We have by simple calculus

lnfgz)( k) meas {|u,| >k;}:/ 1nfgp< k) dxdt
zeQ {|un|>k} zeQ c
< / inf ¢ ( T (un)|> dxdt
Q:EGQ C
1T (un)|

<5

§/ (z,|VTy (u,)|) dedt, (using Lemma 3.8 )
Q

dxdt

< csk +cs, (using (6.32)),

where c is the constant of Lemma 3.8.
Then, by the definition of ¢, we get

csk + cs

meas {|un| > k} < — - TS
infcq ¢ (z, %)

— 0, as k— +oo. (6.35)

since V6 > 0

meas {|u, — | > 8} < meas {|u,| > k}+meas {|u,,| > k} +meas {|T (un) — Tk (um)| > 6}
(6.36)

Then, we have Ve > 0, there exists ky > O such that
meas {|u,| > k} <

meas {|uy,| > k} < Vk > ko(e). (6.37)

€
3 b
Combining (6.34), (6.36) and (6.37), we obtain that for all §, > 0, there exists ng = ng(d,¢)
such that

w\m

meas { |ty — um| > 0} <&, Vn,m > no.

It follows that (uy,),, is a Cauchy sequence in measure, then converges in measure. Now, we turn
to prove the almost every convergence of u,,.

Consider now a C*(IR), and nondecreasing function rj, such that ry(s) = s for |s| < % and
ri(s) = ksign(s) if |s| > k. Multiplying the approximate equation (6.20) by r} (u,,) , one has

OB} (z,up)

5 —div (a (z,t, up, V) 1), (un)) + a (2, t,un, V) - Vuary (uy,)

+ div (1}, (un) Pp, (z,t,un)) — 7y (un) Pn (@, ¢, up) Vuy,
+ gn (@t U, Vuy) 1 (uy) = for’ (un) + F - Vugry (u,) in D'(Q),
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with By (z,5) = [ 291 (5) do.

Which yields easily that % is bounded in W12 L, (Q) + L'(Q).

Due to the properties of r; and Lemma (5.5), we conclude that 87"%7(:”) is bounded in W ! P Lo(Q)+
L'(Q) Thanks to Lemma (5.4), we deduce that ry, (u,,) is compact in L' (Q).

Due to the choice of i, we conclude that for each k, the sequence T}, (u,,) converges almost
everywhere in (), which implies that the sequence w,, converges almost everywhere to some
measurable function v in Q. Consequently, we get

(6.38)

Tk (un) — Tk (u) in W&LW(Q) for o (HLgaa HEw)
Ty (un) — Ti(u) strongly in E,(Q).

Step 3: Boundness of (a (x, t, Ty (un) , VI (uyn))),, in (Ld,(ﬂ))N

Letw € (E,(Q)" be arbitrary such that |[w||,,o = 1, by (6.4) we have

(a (z,t, Tk (un) , VT (ug)) — a (x,t,Tk (un), %)) (VTk (up) — %) exp (D (|un])) > 0.

Hence
/ @ (., T (1), VT (1) €5 (D (f])) v
Q

< /Q 0 (2,1, T (un) , Tk (1)) VT () xp (D (Jun)) dadt (6.39)
/Qa(x,t,Tk (un) . 2) (VT3 () — ) exp (D ([ua ) dt,

hence, by using (6.31)
/ 0 (@1, T () , YTk (1)) VT (1) exp (D (Jun])) dadt < cok + cr. (6.40)
Q

For p large enough (p > 3), we have by using (6.5)

x t, Ty (un) kﬂl)
/ 1pa: dxdt

3
S/QW B (ao(z, t) + 9! (v(:c,klg;f(un)))wzl(@(%w))) dedt
</% B (ao(z,t) + 95" (v (. by gj(un)I)Hw;l(@(%lwl))) dedt (6.41)
ﬁ/%< o(z,t) +45 " (v (2, ks |T’3f(“")|))+¢51(‘P(x’|w|))>dxdt
< % (/Q% ao x,t))dxdtJr/Q’Y(ﬂ?,k‘l | T (un)l)dde/Qw(w,wl)dxdt)
< co(k).

