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Abstract In this article, we present finite difference solutions of Fisher equation subject to
initial and boundary conditions. The numerical solutions are computed by semi-implicit time
discretization based on Crank-Nicolson scheme and semi-implicit scheme. The stability and
consistency of the two numerical methods are shown. Two examples are provided to show sta-
bility of the numerical scheme. The solutions which are obtained by the two numerical schemes
are compared to each other and compared to the exact solution.

1 Introduction

Fisher equation which is given by

∂u

∂t
= c

∂2u

∂x2 + αu(1− u), a ≤ x ≤ b, t ≥ 0, (1.1)

where c is diffusion coefficient, α is reactive factor, a and b are real numbers, x is position and
t is time, arises in chemistry, heat and mass transfer, biology and ecology[1, 2, 3, 4, 5, 6]. In
1937 Fisher [7] and Kolmogorov et al. [8] investigated independently equation (1.1). Due to this
it is called the Fisher- Kolmogorov-Petrovsky-Piscounov (Fisher-KPP) equation. However it is
widely known as Fisher equation. Equation (1.1) is a non-linear model for a physical system
involving linear diffusion and non-linear growth [9]. As a result, equation (1.1) describes the
process of interaction between diffusion and reaction [5].

Many scholars have been developing numerical methods for solving partial differential equa-
tions (PDEs). Crank-Nicolson and semi-implicit schemes are the two numerical methods that
are applied to compute the solutions of PDEs by discretizing the domain into finite number of
regions. The two methods are categorized under finite difference methods. The finite difference
techniques are based upon the approximations that permit replacing differential equations by fi-
nite difference equations (FDEs). These finite difference approximations are algebraic in form,
and the solutions are related to grid points. Finite difference methods have been used for solving
PDEs arising in modeling and design[10].

In the past decades, it has been studied the numerical solutions of equation (1.1) subject
to initial and boundary conditions (see [5, 11, 12, 13, 14, 15, 16]). In this paper we propose
semi-implicit time discretization based on Crank-Nicolson scheme and semi-implicit scheme to
compute equation (1.1) subject to initial condition

u(x, 0) = h(x), a ≤ x ≤ b (1.2)

and boundary conditions

u(a, t) = p(t) and u(b, t) = q(t), 0 ≤ t ≤ tend (1.3)

when the diffusion coefficient c = 1, to represent real physical processes [5, 9].
For the purpose of numerical solution we take a = 0, b = 1 and tend = 1, and divide the

intervals [0, b] and [0, tend] into n and m equal parts respectively by the points x1, x2, · · · , xn+1
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and t1, t2, · · · , tm+1 with step length h and k respectively. So the problem is computing the
solution u(xi, tj) for i = 2, 3, · · · , n and j = 2, 3, · · · ,m+ 1.

The paper is organized as follows. In sections two, three and four, we discuss semi-implicit
time discretization based on Crank-Nicolson scheme, semi-implicit scheme, and truncation error,
stability and consistency respectively. In section five, analytic solutions are provided for different
conditions. In section six, numerical simulation is presented. Finally, it includes conclusion and
abbreviations in section seven and eight respectively.

2 Semi-Implicit Time Discretization Based on Crank-Nicolson
Scheme(SICNS)

A common family of implicit schemes is defined by the Crank-Nicolson scheme. It gives for a
weighted average of the spatial derivatives at the jth and the (j + 1)th time levels. As a result,
we discretize equation (1.1) as

uj+1
i − uji = k

2h2

[
uj+1
i−1 − 2uj+1

i + uj+1
i+1 + uji−1 − 2uji + uji+1

]
+ kαuji (1− u

j
i ),

(2.1)

where i = 2, 3, · · · , n, j = 1, 2, · · · ,m
or

− k
h2u

j+1
i−1 +

[
2 + 2k

h2

]
uj+1
i − k

h2u
j+1
i+1 = k

h2u
j
i−1 + (2− 2k

h2 ) u
j
i

+ k
h2u

j
i+1 + 2kαuji (1− u

j
i ),

(2.2)

where i = 2, 3, · · · , n, j = 1, 2, · · · ,m. We call this scheme semi-implicit time discretization
based on Crank-Nicolson scheme. The system of equations (2.2) is a triangular system of the
form



