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Abstract In this paper, we propose a numerical technique built on applying the shifted Jacobi
Galerkin method (SJGM) for obtaining approximate solutions of the one-dimensional linear
second-order hyperbolic telegraph differential equations (HTDEs). We convert the differential
equation governed by its initial and boundary conditions into a modified one governed by bound-
ary conditions only. The spectral Galerkin method aims to reduce the linear telegraph problem
to a system of linear algebraic equations in the unknown expansion coefficients. The conver-
gence and error analysis of the shifted Jacobi polynomials expansion are investigated. Several
examples are carried out to illustrate the efficiency of the proposed method. Also, the results are
compared with some other existing schemes in the literature.

1 Introduction

Hyperbolic partial differential equations (HPDEs) are important in the scope of differential equa-
tions. The telegraph equation is a second-order HPDE. It explains various phenomena in sci-
entific fields such as energetic particle transport in the interplanetary medium (see, [13, 24]).
This equation arises in wave propagation along transmission lines in the theory of electric cir-
cuits [30].

The standard Jacobi polynomials have an important place in mathematical analysis [38].
They include six well-known particular polynomials, the four kinds of Chebyshev polynomials,
Legendre and ultraspherical polynomials [25]. The Jacobi polynomials are considered to be the
only polynomials to arise as eigenfunctions of a singular Sturm-Liouville problem [14].

Various numerical methods and in particular, spectral methods are successfully applied in
different fields such as chemistry, fluid dynamics, and astronomy. For some applications in this
direction, see [33, 36, 26, 34, 10, 9, 8, 1, 39, 40]. These methods assume that the approximate
solutions of differential equations are given in terms of certain combinations of special functions,
and after that the coefficients of the proposed expansion are determined by minimizing the error
between the numerical and the exact solutions as much as possible. Three techniques of spectral
methods are popular, namely, collocation, Galerkin, and tau methods [14, 18]. The collocation
method is based on selecting suitable collocation points and enforcing the differential equation
to be satisfied precisely at these points and the initial/ boundary conditions are set as constraints.
In the Galerkin method, the core concept for choosing the basis functions is to verify the under-
lying boundary/initial conditions of the given differential equation, then making the residual of
the differential equation orthogonal to the basis functions. The tau method has been originally
developed by Lanczos [31, 32]. Unlike the Galerkin approach, the tau method does not require
that the basis functions satisfy the boundary constraint [17, 3, 5, 4, 6].

In the current years, considerable interest has been devoted to proposing some numerical
algorithms for treating second-order HTDEs equations. For example, in [27], the author pre-
sented a spectral collocation algorithm for handling a system of one- and two-dimensional linear
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HTDEs. The authors in [35] proposed a numerical algorithm to solve the one-dimensional HT-
DEs using the Chebyshev tau method. The authors in [22] solved linear HTDEs using Galerkin
method and they presented approximate solutions using the double shifted Jacobi polynomials.
The authors in [21] introduced an efficient Bernoulli-Laguerre collocation method for solving
the nonlinear HTDEs in one dimension. The authors in [2] developed two new effective spectral
algorithms for solving the HTDEs governed by specified initial and boundary conditions. More-
over, in [12], a numerical solution is proposed based on utilizing a Jacobi collocation method for
treating the non-linear coupled HTDEs with variable coefficients subject to non-local conditions.

In this paper, we apply the shifted Jacobi Galerkin method for solving the linear second-order
HTDEs governed by initial and boundary conditions. We handle both homogeneous and non-
homogeneous boundary conditions of linear second-order HTDEs. Furthermore, we discuss the
convergence analysis of the shifted Jacobi expansion.

The paper is formed as follows. Section 2 displays some properties of Jacobi and shifted Ja-
cobi polynomials. Section 3 is devoted to applying the proposed shifted Jacobi Galerkin method
for the numerical treatment of one-dimensional linear HTDEs with homogeneous and nonho-
mogeneous boundary conditions. Section 4 discusses the convergence and error analysis of the
suggested shifted Jacobi expansion. In Section 5, the proposed method is tested via presenting
some illustrative examples. We end the paper by presenting some concluding remarks in Section
6.

2 Some properties of standard Jacobi polynomials and their shifted ones

This section displays some properties of the standard Jacobi polynomials and their shifted poly-
nomials.

2.1 Standard Jacobi polynomials

Here, we present some fundamental properties of the standard Jacobi polynomials J (µ,ν)
r (x).

The following special values are valid

J (ν,µ)
r (−x) = (−1)r J (µ,ν)

r (x), J (µ,ν)
r (−1) =

(−1)r Γ (r + ν + 1)
r! Γ (ν + 1)

, J (µ,ν)
r (1) =

Γ (r + µ+ 1)
r! Γ (µ+ 1)

,

(2.1)
where µ > −1, ν > −1 and x ∈ [−1, 1].

