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Abstract Recently Rather et al. [On the zeros of a class of generalized derivatives. Rend.
Circ. Mat. Palermo, II. Ser (2020). https://doi.org/10.1007/s12215-020-00552-z] considered the
generalized polar derivative and studied the relative position of zeros of the generalized polar
derivative with respect to the zeros of the polynomial.
In this paper, we obtain some lower bound estimates for the generalized polar derivative of
certain polynomials, which include various results due to Aziz and Rather, Malik, Turán and
Govil as special cases.

1 Introduction

For each positive integer n, let Pn denote the set of all polynomials of degree n over the field
C of complex numbers, ∂Pn denote the collection of all monic polynomials in Pn and Rn+ be
the set of all n-tuples γ = (γ1, γ2, . . . , γn) of non-negative real numbers (not all zeros) with
γ1 + γ2 + · · ·+ γn = ∧.
The problem concerning the extremal properties of polynomials attracted interests in the second
half of 19th century with some investigation of famous chemist Mendeleev who was interested
to find the bound of the derivative of a special type of polynomial. It was Serge Bernstein,
who formulated a result (for details see [17]) regarding the estimation of upper bound of the
maximum modulus of the derived polynomial in terms of maximum modulus of the polynomial
and proved that if P (z) ∈ Pn, then

max
|z|=1
|P ′(z)| ≤ n max

|z|=1
|P (z)|. (1.1)

This excellent introduction to the topic of polynomial inequalities attracts many researchers to
this field and motivates them to find refinements of the result for different types of polynomials.
On the other hand Paul Turán [18] was the first who estimated the lower bound for the maximum
modulus of derived polynomial in terms of maximum modulus of polynomial. More precisely
he proved that if P (z) ∈ Pn has all its zeros in |z| ≤ 1, then

max
|z|=1
|P ′(z)| ≥ n

2
max
|z|=1
|P (z)|. (1.2)

The inequality (1.2) is best possible and become equality for the polynomials having all its zeros
on |z| = 1.
It was Malik[8] who extended the inequality (1.2) by proving that if P (z) has all its zeros in
|z| ≤ k, k ≤ 1, then

max
|z|=1
|P ′(z)| ≥ n

1 + k
max
|z|=1
|P (z)|. (1.3)

Equality in (1.3) holds for the polynomial P (z) = (z + k)n.
The case k ≥ 1 was considered by Govil [7], who showed that if P(z) is a polynomial of degree
n having all the zeros in |z| ≤ k, k ≥ 1, then

max
|z|=1
|P ′(z)| ≥ n

1 + kn
max
|z|=1
|P (z)|. (1.4)
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The extremal polynomial is P (z) = zn + kn.

Let Dα[P ](z) denote the polar differentiation (see [9]) of a polynomial P (z) of degree n with
respect to a complex number α, then

Dα[P ](z) = nP (z) + (α− z)P ′(z).

Note that the polynomial Dα[P ](z) is of degree at most n − 1 and it generalizes the ordinary
derivative P ′(z) of P (z) in the sense that

lim
α→∞

Dα[P ](z)

α
= P ′(z)

uniformly with respect z for |z| ≤ R,R > 0.
The Bernstein-type inequalities for the class of polynomials with ordinary derivative replaced by
polar derivative have attracted number of mathematicians. In this direction, Aziz[2] was the first
to establish inequalities concerning the polar derivative of a polynomial in terms of the modulus
of the polynomial on the unit disk.
As an extension of inequality (1.1) to the polar derivative, Aziz [2] proved the following result.
If P (z) is a polynomial of degree n, then for every α ∈ C with |α| ≥ 1, we have

|Dα[P ](z)| ≤ n|αzn−1|max
|z|=1
|P (z)| for |z| ≥ 1.

The result is best possible and equality in above inequality holds for P (z) = czn, c 6= 0.
Concerning the class of polynomials having all zeros in |z| ≤ k, Aziz and Rather obtained several
sharp results concerning the maximum modulus of Dα[P ](z) on |z| = 1. Among other things,
they [3] established the following extension of inequality (1.3) and (1.4) to the polar derivative
of a polynomial.