B A

A B A

A B A

· · ·
· · ·

A B A

A B
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

uj+1
2

uj+1
3

·
·
·

uj+1
n−1

uj+1
n


=



V2

V3

·
·
·

Vn−1

Vn
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+



Cuj1
0
·
·
·
0

Cujn+1
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−



Auj+1
1

0
·
·
·
0

Auj+1
n+1


+



F j2
F j3
·
·
·

F jn−1

F jn


,

where

A = − k

h2 , B = 2 +
2k
h2 , F

j
i = αkuji (1− u

j
i ), i = 2, 3, · · · , n, j = 2, 3, · · · ,m+ 1



538 Ibrahim Hussen and Benyam Mebrate

and 

V2

V3

·
·
·

Vn−1

Vn


=



D C

C D C

C D C

· · ·
· · ·

C D C

C D





uj2
uj3
·
·
·

ujn−1

ujn


,

where C = k
h2 , D = 2− 2k

h2 , j = 2, 3, · · · ,m+ 1.
In the same manner, the difference equations of equations (1.2) and (1.3) are respectively

u1
i = h(xi), i = 1, 2, · · · , n+ 1

and
uj1 = pj and u

j
n+1 = qj , j = 1, 2, · · · ,m+ 1.

3 Semi-Implicit Scheme(SIS)

In this method, derivatives are calculated at j + 1 time level. We use central difference formula
in space and forward difference formula for time. For converting the nonlinear term in equation
(1.1) to linear term we use method of lagging. In method of lagging one is calculated at j time
level and other is calculated at j + 1 time level[5].

As a result, equation (1.1) becomes

uj+1
i − uji = k

h2 [uj+1
i−1 − 2uj+1

i + uj+1
i+1 ] + kαuj+1

i (1− uji )

i = 2, 3, · · · , n, j = 1, 2, · · · ,m
(3.1)

or

− k

h2u
j+1
i−1 +

[
1 +

2k
h2 − kα(1− u

j
i )

]
uj+1
i − k

h2u
j+1
i+1 = uji . (3.2)

The system of equations (3.2) is a triangular system of the form
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·
·
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−
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1

0
·
·
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0

Auj+1
n+1
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,

where

A = − k

h2 , Bi = 1 +
2k
h2 − kα(1− u(i, j)), i = 2, 3, · · · , n, j = 2, 3, · · · ,m+ 1.

In the same manner, the difference equation of (1.2) and (1.3) are respectively

u1
i = h(xi), i = 1, 2, · · · , n+ 1

and

uj1 = pj and u
j
n+1 = qj , j = 1, 2, · · · ,m+ 1.
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4 Truncation Error, Stability and Consistency

4.1 Truncation Error

It occurs when the solution of partial differential equation is approximating by the numerical
method. Assume u is smooth function at (xi, tj). Using Taylor series method,

uj+1
i = uji + kujt,i +

k2

2
ujtt,i +

k3

6
ujttt,i +

k4

24
ujtttt,i + · · · . (4.1)

uj+1
i−1 = uji − hu

j
x,i + kujt,i +

h2

2 u
j
xx,i − khu

j
tx,i +

k2

2 u
j
tt,i−

h3

6 u
j
xxx,i +

kh2

2 ujtxx,i − hk2

2 ujttx,i +
h4

24u
j
xxxx,i+

k3

6 u
j
ttt,i − kh3

6 ujtxxx,i +
k2h2

2 ujttxx,i − hk3

6 ujxttt,i + · · · .

(4.2)

uj+1
i+1 = uji + hujx,i + kujt,i +

h2

2 u
j
xx,i + khujtx,i +

k2

2 u
j
tt,i+

h3

6 u
j
xxx,i +

kh2

2 ujtxx,i +
hk2

2 ujttx,i +
h4

24u
j
xxxx,i+

k3

6 u
j
ttt,i +

kh3

6 ujtxxx,i +
k2h2

2 ujttxx,i +
hk3

6 ujxttt,i + · · · .

(4.3)

uji−1 = uji − hu
j
x,i +

h2

2
ujxx,i −

h3

6
ujxxx,i +

h4

24
ujxxxx,i + · · · . (4.4)

uji+1 = uji + hujx,i +
h2

2
ujxx,i +

h3

6
ujxxx,i +

h4

24
ujxxxx,i + · · · . (4.5)

Semi-Implicit Time Discretization Based on Crank-Nicolson Scheme

Substituting equations (4.1), (4.2), (4.3), (4.4), (4.5) into equation (2.1), we get

SICNS (equation(2.1))− PDE (equation(1.1)) = O(k, h2).