In addition, the qth derivative (q is a whole number) of J (µ,ν)
r (x), could be acquired from

DqJ (µ,ν)
r (x) =

Γ (q + r + µ+ ν + 1)
2qΓ (r + µ+ ν + 1)

J
(µ+q,ν+q)
r−q (x). (2.2)

Now, let w(µ,ν)(x) = (1− x)µ(1 + x)ν , and define the following norm and inner product for
the weighted space L2

w(µ,ν) [−1, 1]

(f, g)w(µ,ν) =

1∫
−1

f(x)g(x)w(µ,ν)(x)dx, ‖f‖w(µ,ν) = (f, f)
1
2
w(µ,ν) . (2.3)

The set of Jacobi polynomials forms a complete L2
w(µ,ν)[-1,1]-orthogonal system. In addition,

and because of (2.3), we have
‖J (µ,ν)
r ‖2

w(µ,ν) = h(µ,ν)r ,

where

h(µ,ν)r =
2µ+ν+1Γ (r + µ+ 1)Γ (r + ν + 1)

(2r + µ+ ν + 1) r! Γ (r + µ+ ν + 1)
. (2.4)
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2.2 Shifted Jacobi Polynomials

The shifted Jacobi polynomials J (µ,ν)
`,r (x) of degree r (see,[20]) are defined on [0, `] by

J
(µ,ν)
`,r (x) = J (µ,ν)

r

(
2x
`
− 1
)
, r = 0, 1, . . . , (2.5)

where J (µ,ν)
r (x) are the standard Jacobi polynomials. Due to the identities in (2.1), it is easy to

see that

J
(µ,ν)
`,r (0) =

(−1)r Γ (r + ν + 1)
r! Γ (ν + 1)

, J
(µ,ν)
`,r (`) =

Γ (r + µ+ 1)
r! Γ (µ+ 1)

. (2.6)

Let w(µ,ν)
` (x) = xν (` − x)µ. We can define the norm and inner product for the weighted space

L2
w

(µ,ν)
`

[0, `] as

(f, g)
w

(µ,ν)
`

=

`∫
0

f(x)g(x)w
(µ,ν)
` (x)dx, ‖f‖

w
(µ,ν)
`

= (f(x), f(x))
1
2

w
(µ,ν)
`

. (2.7)

The set of polynomials {J (µ,ν)
r (x)}r≥0 forms a complete L2

w(µ,ν) [0, `]-orthogonal system. In
addition, and due to (2.7), we have

‖J (µ,ν)
`,r ‖

2
w

(µ,ν)
`

= h
(µ,ν)
`,r =

(
`

2

)µ+ν+1

h(µ,ν)r , (2.8)

where h(µ,ν)r is defined as in (2.4).
It is worthy to mention here that for the polynomials in (2.5), the following polynomials can

be obtained from the polynomials J (µ,ν)
r (x) as special cases.

• For µ = ν, the shifted ultraspherical polynomials are obtained.

• For µ = ν = − 1
2 , the shifted Chebyshev polynomials of the first kind are obtained.

• For µ = ν = 1
2 , the shifted Chebyshev polynomials of the second kind are obtained.

• For µ = ν = 0, the shifted Legendre polynomials are obtained.

• For µ = − 1
2 and ν = 1

2 , the shifted Chebyshev polynomials of the third kind are obtained.

• For µ = 1
2 and ν = − 1

2 , the shifted Chebyshev polynomials of the fourth kind are obtained.

We denote x(µ,ν)N,j , 0 ≤ j ≤ N and$(µ,ν)
N,j , 0 ≤ j ≤ N , by the nodes and Christoffel numbers of

the standard Jacobi- Gauss interpolation in [-1,1]. The corresponding nodes and corresponding
Christoffel numbers of the shifted Jacobi-Gauss interpolation in [0, `] can be offered through

x
(µ,ν)
`,N,j =

`

2

(
x
(µ,ν)
N,j + 1

)
,

$
(µ,ν)
`,N,j =

(
`

2

)µ+ν+1

$
(µ,ν)
N,j .

From Jacobi-Gauss quadrature, we have for any positive integer N,φ ∈ S2N+1[0, `],

`∫
0

(`− x)µ xν φ(x)dx =

(
`

2

)µ+ν+1 1∫
−1

(1− x)µ(1 + x)νφ

(
`

2
(x+ 1)

)
dx

=

(
`

2

)µ+ν+1 N∑
j=0

$
(µ,ν)
N,j φ

(
`

2
(x

(µ,ν)
N,j + 1)

)
(2.9)

=
N∑
j=0

$
(µ,ν)
`,N,jφ

(
x
(µ,ν)
`,N,j

)
.
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Also, J (µ,ν)
`,r (x) may be constructed with the aid of the following recursive formula

2r(r + µ+ ν)(2r + µ+ ν − 2)J (µ,ν)
`,r (x) =

(2r + µ+ ν − 1)
[
(2r + µ+ ν)(2r + µ+ ν − 2)

(
2x
`
− 1
)
+ µ2 − ν2

]
J
(µ,ν)
`,r−1(x)

− 2(r + µ− 1)(r + ν − 1)(2r + µ+ ν)J
(µ,ν)
`,r−2(x),

J
(µ,ν)
`,0 (x) = 1, J (µ,ν)

`,1 (x) =
1
2
(µ− ν) + 1

2
(µ+ ν + 2)

(
2x
`
− 1
)
, r ≥ 2.