Now, since « grows essentially less rapidly than ¢ near infinity and by using the Remark2.1,
there exists 7/(k) > 0 such that (z, k1 k) < r'(k)¢(z, 1) and so we have

/% a<x’t7Tk(un)7%‘) dedt
Q 3p (6.42)

< % (/Qw (ao(x,t))da:dt—l—r'(k)/Qap(x,1)dxdt+/@<p(x, |w)dmdt>
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hence a (l‘, t, Ty (wn) , kﬂ]) is bounded in (Lw(Q))N Which implies that second term of the

right hand side of is bounded, consequently, we obtain
/ a(z,t, T (upn), VT (uy)) wdzdt < ca(k). (6.43)
Q

for all w € (L@(Q))N with ||wl||,,¢ < 1. Hence by the theorem of Banach-Steinhous, the
sequence (a (z,t, Ty (uy) , VI (un))),, temains bounded in (Lw(Q))N Which implies that, for
all & > O there exists a function I, € (Lw(Q))N such that

a(z,t, Ty (un) , VT (un)) — Iy weak star in (Ly(Q.))" for o (I1L,, TIE,) . (6.44)

Step 4 : Modular convergence of truncations.

Let (v;); be a sequence in D(Q) such that

v; — u with respect to the modular convergence in VVO1 “Lo(Q), (6.45)

and let w; € D(Q) be a sequence which converges strongly to ug in L*(Q). Set wi, ; =

T (vj),, + exp(—ut) Tk (w;) where Ty, (v;),, is the mollification with respect to time of 7 (v;)
Note that wz’h ; asmooth function having the following proprieties

% (w;lu) —H (Tk (vj) — w;,j) ) wL,j(O) =Ty (”lj), ‘w,’”! <k;
w}, 5 — Tp(u), +exp(—ut) Ty (w;) in Wy* L, (Q)
for the modular convergence as j — +00;
Ty (), + exp(—put) Ty (w;) — Ti(u) in Wy " L, (Q)
for the modular convergence as j — +o00.

For m > k we define the function p,, on R by

1 if |s| < m;
pm(s) =< m+1—|s| ifm<|s|<m+1;
0 if |s| > m + 1.

For the sake of simplicity, we denote by £(n, j, i, s) any quantity (possible different) such that

lim lim lim lim &(n,j,pu,s) =0.
§——00 I—>00 j—>00 N—>00

If the quantity we consider does not depend on one of parameters n, j, 4 and s, we will omit
the dependence on the corresponding parameter as an example, €(n) is any quantity such that

lim lim e(n,j) =0
j—00 n—oo

We denote also s the characteristic functions of the set

Qs = {(z,1,) € Q: |[VTi(u)| < s}

Let D(s) = + [, d(t)dt, taking (T} (un) — w}, ;) pm (un)exp (D (Jun|)) as a test function in
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(6.20), one has

/ O 0] (1 (1) — ] ) o (1) exp (D (f )
+ /Q a(z,t,un, Vtn) - (VT (un) = V), ;) pm (tn) exp (D (Jun|)) ddt
+ / a (z,t,un, Vg ) - Vi ph, (un) (Tk (un) — w), ;) exp (D (Juy|)) dzdt
Q

+ é / a (2, t,Un, Vin) - Vi sign (ug) (Tk (un) — w), ;) d (un) pm (un)
Q

x exp (D (Jun|)) dzdt

+ /Q D (z,t,un) - (VTk (un) — V), ;) pm (tn) exp (D (Jun)) dedt

+ / D (z,t,un) - Vtnpl, (un) (T (un) — w), ;) exp (D (lun])) dedt
Q

+ é / D (,t,up) - Vy sign (un) (Th (un) — wl, ;) d () pr ()
Q

x exp (D (Jun])) dzdt
gn (2, tn, V) (Ti (un) — w}, ;) pm (un) exp (D (Jun|)) dzdt

/ fo (Tre (un) — wZu) pm (un) exp (D (Juy|)) dzdt
/Q (VT (un) — wam) pm (un) exp (D (Juy|)) dzdt
+/ F - Vg (T (un) = w), ;) Py (un) exp (D (|unl)) dodt

/ F - Vuy, sign (un) (Tr (un) — w), ;) d (tn) prm (un) exp (D (Jun|)) dzdt.