This indicates that the semi-implicit time discretization based on Crank-Nicolson scheme we
have applied here for fisher equation is first order accurate in time and second order accurate in
space.

Semi-Implicit scheme

Substituting equations (4.1), (4.2), (4.3), (4.4), (4.5) into equation (3.1) we get

SIS (equation(3.1))− PDE (equation(1.1)) = O(k, h2).

Hence, semi-implicit scheme we have used here for fisher equation is first order accurate in time
and second order accurate in space.

4.2 Stability

Numerical errors which are generated during the solutions of discretized equations should not
be magnified. This refereed as stability. The Von-Neumann stability analysis of finite difference
schemes for non-linear problem (reaction-diffusion model) have been discussed in [17, 18, 19].
According to the Von-Neumann stability analysis, we assume the solution of equation (1.1) as

uji = ξjeiirh, (4.6)

where i =
√
−1, wave number r and amplification factor ξ = ξ(r). And its stability condition is

|ξ(r)| ≤ 1.
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We will assume

καuji (1− u
j
i ) = kαuji (1− constant) and καuj+1

i (1− uji ) = kαuj+1
i (1− constant)

to linearize (2.1) and (3.1) respectively [5, 19].

Semi-Implicit Time Discretization Based on Crank-Nicolson Scheme

In order to use this stability condition we first linearize equation (2.1) as follows.

uj+1
i − uji = k

2h2

[
uj+1
i−1 − 2uj+1

i + uj+1
i+1 + uji−1 − 2uji + uji+1

]
+ kαuji (1− constant),

(4.7)

where i = 2, 3, · · · , n, j = 1, 2, · · · ,m. Putting equation (4.6) into equation (4.7) we get

ξ(r) =
1− 2k

h2 sin2 rh
2 + kα(1− constant)

1 + 2k
h2 sin2 rh

2

. (4.8)

If |ξ(r)| ≤ 1, the linear stability requirement is

−2
k
≤ α(1− constant) ≤ 4

h2 .

So, the semi-implicit time discretization based on Crank-Nicolson scheme we applied here in
equation (2.1) is conditionally stable.

Semi-Implicit Scheme

We now first change equation (3.1) into linear form as follows.

uj+1
i − uji = k

h2 [uj+1
i−1 − 2uj+1

i + uj+1
i+1 ] + kαuj+1

i (1− constant),

i = 2, 3, · · · , n, j = 1, 2, · · · ,m
(4.9)

Substituting equation (4.6) into equation (4.9), we have

ξ(k) =
1

1 + 4k
h2 sin2 rh

2 − kα(1− constant)
.

If constant ≥ 1, the scheme is unconditionally stable no matter how the values of h and k are.
If constant < 1, the scheme is conditionally stable and the linear stability requirement is

1
h2α(1− constant)

≥ 1
4
.

So, the semi-implicit scheme we consider here is conditionally stable.

4.3 Consistency

A numerical method is said to be consistent if the difference between a partial differential equa-
tion (PDE) and its corresponding finite difference equation (FDE) approaches zero as the number
of subdivision increases. In both methods we discussed here

lim
h,k→0

PDE − FDE = 0.
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5 Analytic Solutions

Case 1: α = 1, p(t) = λet

1−λ(1−et) , q(t) =
λet

1−λ(1−et) and h(x) = λ.

The analytic solution of (1.1),(1.2) and (1.3) as described in [9], is given by u(x, t) = λet

1−λ(1−et) .

Case 2: α = 6, p(t) = 1
(1+e−5t)2 , q(t) =

1
(1+eb−5t)2 and h(x) = 1/(1 + ex)2.

The analytic solution of (1.1),(1.2) and (1.3) as described in [9], is given by u(x, t) = 1
(1+ex−5t)2 .

In [9], the analytic solution was computed by Homotopy perturbation method. It is the one
that provides series solution to linear and nonlinear PDEs [20, 21, 22, 23]. As a result, in general
it is approximate method. If we obtain the closed form of the series, the solution will be analytic
solution[9, 14]. It has been applied for solving PDEs arising in modeling of flow in porous
media[24] and the transmission of nerve impulses[25]. In [26] and [27], it was computed the
solution of non-linear fractional PDE and non-linear system of second order boundary value
problems respectively.

6 Numerical simulation

In this section we use MatLab software for the purpose of simulation for different values of n
and m.