Theorem 1.1. If all the zeros of P(z) lie in |z| ≤ k, then for α ∈ C with |α| ≥ k.

max
|z|=1
|Dα[P ](z)| ≥

n

1 + k
(|α| − k)max

|z|=1
|P (z)| for k ≤ 1. (1.5)

and

max
|z|=1
|Dα[P ](z)| ≥

n

1 + kn
(|α| − k)max

|z|=1
|P (z)| for k ≥ 1. (1.6)

In literature, there exist several generalizations and refinements of these inequalities ( For
reference see [5],[11]-[16]).
By the fundamental theorem of algebra (see[9]), every polynomial P ∈ ∂Pn can be written as

P (z) =
n∏
j=1

(z − zj), where z1, z2, . . . , zn are the zeros of P (z) counted multiplicity.

Now for the polynomial P (z),we define incomplete polynomials each of degree n−1, associated
with the n zeros z1, z2, ..., zn of P (z), are the polynomials Pk(z), 1 ≤ k ≤ n given by

Pk(z) =
n∏
v=1
v 6=k

(z − zv).

We can easily notice that the derivative of P (z), normalized to a monic polynomial, is a convex
linear combination of incomplete polynomials Pk(z). In fact, its derivative, reduced to monic
polynomial, is

1
n
P ′(z) =

1
n

n∑
k=1

Pk(z),
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where all the coefficients of the convex linear combination are 1
n .

Diaz Barrero and Egozcue [6] introduced the notion of linear combinations of incomplete poly-
nomials corresponding to the n-tuple γ := (γ1, γ2, . . . , γn) of non-negative real numbers with
n∑
j=1

γj = 1 as

P γ(z) :=
n∑
j=1

γjPk(z).

Now if we choose γ,js such that
n∑
j=1

γj = ∧, then for γ = (γ1, γ2, . . . , γn) ∈ Rn+, we take

P γ(z) :=
n∑
j=1

γj

n∏
v=1
v 6=j

(z − zv).

Noting that for γ = (1, 1, 1, . . . , 1), P γ(z) = P ′(z). In view of this, we call it generalized
derivative of polynomial P (z).
Next we define generalized polar derivative of P (z) as

Dγ
α[P ](z) := ∧P (z) + (α− z)P γ(z),

where ∧ =
n∑
j=1

γj .

Noting that for γ = (1, 1, 1, . . . , 1), Dγ
α[P ](z) = DαP (z).

Recently Rather et al. [10] extended the Gauss Lucas theorem to the class of generalized deriva-
tives by proving the following result.

Theorem 1.2. Every convex set containing all the zeros of P (z) also contains the zeros of P γ(z)
for all γ ∈ R+

n .

Moreover, they [10] also obtained the following extension of the Laguerre’s theorem to the
class of generalized polar derivatives. In fact, they proved:

Theorem 1.3. If all the zeros of the polynomial P (z) ∈ Pn, lie in a circular region C and if ξ is
a zero of Dγ

α[P ](z) for some γ ∈ Rn+, then at most one of the points ξ and α may lie outside of C.

2 Main Results

In this section, we extend Theorem 1.1 to the class of generalized polar derivatives of the poly-
nomial. We begin by proving the following result:

Theorem 2.1. If all the zeros of a polynomial P (z) ∈ Pn lie in |z| ≤ k where k ≤ 1, then for
α ∈ C with |α| ≥ k,

max
|z|=1
|Dγ

α[P ](z)| ≥
∧

1 + k
(|α| − k)max

|z|=1
|P (z)|. (2.1)

Remark 2.2. For the n-tuple γ = (1, 1, 1, ..., 1), the inequality (2.1) reduces to the inequality
(1.5).

Remark 2.3. If we divide both sides of inequality (2.1) by |α| and let |α| → ∞, and for n-tuple
γ = (1, 1, 1, ..., 1) , the inequality reduces to inequality (1.3).

In the above theorem (2.1), if we put k = 1, we obtain the following corollary.

Corollary 2.4. If all the zeros of a polynomial P (z) ∈ Pn lie in |z| ≤ 1, then for α ∈ C with
|α| ≥ 1,

max
|z|=1
|Dγ

α[P ](z)| ≥
∧
2
(|α| − 1)max

|z|=1
|P (z)|. (2.2)
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Remark 2.5. If we divide both sides of inequality (2.2) by |α| and let |α| → ∞, and for n-tuple
γ = (1, 1, 1, ..., 1), the inequality results to inequality (1.2).