(6.46)

For the first term of the left hand side of (6.46), by the definition of wf% 2 and Lemma 5.6 of
[28], we get

ob, (z,uy, i .
/Q % (Tk (un) — w}, ;) pm (un) exp (D (Jun|)) dzdt > (n, p, j, ). (6.47)
For the third term of the left hand side of (6.46), we get
a (z,t,un, Vtn) - Vnph, (un) (Tk (un) — w), ;) exp (D (Jun|)) dzdt

dl| 7.1
< 2kexp ”Hﬂ / a (z,t, upn, V) - Vugdzdt
«Q m<|un|<m+1

Hence by Lemma 5.1 of [3], we get

/ a (z,t,un, Vtn) - Vnph, (un) (Tk (un) — w), ;) exp (D (Jun|)) dzdt
Q

= E(nvja ,M, ia m)
For the fifth term of the left hand side of (6.46):

(6.48)

If we take n > m + 1, we get

By (2,1, 1) €5 (D (1) i (1) =P (2, Torst () €Xp (D (Lot ()
X Pm (Tm+1 (un))

then ®@,, (x,t, u,)exp (G (un)) pm (uy) is bounded in L, (Q), thus, by using the pointwise con-
vergence of u,, and Lebesgue’s theorem we obtain

P, (x7 t, u'n) exp (D (un)) Pm (U'n) - q)(xv 2 u) exp(D(u))pm(u),
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with the modular convergence as n — +oo then
D, (z,t,upn)exp (D (un)) pm (un) = ®(x,t,u) exp(D(u))pm (u)

for o ([1 Ly, [1Ly).
In the other hand VT}; (u,,) — V (Tj (vj)),, converge to VT (u) — V (T} (vj)), weakly in

(L, (@)Y, then
/ Dy, (2,8, un) exp (D (un)) pm (un) VT (un) = V (Tk (v;)),, dwdt
N / (2,1, u)p (1) exp(D(w)) VT (1) — V (T (1)), dat, as n — +oc

By using the modular convergence of VT (u) — V (T} (vj)),, as j — oo and letting 4 tends to
infinity, we get

/Qcpn (2, Un) P (tn) exp (D (u)) (VTk (un) — V (T (vj))u) dwdt = e(n, j, ;1)  foranym > 1.

(6.49)
For the sixth term of the left hand side of (6.46), if we take n > m + 1 > k, we have

vunp;n (un) = VT4 (un) a.e. in Q.
By the almost every where convergence of u,, we have

exp (D () (Ti () = (Ti (v5)),,) = exp(D(w) (Ti (w) = (T (v5),,) in L= (Q) weak-*
and since the sequence (®,, (,t, T41 (un))),, converge strongly in Ey, (Q), then

B, (.8, T (1)) exp (D () (T (wa) = (T (7)), ) =

(2,1, Tyn1 () exp(D(w)) (T (u) = (Tk (v)),,)
converge strongly in Ey, (Q) as n — +o0.
By virtue of VT, 41 (un) = VT4 (u) weakly in (L, Q)N as n — 400 we have

/ et D, (x,t, Tyt (un)) Vugpl, (un) exp (D (un)) (Tk (up) — (Tk (vj))#) dxdt

- ®(z,t,u))Vuexp(D(u)) (Tk( ) — (Ti (v))), )d:cdt

m<|u|<m+1

as n — oo with the modular convergence of (T;c (u) — (T (Uj))u) as j — oo and letting
n — +oo we get

/Q o (2, un) Vtnph, () exp (D () (T (wn) = (T (v7)),, ) dadt = e(n, j,z) ~ forany m > 1.