6.1 Solutions using SICNS, SIS and HPM

Here we display the numerical and analytic discrete solutions for t = 0.4 and t = 1 in each case.

Case 1: α = 1, p(t) = λet

1−λ(1−et) , q(t) =
λet

1−λ(1−et) and h(x) = λ = 2.

Table (1) and (2) describe the solution of (1.1) subject to (1.2) and (1.3) at t = 0.4 and t = 1
respectively by SICNS, SIS and HPM. Figures (1) is graphical representation of the solution to
the problem (1.1), (1.2), (1.3) at t = 0.4 and t = 1. Figure (2) shows the solution graph of the
problem (1.1), (1.2), (1.3) for x ∈ [0, 1] and t ∈ [0, 1].

Table 1. Solutions at t = 0.4 for α = 1 and n = 10
m = 10 m = 1000

x SICNS SIS HPM SICNS SIS HPM
0 1.50412134 1.50412134 1.50412134 1.50412134 1.50412134 1.50412134

0.1 1.50088051 1.50232444 1.50412134 1.50408508 1.50410457 1.50412134
0.2 1.49774786 1.50094284 1.50412134 1.50405665 1.50409157 1.50412134
0.3 1.49544645 1.49996515 1.50412134 1.50403623 1.5040823 1.50412134
0.4 1.49409199 1.49938238 1.50412134 1.50402393 1.50407674 1.50412134
0.5 1.49364875 1.49918878 1.50412134 1.50401982 1.5040749 1.50412134
0.6 1.49409199 1.49938238 1.50412134 1.50402393 1.50407674 1.50412134
0.7 1.49544645 1.49996515 1.50412134 1.50403623 1.5040823 1.50412134
0.8 1.49774786 1.50094284 1.50412134 1.50405665 1.50409157 1.50412134
0.9 1.50088051 1.50232444 1.50412134 1.50408508 1.50410457 1.50412134
1 1.50412134 1.50412134 1.50412134 1.50412134 1.50412134 1.50412134

Case 2: α = 6, p(t) = 1
(1+e−5t)2 , q(t) =

1
(1+e1−5t)2 and h(x) = 1/(1 + ex)2.

Table (3) and (4) describe the solution of (1.1) subject to (1.2) and (1.3) at t = 0.4 and t = 1
respectively by SICNS, SIS and HPM. Figures (3) is graphical representation of the solution to
the problem (1.1), (1.2), (1.3) at t = 0.4 and t = 1. Figure (4) shows the solution graph of the
problem (1.1), (1.2), (1.3) for x ∈ [0, 1] and t ∈ [0, 1].
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Table 2. Solutions at t = 1 for α = 1 and n = 10
m = 10 m = 1000

x SICNS SIS HPM SICNS SIS HPM
0 1.22539967 1.22539967 1.22539967 1.22539967 1.22539967 1.22539967

0.1 1.22455150 1.22472256 1.22539967 1.22539028 1.22539345 1.22539967
0.2 1.22369467 1.22419632 1.22539967 1.22538294 1.22538862 1.22539967
0.3 1.22315483 1.22382064 1.22539967 1.22537767 1.22538516 1.22539967
0.4 1.22286284 1.22359533 1.22539967 1.22537450 1.22538309 1.22539967
0.5 1.22276931 1.22352023 1.22539967 1.22537344 1.22538240 1.22539967
0.6 1.22286284 1.22359533 1.22539967 1.22537450 1.22538309 1.22539967
0.7 1.22315483 1.22382064 1.22539967 1.22537767 1.22538516 1.22539967
0.8 1.22369467 1.22419632 1.22539967 1.22538294 1.22538862 1.22539967
0.9 1.22455150 1.22472256 1.22539967 1.22539028 1.22539345 1.22539967
1 1.22539967 1.22539967 1.22539967 1.22539967 1.22539967 1.22539967