The upcoming two theorems which give explicit expressions for the derivatives and repeated
integrals of the shifted Jacobi polynomials are useful in what follows.

Theorem 1. [20] The derivatives of J (µ,ν)
`,r (x) have the following link with their original polyno-

mials

DqJ
(µ,ν)
`,r (x) =

r−q∑
m=0

Cq(r,m, µ, ν)J
(µ,ν)
`,m (x), (2.10)

with

Cq(r,m, µ, ν) =
(r + η)q(r + η + q)m(m+ µ+ q + 1)r−m−qΓ (m+ η)

`q(r −m− q)! Γ (2m+ η)

×3 F2

(
−r +m+ q, r +m+ η + q, m+ µ+ 1

m+ µ+ q + 1, 2m+ η + 1

∣∣∣∣∣ 1
)
,

(2.11)

with η = µ+ ν + 1, (z)q =
Γ(z + q)

Γ(x)
, and 3F2(z) denotes a specific hypergeometric function of

the well-known standard generalized hypergeometric function (see [11]).

Theorem 2. The q times repeated integration of J (µ,ν)
`,r (x) ([19]) can be explicitly expressed as

I
(q,µ,ν)
`,r (x) =

r! Γ (µ+ 1)
Γ (r + µ+ 1)

q times︷ ︸︸ ︷∫ ∫
. . .

∫
J
(µ,ν)
`,r (x)

q times︷ ︸︸ ︷
dx dx ...dx =

2q∑
j=0

θ(j, q, r, µ, ν)J
(µ,ν)
`,r+q−j(x)

+ πq−1(x),

(2.12)

where

θ(j, q, r, µ, ν) =
2q r! (r + q − j + 1)µ (r + µ− j + 1)j (r − q + η)r+q−j
j! (µ+ 1)r (r + 1)µ (r + q + η)q (r + q + η − j)r+q−j

×3 F2

(
−j, r + q + µ− j + 1, 2r + η − j
r + µ− j + 1, 2r + 2q − 2j + η + 1

∣∣∣∣∣ 1
)
,

(2.13)

and πq−1(x) is a polynomial whose degree does not exceed (q − 1).

Furthermore, and in virtue of Theorem 2, it can be shown that the following specific integral
formulas hold ∫ t

0
J
(µ,ν)
τ,i (z) dz =

2∑
j=0

θ(j, 1, i, µ, ν)J (µ,ν)
τ,i+1−j(t) +A, (2.14)

∫ t

0

∫ z

0
J
(µ,ν)
τ,i (s) ds dz =

4∑
j=0

θ(j, 2, i, µ, ν)J (µ,ν)
τ,i+2−j(t) +B t+ C, (2.15)

where A,B,C are arbitrary constants.
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3 Numerical treatment of the telegraph type equations

This section describes in detail how the shifted Jacobi Galerkin method (SJGM) can be employed
for obtaining approximate solutions for the linear HTDEs.

3.1 The linear telegraph equations

Consider the following HTDE namely

∂ttv(x, t) + α∂tv(x, t) + β v(x, t) = ∂xxv(x, t) + f(x, t), 0 < x < `, 0 < t ≤ τ, (3.1)

governed by the initial conditions

v(x, 0) = p0(x), ∂tv(x, 0) = p1(x), 0 < x < `, (3.2)

and the homogeneous boundary conditions

v(0, t) = v(`, t) = 0, 0 < t ≤ τ. (3.3)

In (3.1), α, β are constants and f(x, t) is the source term which describes that the medium is
heated (f(x, t) > 0) or cooled (f(x, t) < 0) at space x and time t.

In order to settle the initial conditions (3.2), Eq. (3.1) is integrated twice with respect to t. This
means that instead of solving the HTDE (3.1) governed by (3.2) and (3.3), we solve alternatively
its integrated formula

v(x, t) + α

∫ t

0
v(x, z) dz + β

∫ t

0

∫ z

0
v(x, s)ds dz −

∫ t

0

∫ z

0
∂xxv(x, s)ds dz = f̃(x, t),

v(0, t) = v(`, t) = 0, 0 < x < `, 0 < t ≤ τ,
(3.4)

and

f̃(x, t) =

∫ t

0

∫ z

0
f(x, s)ds dz + p0(x)(α t+ 1) + p1(x) t. (3.5)

Shifted Jacobi Galerkin method

The core concept for the application of this method is to choose the basis functions satisfying
the underlying boundary conditions in (3.4).

Now, consider the following spaces:

Y = {Y ∈ H2
w`,τ

(Ω) : y(0, t) = y(`, t) = 0, t ∈ [0, τ ]},

YN = span{ψ(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x), 0 ≤ i, j ≤ N},

where H2
w`,τ

(Ω), Ω = (0, τ)× (0, τ ] is the Sobolev space defined in [16].