(6.50)
By a similar calculus, we get

1 . i .
o / @ (z,t,upn) - Vuy sign (un) (Tr (un) — w}, ;) d (un) pm (un) = €(n, j,u)  forany m > 1.
Q

(6.51)
for the fourth term of the right hand side of (6.46),we get

1 / F - Vuy, sign (un) (Ty (un) — w), ;) d (un) pm (un) exp (D (Jun|)) dzdt

(6]
< w exp <|| HLI ) / ‘ ‘ | Tm+l Un | ’ k Un w;h]‘ dzdt

(07
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Then, by using the fact that T}, (u,,) — w}, ; converges to Ty (u) — w/, ; strongly in E,(Q) and

V1,41 (uy) converges weakly to V7. (u) in (Lw(Q))N as n — oo then by using the
modular convergence on y and j, we get

1 . i . .
> / F - Vuy,sign (uy,) (Tk (un) — wmj) d (un) pm (un) exp (D (Jun|)) dzdt = e(n, j, p, ).
Q

(6.52)
By a similar calculus, we get

/Q fo (T (un) — wf”) pm (un) exp (D (Juy|)) dedt = e(n, j, pu, 1) (6.33)

/Q F o (VTk () — V', ps () exp (D ([u])) didt = £(n, jupi)  (6.54)
and
/QF -V (Tk (tn) — w), ;) P () exp (D (Jun|)) dzdt = e(n, j, p, 1) (6.55)
Now, combining (6.46) — (6.55) and using (6.6),we obtain

/Qa (x,t, Un, Vi) - (VTk (un) — Vw“ ]) Pm (un) exp (D (Jun|)) dzdt

1 )
+ a/ (z,t, un, Vuy) - Vuy, sign (uy,) (Tk (up) — w/ﬁ’j)

X d (Up) pm (un) exp (D (Juy|)) dzdt (6.56)

<e(n, g i,m) 4+ | ho(,t) |Th (un) — w ;| pm (un) exp (D (Jun|)) dadt

@\

+/ d (un) @ (z, [Vun|) | Tr (tun) — w ;| pm (un) exp (D (Jun|)) ddt
Q

Splitting the second term of the left hand side and the third term of the right hand side of
(6.56) on {Ju,| < k} and {|u,| > k}, and using (6.3) and the fact that

(Tk (un) — w}, ;) un > 0on {|u,| >k}, one has

a(z,t, un, V) - (VTk (up) — wahj) Pm (un)> exp (D (|uy])) dzdt

fé/ 0 (2, T (un) , VT (n)) - VT (t0n) | Ti (1) — w0 |
Q

1 ,
Xd (un) pm (un)) exp (D (|uy])) dedt + — / a(,t, tn, Vi) - Vg [Ty (un) — w), 5| d (ur,)
{Iun‘>k}

o (1) exp (D () e
< e(n,j, p,i,m) +/ ho (2, t) | Tk (un) — w}, ;| pm (un)> exp (D (Jun|)) dzdt
Q

* / d (up)a(@,t, Ty, (un) , Vi (un)) - Vi (un) [T (un) = w}, 4
Q

<y (1)) xp (D ) ot
+ - d(un) a (@, t,un, Vuy) - Vg |Ti (un) — wfu|
O J{|un|>k}
o (1)) &3 (D (fn)) dct
(6.57)
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Then, by simplification, we have