Figure 1. Solutions at t = 0.4 and t = 1 for α = 1

Figure 2. Solutions for α = 1
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Table 3. Solutions at t = 0.4 for α = 6 and n = 10
m = 10 m = 1000

x SICNS SIS HPM SICNS SIS HPM
0 0.77580349 0.77580349 0.77580349 0.77580349 0.77580349 0.77580349

0.1 0.75869964 0.77289178 0.75671127 0.75673712 0.75685967 0.75671127
0.2 0.73880168 0.76541026 0.73641959 0.73645891 0.73668727 0.73641959
0.3 0.71693898 0.75339775 0.71492899 0.71497275 0.71528604 0.71492899
0.4 0.69351373 0.73681535 0.69225459 0.69229676 0.69266980 0.69225459
0.5 0.66882089 0.71556149 0.66842802 0.66846505 0.66886832 0.66842802
0.6 0.64314093 0.68949244 0.64349899 0.64352927 0.64392921 0.64349899
0.7 0.61674067 0.65844935 0.61753662 0.61755983 0.61791942 0.61753662
0.8 0.58983478 0.62229286 0.59063034 0.59064664 0.59092643 0.59063034
0.9 0.56249912 0.58094620 0.56289023 0.56289928 0.56305891 0.56289023
1 0.53444665 0.53444665 0.53444665 0.53444665 0.53444665 0.53444665

Table 4. Solutions at t = 1 for α = 6 and n = 10
m = 10 m = 1000

x SICNS SIS HPM SICNS SIS HPM
0 0.98665909 0.98665909 0.98665909 0.98665909 0.98665909 0.98665909

0.1 0.98639814 0.98681787 0.98527155 0.98528220 0.98528483 0.98527155
0.2 0.98563931 0.98654046 0.98374149 0.98376090 0.98376573 0.98374149
0.3 0.98460238 0.98581877 0.98205464 0.98208084 0.98208742 0.98205464
0.4 0.98321761 0.98463008 0.98019543 0.98022629 0.98023409 0.98019543
0.5 0.98141656 0.98293650 0.97814683 0.97818004 0.97818847 0.97814683
0.6 0.97914963 0.98068393 0.97589023 0.97592326 0.97593165 0.97589023
0.7 0.97637011 0.97780079 0.97340537 0.97343537 0.97344299 0.97340537
0.8 0.97303397 0.97419624 0.97067021 0.97069398 0.97070000 0.97067021
0.9 0.96909538 0.96975821 0.96766077 0.96767471 0.96767822 0.96766077
1 0.96435108 0.96435108 0.96435108 0.96435108 0.96435108 0.96435108

Figure 3. Solutions at t = 0.4 and t = 1 for α = 6
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Figure (4) shows the solution graph of the problem (1.1),(1.2), (1.3) for x ∈ [0, 1] and t ∈
[0, 1].

Figure 4. Solutions for α = 6

As we have seen in the tables as well as in the figures the two numerical methods make good
approximations to the exact solution for each case.

6.2 Numerical Errors

Here, numerical errors (absolute errors) are computed for the two methods in order to compare
each other.
Case 1: α = 1, p(t) = λet

1−λ(1−et) , q(t) =
λet

1−λ(1−et) and h(x) = λ = 2.
Table (5) and (6) explain absolute errors computed at t = 0.4 and t = 1 by SICNS and SIS.
Figure (5) shows numerical errors for x ∈ [0, 1] and t ∈ [0, 1].

Table 5. Numerical errors at t = 0.4 for α = 1 and n = 10
m = 10 m = 1000

x SICNS SIS SICNS SIS
0 0 0 0 0

0.1 0.00324083 0.00179691 0.00003627 0.00001677
0.2 0.00637348 0.00317851 0.00006470 0.00002978
0.3 0.00867490 0.00415619 0.00008512 0.00003905
0.4 0.01002936 0.00473897 0.00009742 0.00004460
0.5 0.01047260 0.00493256 0.00010153 0.00004645
0.6 0.01002936 0.00473897 0.00009742 0.00004460
0.7 0.00867490 0.00415619 0.00008512 0.00003905
0.8 0.00637348 0.00317851 0.00006470 0.00002978
0.9 0.00324083 0.00179691 0.00003627 0.00001677
1 0 0 0 0

Case 2: α = 6, p(t) = 1
(1+e−5t)2 , q(t) =

1
(1+e1−5t)2 and h(x) = 1/(1 + ex)2.