Next, we also present the following result.

Theorem 2.6. If all the zeros of a polynomial P (z) ∈ Pn lie in |z| ≤ k where k ≥ 1, then for
α ∈ C with |α| ≥ k,

max
|z|=1
|Dγ

α[P ](z)| ≥
∧

1 + kn
(|α| − k)max

|z|=1
|P (z)|. (2.3)

Remark 2.7. For the n-tuple γ = (1, 1, 1, ..., 1), the inequality (2.3) reduces to the inequality
(1.6).

Remark 2.8. If we divide both sides of inequality (2.3) by |α| and let |α| → ∞, and for n-tuple
γ = (1, 1, 1, ..., 1), then it reduces to inequality (1.4).

Now if we put k=1 in theorem (2.6), we again get corollary (2.4).

3 Lemmas

For the proof of above theorems, we need the following lemmas.

Lemma 3.1. If P (z) is a polynomial of degree n and Q(z) = znP ( 1
z ), then for |z| = 1

|Qγ(z)| = | ∧ P (z)− zP γ(z)|
and |P γ(z)| = | ∧Q(z)− zQγ(z)|.

We can easily verify the above lemma by taking z = eiθ; 0 ≤ θ < 2π.

Lemma 3.2. If P (z) is a polynomial of degree n which does not vanish in |z| < k, k ≥ 1, then

k|P γ(z)| ≤ |Qγ(z)| for |z| = 1,

where Q(z) = znP ( 1
z ).

Proof. Since P (z) is a polynomial of degree n having all its zeros in |z| ≥ k; k ≥ 1, it follows
that all the zeros of the polynomial F (z) = P (kz) lie in |z| ≥ 1.
Now we can easily verify that if H(z) is a polynomial of degree n having all its zeros in |z| ≥ 1,
then

|Hγ(z)| ≤ | ∧H(z)− zHγ(z)| for |z| = 1. (3.1)

Applying (3.1) to the polynomial F(z), we get

|F γ(z)| ≤ | ∧ F (z)− zF γ(z)| for |z| = 1. (3.2)

We show inequality (3.2) also holds for |z| < 1.
Since F(z) is a polynomial of degree n having all its zeros in |z| ≥ 1, it follows by Theorem C
with α = 0 and C replaced by |z| ≥ 1, that the polynomial ∧F (z) − zF γ(z) has all its zeros in
|z| ≥ 1.
Since for |z| = 1,

|F γ(z)| ≤ | ∧ F (z)− zF γ(z)|,

it follows that the function

G(z) =
F γ(z)

∧F (z)− zF γ(z)

is analytic in |z| ≤ 1 and
|G(z)| ≤ 1 for |z| = 1.



Inequalities for the generalized polar derivative of a polynomial 553

Hence by Maximum Modulus theorem, we conclude that

|G(z)| ≤ 1 for |z| ≤ 1.

Equivalently, we have

|F γ(z)| ≤ | ∧ F (z)− zF γ(z)| for |z| ≤ 1.

Thus inequality (3.2) also holds for |z| < 1.
Since k ≥ 1, we take in particular

z =
eiθ

k
0 ≤ θ < 2π.

Then for |z| = 1
k ≤ 1 and from inequality (3.2), we get∣∣∣∣F γ(eiθk

)∣∣∣∣ ≤ ∣∣∣∣ ∧ F(eiθk
)
− eiθ

k
F γ
(
eiθ

k

)∣∣∣∣ ; 0 ≤ θ < 2π.

Which implies, ∣∣∣∣kP γ(eiθ)∣∣∣∣ ≤ ∣∣∣∣ ∧ P(eiθ)− eiθP γ(eiθ)∣∣∣∣ ; 0 ≤ θ < 2π.

On using lemma 3.1, we get for |z| = 1

k|P γ(z)| ≤ | ∧ P (z)− zP γ(z)| = |Qγ(z)|.