/Qa (&1t Vi) - (VT (1) — V) po (1) €xp (D ([t ) el

< e(n,j, p,i,m) —l—/ h(@, t) | Te (un) — w!, ;| pr (un) exp (D (Jun|)) dadt
Q

) (6.58)
+ S / d (un)a (2, t, T (un) , VT (un)) - VT (un) |Te (un) — wz”|
Q
X pm (un) exp (D (|uy])) dzdt
Similarly, like in (6.53) and (6.48), we get
/ h(z,t) | Ty (un) — wLJ| pm (un) exp (D (Juyn|)) dzdt (6.59)

e(n, j, p, i)

and

3/ d (un) a (2,8, Ty (un) , VT () - VT (un)‘ T (un) — w), |
Q

(&%
d
% o (1) xp (D (fun ) drdt 1< Vs e (” HLI(R)) / a (2,8, T (un) , Vi (un))
«Q «a m<|uy, | <m+1

- VT, (uy) dzdt
= €(n,u,j,i,m)

(6.60)
Thus, by combining (6.58),(6.59) and (6.60), one has

/ a (b, U, Vn) - (VT (un) = V!, ;) pm (un) exp (D ([un|)) dodt < e(n, j, p,i,m)
Q
(6.61)

since py, (un,) = 0if |uy,| > m + 1, one has
/ a(z,t, Ty (un), Vg (un)) - (VT (un) — V), ;) pm (tn) exp (D (Junl)) dedt
Q
_ /{ oy T () Vs ()T () X0 (D () (6.62)
Un | >k
S €(n?j’ Il'll7i7m)
sincea (z,t, Trpt1 (un) , VI (uy)) converges weak star to l,,+; in (Lw(Q))N and p,, is
continuous, we get
/u o T () VT () ), () exp (D ()
Un|>k

= Jions Lt - Vwy, 0m (Tns1 (u) exp (D (| T (w)])) dudt + (n)
u|>

(6.63)

Then, by passing to the limit on j, u and 7, we get

/ a(z,t, Tt (Un) , Vigsr (un)) - Vwiﬁjpm (un)exp (D (Juy|)) dzdt = e(n, j, 7).
{|un|>k}

(6.64)
Thus, we deduce that,

/Qa (2,8, Tp (un) , VT (un))-(VTk (un) — Vw,, ;) pm (un) exp (D (un|)) dodt < e(n, j, p,i,m).
(6.65)
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Remark that,

/Q [ (2,1, T (wn) , VT () — @ (2,8, Te (tn) , VT () xs)]

X (VT (un) — VT (u)Xs) prm (un) exp (D (|uy|)) dadt

<- /Q 0 (2,4, T (n) s VT (1)) (VT () — VT (1) o)
X pm (un) exp (D (|un|)) dadt (6.66)
- / 0 (2,1, Ty (n) , VT (1)) (VT (1) xs — Vel )

Q
X pm (un) exp (D (uy])) dzdt

+ E(naj7 /J’aiam)
=Ji+ h+eln, j,p,i,m).

We shall go to the limit as n, u, j,4 and s to infinity in the integrals of the right-hand side.
Starting by J;, we have

I = / o (2,1, T(w), VT () xs) (VT (1) — V() )
Q

% pm(u) exp(D(|u]))dzdt + £(n) (6.67)

:E(n7 j? /’[’7 7:’ m’ 5).

Concerning J, one has

J2 == /Q lk (VTk:(u)Xs - VTk?(u)) pm(“’) exp(D(|u\))d:vdt + E(’I’L,j7 122 Z) = E(ﬂ,j, My iv m, 8)'

(6.68)
Combining (6.66),(6.67) and (6.68), follows

/Q [a(z,t, Ty (un), VIk (un)) — a (2, t, Tk (un) , VIk(uw)xs))
X (VTk (Un) - VTk(U>XS) Pm (un) exp (D (|un|)) dzdt < E(n, Js ly T, 5)7

(6.69)

since pp, (uy) = lin {Ju,| < m}and {|u,| < k} C {Ju,| < m}, for m large enough, we get

[ 10T ) T G
Q

) —a(z,t, Ty (un) , VT (u)Xs)]
X (VT (un) — VT (u)xs)