Table (7) and (8) explains absolute errors computed at t = 0.4 and t = 1 by SICNS and SIS.
Figure (6) shows numerical errors for x ∈ [0, 1] and t ∈ [0, 1].
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Table 6. Numerical errors at t = 1 for α = 1 and n = 10
m = 10 m = 1000

x SICNS SIS SICNS SIS
0 0 0 0 0

0.1 0.00084817 0.00067711 0.00000939 0.00000622
0.2 0.00170500 0.00120335 0.00001673 0.00001106
0.3 0.00224485 0.00157903 0.00002200 0.00001451
0.4 0.00253683 0.00180435 0.00002517 0.00001659
0.5 0.00263036 0.00187944 0.00002623 0.00001728
0.6 0.00253683 0.00180435 0.00002517 0.00001659
0.7 0.00224485 0.00157903 0.00002200 0.00001451
0.8 0.00170500 0.00120335 0.00001673 0.00001106
0.9 0.00084817 0.00067711 0.00000939 0.00000622
1 0 0 0 0

Figure 5. Numerical errors for α = 1

Table 7. Numerical errors at t = 0.4 for α = 6 and n = 10
m = 10 m = 1000

x SICNS SIS SICNS SIS
0 0 0 0 0

0.1 0.00198837 0.01618051 0.00002586 0.00014841
0.2 0.00238209 0.02899067 0.00003932 0.00026767
0.3 0.00200999 0.03846876 0.00004377 0.00035706
0.4 0.00125914 0.04456076 0.00004217 0.00041521
0.5 0.00039287 0.04713346 0.00003703 0.00044030
0.6 0.00035806 0.04599345 0.00003028 0.00043022
0.7 0.00079595 0.04091273 0.00002321 0.00038280
0.8 0.00079556 0.03166252 0.00001629 0.00029609
0.9 0.00039110 0.01805598 0.00000906 0.00016868
1 0 0 0 0
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Table 8. Numerical errors at t = 1 for α = 6 and n = 10
m = 10 m = 1000

x SICNS SIS SICNS SIS
0 0 0 0 0

0.1 0.00112659 0.00154632 0.00001065 0.00001327
0.2 0.00189783 0.00279898 0.00001941 0.00002425
0.3 0.00254773 0.00376413 0.00002619 0.00003277
0.4 0.00302217 0.00443465 0.00003086 0.00003865
0.5 0.00326973 0.00478967 0.00003322 0.00004164
0.6 0.00325941 0.00479370 0.00003303 0.00004142
0.7 0.00296474 0.00439541 0.00003000 0.00003762
0.8 0.00236376 0.00352603 0.00002378 0.00002980
0.9 0.00143461 0.00209744 0.00001394 0.00001745
1 0 0 0 0

Figure 6. Numerical errors for α = 6
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7 Conclusion

In this work, we have successfully applied semi-implicit time discretization based on Crank-
Nicolson scheme and semi-implicit to solve Fisher equation. The two numerical methods are
second order accurate in space and first order accurate in time, and satisfactory for a wide range
of time steps. Furthermore, the two numerical methods are conditionally stable.

8 Abbreviations

HPM = Homotopy perturbation method
SICNS = Semi-implicit time discretization based on Crank-Nicolson scheme
SIS = Semi-implicit scheme
PDE = Partial differential equation
FDE = Finite difference equation
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[9] Deniz Ağrsevena, Turgut Özi, An analytical study for Fisher type equations by using homo-
topy perturbation method, Computers and Mathematics with Applications 60 (2010) 602-609.
https://doi:10.1016/j.camwa.2010.05.006

[10] Mehdi Dehghan, Finite difference procedures for solving a problem arising in modeling and design of
certain optoelectronic devices, Mathematics and Computers in Simulation, Volume 71 (1), (2006)Pages
16-30. https://doi.org/10.1016/j.matcom.2005.10.001

[11] Alfio Quarteroni, Numerical models for differential problem(2nd edition), springer-Verlag Italia, 2014.

[12] Mehdi Bastani, Davod Khojasteh Salkuyeh, A highly accurate method to solve Fisher’s equation, Pramana
- J Phys 78, 335–346 (2012). https://doi.org/10.1007/s12043-011-0243-8

[13] Mohammad Ilati, Mehdi Dehghan, Direct local boundary integral equation method for numerical solution
of extended Fisher-Kolmogorov equation, Engineering with Computers, Volume 34 (1), (2018) pages 203-
213. https://doi.org/10.1007/s00366-017-0530-1

[14] A. Cheniguel, Numerical Method for the Heat Equation with Dirichlet and Neumann Conditions, Pro-
ceedings of the International Multi Conference of Engineers and Computer Scientists 2014 Vol I, IMECS
2014, March 12 - 14, 2014, Hong Kong.

[15] Ozlem Ersoy and Idris Dag, The Numerical Approach to the Fisher’s Equation via Trigonometric Cubic
B-spline Collocation Method, arXiv:1604.06864v1 [math.NA] 23 Apr 2016.