Let v(x, t) ∈ Y and assume that it has the following expansion

v(x, t) =
∞∑
i=0

∞∑
j=0

cij ψ
(µ,ν)
τ,i (t) φ

(µ,ν)
`,j (x), (3.6)

and assume that it can be approximated as

v(x, t) ' vN (x, t) =
N∑
i=0

N∑
j=0

cij ψ
(µ,ν)
τ,i (t) φ

(µ,ν)
`,j (x) = Ψ

T
N (t)CΦN (x), (3.7)
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where

cij =
`4

σ2
j,µ,νh

(µ,ν)
τ,i h

(µ+1,ν+1)
`,j

∫ τ

0

∫ `

0
v(x, t)ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)(τ − t)µ tν(`− x)µ−1xν−1dx dt,

(3.8)
and

Ψ
T
N (t) = [ψ

(µ,ν)
τ,0 (t), ψ

(µ,ν)
τ,1 (t), . . . , ψ

(µ,ν)
τ,N (t)], ΦN (x) = [φ

(µ,ν)
`,0 (x), φ

(µ,ν)
`,1 (x), . . . , φ

(µ,ν)
`,N (x)],

C = (cij)0≤i,j≤N . (3.9)

Then the shifted Jacobi Galerkin approximation to (3.4) is to find vN ∈ YN such that

(vN , u)w(x,t)`,τ + α

(∫ t

0
vN dt, u

)
w(x,t)`,τ

+ β

(∫ t

0

∫ t

0
vNdt dt, u

)
w(x,t)`,τ

−
(∫ t

0

∫ t

0
∂xxvNdt dt, u

)
w(x,t)`,τ

= (f̃ , u)w(x,t)`,τ , u ∈ YN ,

 (3.10)

where w(x, t)`,τ = (`− x)µ−1xν−1(τ − t)µ tν and (v, u)w`,τ =

∫ τ

0

∫ `

0
vuw`,τ dx dt is the inner

products in the weighted space L2
w(0, `)× (0, τ ].

For the sake of minimizing the bandwidth of the coefficient matrix corresponding to (3.4), we
choose the following basis functions:

ψ
(µ,ν)
τ,i (t) =J

(µ,ν)
τ,i (t), (3.11)

φ
(µ,ν)
`,j (x) =J

(µ,ν)
`,j (x) + ηjJ

(µ,ν)
`,j+1(x) + η̄jJ

(µ,ν)
`,j+2(x). (3.12)

From the boundary conditions: φ(µ,ν)`,j (0) = φ
(µ,ν)
`,j (`) = 0, and the two identities in (2.6), we

obtain immediately

ηj =
(j + 1)(µ− ν)(2j + µ+ ν + 3)

(j + ν + 1)(j + µ+ 1)(2j + µ+ ν + 4)
, (3.13)

η̄j =
−(j + 1)(j + 2)(2j + µ+ ν + 2)

(j + ν + 1)(j + µ+ 1)(2j + µ+ ν + 4)
. (3.14)

It is now clear that (3.10) is equivalent to:(
vN , ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)

)
w(x,t)`,τ

+ α

(∫ t

0
vN dt, ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)

)
w(x,t)`,τ

+ β

(∫ t

0

∫ t

0
vNdt dt, ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)

)
w(x,t)`,τ

−
(∫ t

0

∫ t

0
∂xxvNdt dt, ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)

)
w(x,t)`,τ

=
(
f̃(x, t), ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)

)
w(x,t)`,τ

.

(3.15)

Let us denote
f̃ij =

(
f̃(x, t), ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)

)
w(x,t)`,τ

=

∫ t

0

∫ `

0
f̃(x, t)ψ

(µ,ν)
τ,i (t)(τ − t)µ tνφ(µ,ν)`,j (x)(`− x)µ−1xν−1dx dt,
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then making use of (2.9) allows one to write

f̃ij =
N∑
n=0

N∑
m=0

f̃(x
(µ,ν)
`,N,m, t

(µ,ν)
τ,N,n)$

(µ,ν)
τ,N,nJ

(µ,ν)
τ,i (t

(µ,ν)
τ,N,n)$

(µ,ν)
`,N,mφ

(µ,ν)
`,j (x

(µ,ν)
`,N,m),

and

F = (f̃ij), i = 0, 1, . . . , N, j = 0, 1, . . . , N.