Xp (D (‘Urb|)) dxdt

e
= /Q [a(z,t, Ty (un) , VT (up)) — a(z,t, T (un) , Vi (uw)xs)]

(
)
(6.70)
(VT (un) = VTk(w)xs) prm (tn) exp (D (unl)) dadt
(
)

X
+ [a(z,t, Tk (un),0) —a(x,t, Tk (un) , VIr(uw)xs)]
{lun|>k}

X (VT (un) — VIe(w)xs) (1 = pm (un)) exp (D (|uy]|)) dedt

It is easy to see that the last terms of the last equality tend to zero as n tends to infinity. Which
yields

exp(D(—0)) /Q [a(z,t, Ty (un) , VT (un)) — a(z,t, T (un) , VI (uw)xs)]

X (VT (un) — VTi(u)xs) dadt ©.71)

S e(n,j,,u,i,m, S)'
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Passing to the limit in (6.71)as n and s tends infinity, we get

pim [l T (un) VT () = @ @1, T (n), V()] 6.72)

X (VT (un) — VI (u)xs) dedt = 0.
Using Lemma 3.11 , we have

Ty (un) — Ti(u) for the modular convergence in Wol’”Lg,(Q). (6.73)

Step 6: Equi-integrability of g

We shall prove that gy, (2,t, un, Vu,) — g(z,t,u, Vu) strongly in L' (Q).
Consider Y (u,,) = / d(s)X {s>n}ds and multiply (6.20) by exp (D (uy,)) 9o (un) , we get

0
/ B! (2,u,(T)) dx + / (2, un, Vuyn) V (exp (D (un)) Yo (uy)) dedt
Q
CIJ (@, Un, V) V (exp (D (un)) Yo (un)) dzdt
/ (2,1, 1, V) exp (D (1)) o (un)> ddt
lelL
) exp ) [171121(@) + 16z, 40) | 1y + 1A+ i)
(a —|— )| F

( ) |> (n) X{un>h} €Xp (D (un)) dzdt
/ (x, (Vtnl) d (ttn) Xy oy €xp (D () dardt
|F|

2(a+1)
d (un) ( / " d(s)x{s>h}ds) exp (D (up)) dadt
o (z, Vun (un) (Jo™ d(s)X{s>nyds) exp (D (uy)) dwdt

where B! (z, 1) — / % ( / d(a)X{U>T}do) exp(D(r))dr, and B (z, u,(T)) > 0,
0 0

then using same technique in a priori estimates step we can have

/{un>h} p (un) ¢ (z, Vuy,) dedt < C (/h d(s)dx) .

since d € L'(R), we get

)

< </h+oo d(uy)d

+ 1/1
a
o+

+oo

lim sup / d (un) ¢ (x, Vuy,) dzdt =0
{un>h}

h—o0 neN

0
Similarly, let ¢ (u,) = / d(s)X{s<—nydx in (6.20) we have also

Un

h—o0 neN

lim sup/ d(un) ¢ (x, Vuy) dzdt =0
{un< h}

‘We conclude that

lim sup / d (un) ¢ (x, Vuy,) dzdt = 0. (6.74)
{lun|>h}

h—o0 neN

Let D C Q then

/p(un) (x, Vuy,)dzdt < max (p(x))/ o (z, Vuy,) dedt
D {lun|<h} Dn{jun|<h}

—i—/ p (un) @ (x, Vuy,) dzdt.
D{|un|>h}
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Consequently d (u,,) ¢ (x, Vuy,) is equi-integrable. Then

d (uyn) ¢ (z, Vu,) converge to d(u)p(z, Vu) strongly in L' (R).
By (6.6) we get

Gn (2,1, U, Vu,) — g(x,t,u, Vu) strongly in L'(Q). (6.75)

Step 7: Passing to the limit.