[16] Dr. Sharefa Eisa Ali Alhazmi, Numerical solution of Fisher’s equation using finite differ-
ence, Bulletin of Mathematical Sciences and Applications,ISSN: 2278-9634, Vol. 12, pp 27-34.
https://doi:10.18052/www.scipress.com/BMSA.12.27.

[17] K. M. Agbavon, A. R. Appadu1 and M. Khumalo; On the numerical solution of Fisher’s equation with
coefficient of diffusion term much smaller than coefficient of reaction term, Advances in Difference Equa-
tions(2019) 2019:146. https://doi.org/10.1186/s13662-019-2080-x



548 Ibrahim Hussen and Benyam Mebrate

[18] Nathan Muyinda1, Bernard De Baets, Shodhan Rao, On the linear stability of some finite difference
schemes for nonlinear reaction-diffusion models of chemical reaction networks, Commun. Appl. Ind.
Math. 9 (1), 2018, 121-140. https://doi.org/10.2478/caim-2018-0016

[19] Shahid Hasnain, Muhammad Saqib, Daoud Suleiman Mashat, Numerical study of one dimensional Fish-
ers KPP equation with finite difference schemes, Scientific research publishing; American Journal of
Computational Mathematics, 2017,7,70-83. https://doi: 10.4236/ajcm.2017.71006

[20] Fatemeh Shakeri, Mehdi Dehghan, Solution of delay differential equations via a homotopy per-
turbation method, Mathematical and Computer Modeling, Volume 48 (3), (2008), Pages 486-498.
https://doi.org/10.1016/j.mcm.2007.09.016

[21] J. H. He, The homotopy perturbation method for nonlinear oscillators with discontinuities, Applied Math-
ematics and Computation 151(2004), 287-292. https://doi.org/10.1016/S0096-3003(03)00341-2

[22] J. H. He, Application of homotopy perturbation method to nonlinear wave equations, Chaos, Solitons and
Fractals 26(205), 695-700. https://doi.org/10.1016/j.chaos.2005.03.006

[23] J. H. He, Homotopy perturbation method for solving boundary value problems, Physics Letters A
350(2006), 87-88. https://doi.org/10.1016/j.physleta.2005.10.005

[24] Mehdi Dehghan, Fatemeh Shakeri, Use of He’s homotopy perturbation method for solving a partial dif-
ferential equation arising in modeling of flow in porous media, Journal of Porous Media, Volume 11 (8),
(2008)Pages 765-778. DOI: 10.1615/JPorMedia.v11.i8.50

[25] Mehdi Dehghan, Jalil Manafian Heris and Abbas Saadatmandi, Application of semi-analytic methods for
the Fitzhugh-Nagumo equation, which models the transmission of nerve impulses, Mathematical Methods
in the Applied Science, Volume 33 (1), (2010) Pages 1384-1398. https://doi.org/10.1002/mma.1329

[26] Mehdi Dehghan, Jalil Manafian, Abbas Saadatmandi, Solving nonlinear fractional partial differential
equations using the homotopy analysis method, Numerical Methods for Partial Differential Equations,
Vol. 26(2), (2010) 448-479. https://doi.org/10.1002/num.20460

[27] A. Saadatmandi, M. Dehghan, Application of He’s homotopy perturbation method for non-linear system
of second-order boundary value problems, Nonlinear Analysis: Real World Applications, Volume 10(3),
(2009) Pages 1912-1922. https://doi.org/10.1016/j.nonrwa.2008.02.032

Author information
Ibrahim Hussen, Department of Mathematics, Samara University, Samara, Ethiopia.
E-mail: ih8459735@gmail.com

Benyam Mebrate, Department of Mathematics, Wollo University, Dessie, Ethiopia.
E-mail: benyam134@gmail.com, benyam.mebrate@wu.edu.et

Received: September 10, 2021

Accepted: January 21, 2022


	1 Introduction
	2 Semi-Implicit Time Discretization Based on Crank-Nicolson Scheme(SICNS)
	3 Semi-Implicit Scheme(SIS)
	4 Truncation Error, Stability and Consistency
	4.1 Truncation Error
	4.2 Stability
	4.3 Consistency

	5 Analytic Solutions
	6 Numerical simulation
	6.1 Solutions using SICNS, SIS and HPM
	6.2 Numerical Errors

	7 Conclusion
	8 Abbreviations