Now, if v(x, t) is approximated as in (3.7), then relations (2.14) and (2.15) lead to the follow-
ing approximations:

∫ t

0
v(x, t) dt = C Φ(x)

2∑
j=0

θ(j, 1, i, µ, ν)J (µ,ν)
τ,i+1−j(t), (3.16)

∫ t

0

∫ t

0
v(x, t)dt dt = C Φ(x)

4∑
j=0

θ(j, 2, i, µ, ν)J (µ,ν)
τ,i+2−j(t), (3.17)

∫ t

0

∫ t

0
∂xxv(x, t)dt dt = C ∂xxΦ(x)

4∑
j=0

θ(j, 2, i, µ, ν)J (µ,ν)
τ,i+2−j(t). (3.18)

Then, in matrix form, Eq. (3.15) can be written as:

(AD + αAE + β AG−KG) C − F = 0, (3.19)

where F is written in a column vector as

F = [f̃00, f̃10, · · · , f̃N0, f̃01, f̃11, · · · , f̃N1, f̃0N , f̃1N , · · · , f̃NN ]T ,

and A,D,E,G and K are (N + 1)× (N + 1) matrices, and

aij =
(
φ
(µ,ν)
`,j (x), φ

(µ,ν)
`,j (x)

)
w`

, A = (aij)0≤i,j≤N ,

dij =
(
ψ
(µ,ν)
τ,i (t), ψ

(µ,ν)
τ,i (t)

)
wτ

, D = (dij)0≤i,j≤N ,

eij =

(
ψ
(µ,ν)
τ,i (t),

∫ τ

0
ψ
(µ,ν)
τ,i (t)dt

)
wτ

, E = (eij))0≤i,j≤N ,

gij =

(
ψ
(µ,ν)
τ,i (t),

∫ t

0

∫ t

0
ψ
(µ,ν)
τ,i (t)dt dt

)
wτ

, G = (gij)0≤i,j≤N ,

kij =
(
∂xxφ

(µ,ν)
`,j (x), φ

(µ,ν)
`,j (x)

)
w`

, K = (kij)0≤i,j≤N ,

with w` = xν (`− x)µ, wτ = xν (τ − x)µ.
The nonzero elements of the vectors A,D,E,G and K are given explicitly in the following
theorem.

Theorem 3. If we take the basis functions ψi(t) and φj(x) as in (3.11) and (3.12), then the
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nonzero elements of the matrices A,D,E,G and K are given explicitly by

ajj = h
(µ,ν)
`,j + ε2

jh
(µ,ν)
`,j+1 + ϑ2

jh
(µ,ν)
`,j+2, (3.20)

dii = h
(µ,ν)
τ,i , (3.21)

eii = θ(1, 1, i, µ, ν)h(µ,ν)τ,i , (3.22)

gii = θ(2, 2, i, µ, ν)h(µ,ν)τ,i , (3.23)

kjj = η̄j C2(j + 2, j, µ, ν)h(µ,ν)`,j , (3.24)

where 0 ≤ i, j ≤ N.

Proof. To show (3.20) and (3.24), we make use of relations (2.10) and (3.12), to get

ajj =
(
φ
(µ,ν)
`,j (x), φ

(µ,ν)
`,j (x)

)
w`

=
(
J
(µ,ν)
`,j (x) + εjJ

(µ,ν)
`,j+1(x) + ϑjJ

(µ,ν)
`,j+2(x), J

(µ,ν)
`,j (x) + εjJ

(µ,ν)
`,j+1(x) + ϑjJ

(µ,ν)
`,j+2(x)

)
w`
,

kjj =
(
∂xxφ

(µ,ν)
`,j (x), φ

(µ,ν)
`,j (x)

)
w`

=

( j−2∑
i=0

C2(j, i, µ, ν)J
(µ,ν)
`,i (x) + εj

j−1∑
i=0

C2(j + 1, i, µ, ν)J (µ,ν)
`,i (x) + ϑj

j∑
i=0

C2(j + 2, i, µ, ν)J (µ,ν)
`,i (x),

J
(µ,ν)
`,j (x) + εjJ

(µ,ν)
`,j+1(x) + ϑjJ

(µ,ν)
`,j+2(x)

)
w`

.

Hence, the application of the orthogonality relation (2.8) yields the required results in (3.20) and
(3.24).

Relation (3.21) can be acquired with the aid of Eqs. (3.11) and (2.8).

To prove relations (3.22) and (3.23). In virtue of relations (3.11), (2.14) and (2.15) , we have

eii =

(
ψ
(µ,ν)
τ,i (t),

∫ t

0
ψ
(µ,ν)
τ,i (t)dt

)
wτ

=

(
J
(µ,ν)
τ,i (t),

∫ t

0
J
(µ,ν)
τ,i (t)dt

)
wτ

=
(
J
(µ,ν)
τ,i (t), θ(0, 1, i, µ, ν)J (µ,ν)

τ,i+1(t) + θ(1, 1, i, µ, ν)J (µ,ν)
τ,i (t) + θ(2, 1, i, µ, ν)J (µ,ν)

τ,i−1(t)
)
wτ
,

gii =

(
ψ
(µ,ν)
τ,i (t),

∫ t

0

∫ t

0
ψ
(µ,ν)
τ,i (t)dt

)
wτ

=

(
J
(µ,ν)
τ,i (t),

∫ t

0

∫ t

0
J
(µ,ν)
τ,i (t)dt

)
wτ

=
(
J
(µ,ν)
τ,i (t), θ(0, 2, i, µ, ν)J (µ,ν)

τ,i+2(t) + θ(1, 2, i, µ, ν)J (µ,ν)
τ,i+1(t) + θ(2, 2, i, µ, ν)J (µ,ν)

τ,i (t)

+ θ(3, 2, i, µ, ν)J (µ,ν)
τ,i−1(t) + θ(4, 2, i, µ, ν)J (µ,ν)

τ,i−2(t)
)
wτ
.