In this step, we shall prove that « is an entropy solution to the problem (6.10) in the sense of Def-
inition 6.1. Firstly, we prove that u satisfies (6.11). For 7 €| 0, T'], considering T, (uy) exp (D (|unl)) X[o,7]
as a test function in (6.20) then like Step 2, we get

ety ) exp (D () it < ik e

.

Then, for k > ¢, we get

[t () exp (D ) e = e+ 1) 4

.

By passing to the limit inf with respect to n, we obtain

llg/? ab(gg u) Ty (u) exp (D (up)) dadt < ¢; + 1
u(T) o
/0 sgn(7) ab%r, ) exp(D(|r|))dr < ¢ +1

Observe that,

or

which shows that b(z,u) € L> ([0,T], L'(Q)) Secondly, we shall show that v fulfills the con-
dition (6.12). Indeed, since

u(r) T
[baulr) 1< [ sen(r) 22T exp(D(1r]))dr.

a (.13, tvuna vun) . Vun =a (x7t7TM+1 (un) 7VT1\/[+1 (un)) : V11]\/1+1 (un) a.e. in Q7

by a simple calculus, we get

/ a(z,t, un, Vuy,) - Vuydzdt
{m<|uy, | <m+1}

= (a(z,t, Trs1 (un) s Vs (un))

{m<|ul<m+1}
—a (Z‘, t, TM+1 (un) ,VTM.H(U Xs ) (VTM-H (un) - VT]W-H(U)XS) dxdt

)Xs)
a(x,t, Tyt (Un), VInrg (Un
+/{m§|u§m+]} ( ( t ( ; ( ))

—a (l’, ta TM+1 (’U,n) ) vT‘]W-ﬁ-l (U’)XS ) V1—11\/[-‘-1 ('U/)Xsdl'dt
+/ a(x,t,Trrsr (un), Va1 (w)xs) - Vg (uy,) dedt.
{m<Jul<m+1}

Then, by (6.72),(6.73) and the fact that a (x, ¢, Tas+1 (un), V41 (uy)) converges weak star to
a(z,t,Tarp1(u), VT4 (u)) and the strong convergence of a (z,t, Tary1 (un), V41 (w)xs)
to a(x,t, Tar+1(uw), Va1 (u)xs) , we get

lim sup a (z,t, upn, V) - Vugdzdt
n—+o0o J{m<|uy,|<m+1}

(6.76)
= / a(z,t,u, Vu) - Vudzdt
{m<|u|<m+1}
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and then by Lemma 5.1 of [30] the condition (6.12) is fulfill.
Finally, we show that v fulfills the condition (6.13). Let .S be an increasing function in
W?2°>°(R) such that S’ has a compact support and M > 0 such that. supp (S') C [-M, M]

Letv € Wol’ng,(Q) N L*°(Q) such that , 22 € W=1L,(Q). Using S’ (uy,— v)T (un) as test
function in (6.20) by using the integration by parts, we get

/ /u" MS’ (r —v)Tg(r)drdzdt
< / ér ") g — ) k(r)dr> dodt

a(x,0,un, Vi) - VT (un) S’ (uy, — v) dodzdt

_|_

+
"2

a(z,0,Un, Vug) - V (u, —0) Ty, (uy,) dodzdt

q) (z,0,u) - VT (u)S (u — v)dodxdt
(6.77)
V (un, — v) S” (un — v) Tj, (uy,) dodzdt

_|_
iy
E%
9
ii

_|_
O\Q\@\@\@\@\\

+

\ﬁc\ﬁﬁh

Gn (2,0, U, Vuy) S’ (uy, —v) T, (uy,) dodzdt

2SS

IS (up, — v) Ty, (uy,) dodzdt + / / VT (un) S’ (uy, — v) dodzdt
+ / / F -V (up —v)S" (up, — v) Ty, (uy,) dodzdt
QJo
UOn,
+T / / Pnl 1) 611 _ o (0))Th () drda
QJo 3r

Now, we pass to the limit in each term of (6.77) as n tends to infinity. since S is bounded and
continuous, one has