The orthogonality relation (2.8) again yields (3.22) and (3.23).
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3.2 Treatment of the non-homogeneous Boundary Conditions

Eq. (3.1) subject to the initial conditions (3.2) and the following non-homogeneous boundary
conditions

v(0, t) = q0(t) v(`, t) = q1(t), 0 < t ≤ τ, (3.25)

can be converted with the aid of a suitable transformation ([2]) into a modified one similar to
(3.1) subject to (3.2) and (3.3). More precisely, the following modified equation can be obtained:

V (x, t) + α

∫ t

0
V (x, t) dt+ β

∫ t

0

∫ t

0
V (x, t)dt dt−

∫ t

0

∫ t

0
∂xxV (x, t)dt dt =

˜̃f(x, t), (3.26)

governed by the homogeneous boundary conditions

V (0, t) = V (`, t) = 0, 0 < t ≤ τ, (3.27)

where

˜̃f(x, t) =f̃(x, t)− q0(t)−
q1(t)− q0(t)

`
x

− α
∫ t

0

[
q0(t) +

q1(t)− q0(t)

`
x

]
dt− β

∫ t

0

∫ t

0

[
q0(t) +

q1(t)− q0(t)

`
x

]
dt dt,

and f̃(x, t) is as defined in (3.5). Now, we can apply SJGM to (3.26) subject to the homogeneous
boundary conditions (3.27).

4 Convergence and error analysis of the suggested expansion

In this section, we give a comprehensive study for the convergence and error analysis of the
suggested shifted Jacobi expansion. Some lemmas in this respect are needed.

Lemma 1. The basis functions in (3.12) can be written alternatively as

φ
(µ,ν)
`,j (x) =

σj,µ,ν
`2 x(`− x)J (µ+1,ν+1)

`,j (x), (4.1)

where

σj,µ,ν =
(2j + η + 1)(2j + η + 2)
(j + µ+ 1)(j + ν + 1)

, η = µ+ ν + 1.

Lemma 2. [15] (Bernstien-type inequality of Jacobi polynomial) If max{|µ|, |ν|} ≤ 1
2 , then the

following inequality is valid:∣∣∣J (µ,ν)
`,k (x)

∣∣∣ ≤ ( `
2

) η
2 Γ(q + 1)(n+qn )

Γ( 1
2)(n+ η

2 )
q+ 1

2
w(− 2µ+1

4 ,− 2ν+1
4 )(x),

with q = max{µ, ν}.

Lemma 3. The following integral formula holds:∫
J
(µ,ν)
`,k (x) dx =

`

k + η − 1
J
(µ−1,ν−1)
`,k+1 (x).

Lemma 4. The following orthogonality relations hold:∫ `

0
φ
(µ,ν)
`,i (x)φ

(µ,ν)
`,j (x) (`− x)µ−1 xν−1 dx =

σ2
j,µ,ν

`4 h
(µ+1,ν+1)
`,j δij ,∫ τ

0
ψ
(µ,ν)
τ,i (t) ψ

(µ,ν)
τ,j (t) (τ − t)µ tν dt = h

(µ,ν)
τ,i δij ,

where δij is the well-known Kronecker delta function.
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Lemma 5. [28] (Stirling approximation of Gamma function) For all n > 4 and |a| < 2, one has:

1
2
na−1n! < Γ(n+ a) < 2na−1n!.

Theorem 4. The following estimates are valid:

(i) |h(µ+1,ν+1)
`,j | = O( 1

j ), |h(µ,ν)τ,i | = O( 1
i ).

(ii) Under the assumptions of Lemma 2, there exists a generic positive constant ς such that
|J (µ,ν)
`,k (x)| ≤ ( ς√

k
)w(− 2µ+1

4 ,− 2ν+1
4 )(x).

Theorem 5. (Convergence) Any function v(x, t) = x(` − x) g1(t)g2(x) ∈ Z with |g(i)1 (t)| 6 γi

and |g(i)2 (x)| 6 %i; i = 0, 1, 2, |µ| 6 1
2 , |ν| 6 1

2 can be expanded as an infinite double sum in
terms of the basis functions given in (3.6) that converges uniformly to v(x, t). Moreover, the
coefficients cij in (3.8) satisfy the inequality

|cij | = O
(

1
i

3
2 j

3
2

)
.

Proof. If we start with the coefficients cij in (3.8), then we have

cij =
`4

σ2
j,µ,νh

(µ,ν)
τ,i h

(µ+1,ν+1)
`,j

∫ τ

0

∫ `

0
v(x, t)ψ

(µ,ν)
τ,i (t)φ

(µ,ν)
`,j (x)tν(τ − t)µxν−1(`− x)µ−1dx dt,

(4.2)
then by the hypotheses of the theorem and (3.11), (4.1) enables one to write

cij =
`2

σj,µ,νh
(µ,ν)
τ,i h

(µ+1,ν+1)
`,j

∫ τ

0
g1(t)J

(µ,ν)
τ,i (t)w(µ,ν)

τ (t)dt

∫ `

0
g2(x)J

(µ+1,ν+1)
`,j (x)w

(µ+1,ν+1)
` (x)dx.

Let
cij = Ig1(i)Ig2(j),

where
Ig1(i) =

1

h
(µ,ν)
τ,i

∫ τ

0
g1(t)J

(µ,ν)
τ,i (t)w(µ,ν)

τ (t)dt, (4.3)

and

Ig2(j) =
`2

σj,µ,νh
(µ+1,ν+1)
`,j

∫ `

0
g2(x)J

(µ+1,ν+1)
`,j (x)w

(µ+1,ν+1)
` (x)dx. (4.4)

If the right hand side of (4.3) and (4.4) are integrated twice by parts, then we get

Ig1(i) =
τ 2

(i+ η)(i+ η − 1)h(µ,ν)τ,i

∫ τ

0

(
g1(t)

[
ν(ν − 1)w(µ,ν−2)

τ − 2µνw(µ−1,ν−1)
τ

+ µ(µ− 1)w(µ−2,ν)
τ

]
+ 2νg′1(t)w

(µ,ν−1)
τ − 2µg′1(t)w

(µ−1,ν)
τ + g′′1 (t)w

(µ,ν)
τ

)
J
(µ−2,ν−2)
τ,i+2 (t)dt,

Ig2(j) =
`4

σj,µ,ν(j + η − 1)(j + η + 1)h(µ+1,ν+1)
`,j

∫ `

0

(
g2(x)

[
ν(ν + 1)w(µ+1,ν−1)

`

− 2(µ+ 1)(ν + 1)w(µ,ν)
` + µ(µ+ 1)w(µ−1,ν+1)

`

]
+ g′2(x)

[
2(ν + 1)w(µ+1,ν)

` − 2(µ+ 1)w(µ,ν+1)
`

]
+ g′′2 (x)w

(µ+1,ν+1)
`

)
J
(µ−1,ν−1)
`,i+2 (x)dx.

Now, and due to the condition |µ| 6 1
2 and |ν| 6 1

2 , an the boundedness of gi1, gi2, i = 0, 1, 2
along with Theorem 4, the desired result can be achieved which completes the proof of the
theorem.
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Theorem 6. If v(x, t) ∈ Y satisfies the hypotheses of Theorem 5 and if we consider the approx-
imate solution vN (x, t) as in (3.7), we have the following truncation error estimate

‖v − vN‖2 = O(N−4).

Proof. From relations (3.11), (3.12), (3.6) and (3.7), we get

‖v − vN‖2 =

∥∥∥∥∥∥
N∑
i=0

∞∑
j=N+1

cij ψ
(µ,ν)
τ,i φ

(µ,ν)
`,j +

∞∑
i=N+1

∞∑
j=0

cij ψ
(µ,ν)
τ,i φ

(µ,ν)
`,j

∥∥∥∥∥∥
2

,

and therefore

‖v − vN‖2 6
N∑
i=0

∞∑
j=N+1

|cij |2‖ψ(µ,ν)
τ,i ‖

2‖φ(µ,ν)`,j ‖
2 +

∞∑
i=N+1

∞∑
j=0

|cij |2‖ψ(µ,ν)
τ,i ‖

2‖φ(µ,ν)`,j ‖
2.

By Lemma 4 and Theorem 4 part (1), we get

‖v − vN‖2 = O

 ∞∑
i=N+1

∞∑
j=N+1

|cij |2

ij

 ,

and Theorem 5 leads to

‖v − vN‖2 = O

 ∞∑
i=N+1

∞∑
j=N+1

1
i3j3

 .

From the integral test (see, [37]), we obtain the result

‖v − vN‖2 = O
(∫ ∞

N

∫ ∞
N

1
x3y3 dxdt

)
,

and accordingly, we have
‖v − vN‖2 = O(N−4),

which ends the proof.

5 Illustrative Examples

This section is confined to presenting some numerical experiments to demonstrate the use of the
proposed algorithm for solving the telegraph type equations. The absolute errors (in L2 norm)
can be computed by

L2 =

(∫ τ

0

∫ `

0
(v(x, t)− vN (x, t))2dxdt

) 1
2

,

and the maximum absolute errors are given by

L∞ =Max{|v(x, t)− vN (x, t)|, 0 ≤ x ≤ `, 0 ≤ t ≤ τ}.

Example 1. [35] Consider the linear telegraph equation (3.1) governed by the conditions (3.2)
and (3.25), respectively, with

f(x, t) = x2+t−1, p0(x) = x2, p1(x) = 1, q0(t) = t, q1(t) = t+1, α = β = 1 and ` = τ = 1.