/ / ’ 8b“ (z,7) — 28 (r — )Ty (r)drdzdt = / / ob(z, ) — 28 (r — v)Tg(r)drdzdt + £(n)

and, /"ab i”’ S"(r — )Tk( \dr

tends to /0 %S”(r — )Ty (r)dr ae. in Q and weakly in W, L,(Q) and L™ weak x,
UOn, Uuo
and , MS’(T — )T (r)dr tends to / Ob(z,7) —28(r —v)Tk(r)dr +£(n) a.e. in Q

aor
0
and L*>° weak *, then

/ /<8v / ws’/(r—v)Tk(r)dr>dodt .
/ /< /0 3baa«;r)s”( U)Tk(r)dr>dadt+6(n) (6.

[ s - )zt
//u" 81) (z,7) — 0(0)) Ty (r)drdz + 2(n) (6.79)

Since supp (S”) C [—M, M] and since forn > k, one has S’ (u,, — v) a (z, 0, U, V) VI (uy) =
S’ (up, —v)a(x,0,Tx (un), VI (un)) VT (uy) a.e. in Q. Thus, the almost everywhere conver-
gence of Vu,, to Vu and the bounded character of S’ permit us to conclude that S (u,, — v) a (z, 0, uy,, Vu,) V'

tends to S'(u — v)a (z,0,Tk(u), VI (u)) VI (u) weak star in (LU,(Q))N, for the topology

0 87’

and,
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o (IILy,I1E,), as n tends to infinity, which yields, by using the modular convergence of T}, (u,,)
in Wy L,(Q)

/ / 2,0, Tk (un) , Vg (un)) - VT (uy) S’ (uy — v) dodzdt
/ / (@, 0, To(w), VT (1) - VTo(w)S' (u — v)dodadt + (n)

and,

t
/Q /0 5" (un —v) a (x,0, Trars o) (Un) s VTt o) (un))
Y (TMHIva (un) — v) Ty (uy) dodxdt

// 5" (u (2,0, Tar s oo (W), Vg4 o) ()
(TM+||v\|oo( ) — v) Ty (u)dodadt + =(n)

gn (2, 0,,, Vu,) S (u, —v) — g(x,0,u, Vu) strongly in L'(Q), as n — -+oco and since
Ty (uy) converges to Ty (u) weak star in L>°(Q), then

t
/ / Gn (2,0, un, Vuy) S (uy, —v) Ty, (uy,) dodzdt
RS (6.80)
= / / g(z,0,u, Vu)S' (u — v)Ty(u)dodzdt + e(n)
Qo

Due to the strong convergence of (f,,), to f in L'(Q) and weak star convergence of Ty, (u,,)
to Tj(u) in L>(Q) and since S’ is bounded and (u,,),, converges to u almost everywhere in @,
we get

t
// IS (up —v) Ty, (uy,) dodzdt = / / 1S (u — v)Tx(u)dodzdt (6.81)
@ Jo

Similarly as above, we get

t
/ / D(x,0,u) - VT (un) S (uy, — v) dodzdt
QJo

t (6.82)

= / / D(z,0,u) - VT (u)S' (u — v)dodzdt + e(n)

/ /t D(z,0,u) -V (uy —v) 8" (up —v) T (u,,) dodxdt
Qo (6.83)
= / / D(z,0,u) - V(u—0)S"(u—v)Ti(u)dodzdt + £(n)
/ / F VT (un) S (up —v) dodzdt
0 (6.84)
/ / F VT, (u)S (u — v)dodzdt + £(n)
and,
/ / F -V (up, —v) 8" (uy, —v) Ty (uy,) dodzdt

(6.85)

// F V(1= 0)8" (1 — 0)Tp(w)dodzdt + ()

Consequently, combining (6.77) — (6.85) we conclude that (6.13) is fulfill. Which means that
u is an entropy solution of (6.10) in the sense of Definition 6.1 . This completes the proof of the
Theorem 6.2.
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