We apply the proposed algorithm in Section 3.2, when N = 1, we get a system of four linear
algebraic equations in {c0,0, c0,1, c1,0, c1,1}, then solving this system we endup with

c00 = −
(ν + 1)(µ+ 1)

(ν + µ+ 2)(ν + µ+ 3)
, c01 = 0, c10 = 0, c11 = 0.

Hence, vN (x, t) = x2 + t, which coincides with the exact solution of Example 1.
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Example 2. [23] Consider the linear equation (3.1) governed by the conditions in (3.2), (3.3)

p0(x) = p1(x) = 0, α = β = 1 and ` = τ = 1.

The exact solution is v(x, t) = x2(1− x) sin2 t.

In Table 1, we list the maximum absolute error (MAE) for some choices of µ, ν andN In Figure
1, we depict the LogError plot t = 0.5. The table and the figure shows that our method is in
good agreement with the analytical solution.

Table 1. MAE of Example 2
N µ ν E µ ν E

6 5.268 . 10−10 3.259 . 10−10

− 1
2 − 1

2
1
2

1
2

10 2.361 . 10−14 6.982 . 10−14

6 2.361 . 10−10 6.837 . 10−11

− 1
2

1
2

1
2 − 1

2

10 2.473 . 10−14 9.927 . 10−15

6 4.425 . 10−10 3.392 . 10−9

0 0 1 1

10 3.251 . 10−14 2.634 . 10−13
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Figure 1. LogError Plot of Example 2 at t = 0.5

Example 3. [27] Consider the following telegraph equation

∂ttv(x, t)+2α∂tv(x, t)+β2 v(x, t) = ∂xxv(x, t)+ f(x, t), (x, t) ∈ [0, 1]× [0, 1], α > β ≥ 0,
(5.1)

with the following initial and boundary conditions:

v(x, 0) = sinx, ∂tv(x, 0) = 0, x ∈ [0, 1],

v(0, t) = 0, v(1, t) = sin 1 cos t, t ∈ [0, 1],

and f(x, t) is selected to be compatible with the exact solution v(x, t) = cos t sinx.

Tables 2 and 3 display, respectively, a comparison between the maximum absolute errors (L∞)
for N = 8 and N = 16, obtained by our method (SJGM) and the shifted Jacobi collocation
method presented in [27] for various choices of the parameters (µ, ν). Furthermore, Table 4
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displays a comparison between the maximum absolute errors (L∞) for N = 16, obtained by
our method (SJGM) and the Modified Cubic B-Spline Based Differential Quadrature Method
(MCB-DQM) presented in [29]. These tables show that our results are more accurate than those
obtained by using the methods in [27] and [29].

Table 2. Comparison of MAE for Example 3, N = 8, α = 20, β = 10

Method in [27] Our method

(− 1
2 ,−

1
2 ) ( 1

2 ,
1
2 ) (0, 0) (− 1

2 ,−
1
2 ) ( 1

2 ,
1
2 ) (0, 0) (− 1

2 ,
1
2 ) (− 1

2 ,−
1
2 )

L∞ 1.8×10−11 4.5×10−10 4.1×10−10 2.2×10−12 8.1×10−12 6.4×10−12 3.5×10−12 4.8×10−12

Table 3. Comparison of MAE for Example 3, N = 16, α = 10, β = 5

Method in [27] Our method

(− 1
2 ,−

1
2 ) ( 1

2 ,
1
2 ) (0, 0) (− 1

2 ,−
1
2 ) ( 1

2 ,
1
2 ) (0, 0) (− 1

2 ,
1
2 ) (− 1

2 ,−
1
2 )

L∞ 1.6×10−16 5.0×10−15 1.7×10−15 3.7×10−16 4.5×10−16 2.8×10−16 1.4×10−16 5.7×10−16

Table 4. Comparison of MAE for Example 3, N = 16, α = 10, β = 5 and t = 0.5

Our method

MCB −DQM in [29] µ = ν = − 1
2 µ = ν = 1

2 µ = ν = 0 µ = − 1
2 , ν = 1

2 µ = 1
2 , ν = − 1

2

L∞ 4.0346 × 10−5 2.3×10−16 8.6×10−16 4.6×10−16 8.4×10−16 7.2×10−16

6 Conclusions

In this paper, we presented an algorithm for treating the hyperbolic telegraph equation based
on the application of the spectral Galerkin algorithm. This method is built on the construction
of the shifted Jacobi basis functions, which satisfy the boundary conditions of the differential
equation. The suggested algorithm reduces the telegraph equation governed by its initial and
boundary conditions into a linear algebraic system which can be solved efficiently through a
suitable numerical algorithm. Of the advantages of the presented algorithm is that we can obtain
various solutions due to the presence of two parameters. In addition, it generalizes some of the
previously presented algorithms. The convergence and error analysis of the suggested expansion
were carefully investigated. Some numerical results are included to demonstrate the applicability
and efficiency of the proposed algorithm.
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