⇒ k|P γ(z)| ≤ |Qγ(z)| for |z| = 1, where Q(z) = znP (
1
z
),

that completes the proof of the lemma.

Lemma 3.3. If P (z) is a polynomial of degree n having all zeros in |z| ≤ k where k ≤ 1 ,then

k|P γ(z)| ≥ |Qγ(z)| for |z| = 1,

where Q(z) = znP ( 1
z ).

Proof. Since P (z) is a polynomial of degree n having all its zeros in |z| ≤ k, where k ≤ 1.
Hence all the zeros of the polynomial Q(z) lie in |z| ≥ 1

k .

⇒ Q(z) 6= 0 for |z| < 1
k
, where

1
k
≥ 1.

Therefore by applying lemma (3.2) to the polynomial Q(z), we get

1
k
|Qγ(z)| ≤ |P γ(z)| for |z| = 1.

⇒ k|P γ(z)| ≥ |Qγ(z)| for |z| = 1.

which proves lemma (3.3).

Lemma 3.4. If P (z) is a polynomial of degree n, then

|P γ(z)|+ |Qγ(z)| ≥ ∧|P (z)| for |z| = 1,

where Q(z) = znP ( 1
z )
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Proof. Since by lemma 3.1,

|P γ(z)| =| ∧Q(z)− zQγ(z)| for |z| = 1

≥ | ∧Q(z)| − |zQγ(z)| for |z| = 1.

⇒ |P γ(z)|+ |Qγ(z)| ≥ ∧|Q(z)| for |z| = 1.

On using the fact that for Q(z) = znP ( 1
z ),

|Q(z)| = |P (z)| for |z| = 1,

we get,

|P γ(z)|+ |Qγ(z)| ≥ ∧|P (z)| for |z| = 1.

Which proves lemma (3.4)

From a simple consequence of Maximum Modulus theorem, we can get the following result.

Lemma 3.5. If P (z) is a polynomial of degree n, then for R ≥ 1

max
|z|=R

|P (z)| ≤ Rnmax
|z|=1
|P (z)|.

Lemma 3.6. If P (z) ∈ Pn, having all its zeros in the disk |z| ≤ k where k ≥ 1, then

max
|z|=k
|P (z)| ≥ 2kn

1 + kn
max
|z|=1
|P (z)|. (3.3)

Lemma (3.6) was due to A.Aziz [1].

4 Proof of Theorems

Proof of Theorem 2.1. By using triangle’s inequality, we get

|Dγ
α[P ](z)| = | ∧ P (z) + (α− z)P γ(z)|

= | ∧ P (z) + αP γ(z)− zP γ(z)|
≥ |α||P γ(z)| − | ∧ P (z)− zP γ(z)|.

On using lemma (3.1) and lemma (3.3) this implies, for |z| = 1

|Dγ
α[P ](z)| ≥ |α||P γ(z)| − |Qγ(z)|

≥ |α||P γ(z)| − k|P γ(z)|
= (|α| − k)|P γ(z)|.

That is

|Dγ
α[P ](z)| ≥ (|α| − k)|P γ(z)|. (4.1)

Now from lemma (3.4), we have

|P γ(z)|+ |Qγ(z)| ≥ ∧|P (z)| for |z| = 1.

On using lemma (3.3), we get

|P γ(z)|+ k|P γ(z)| ≥ ∧|P (z)| for |z| = 1.

Which implies

(1 + k)|P γ(z)| ≥ ∧|P (z)| for |z| = 1.
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Thus,

|P γ(z)| ≥ ∧
1 + k

|P (z)| for |z| = 1 (4.2)

On using the above inequality (4.2) in the inequality (4.1), we get for |z| = 1

max
|z|=1
|Dγ

α[P ](z)| ≥ (|α| − k) ∧
1 + k

max
|z|=1
|P (z)|.

Which proves the theorem.

Proof of Theorem 2.6. Since the polynomial P (z) has all its zeros in |z| ≤ k, where k ≥ 1.
Hence the polynomial F (z) = P (kz) has all its zeros in |z| ≤ 1.
Applying corollary (2.4) to the polynomial F (z) and noting that

∣∣α
k

∣∣ ≥ 1, we get

max
|z|=1

∣∣∣∣Dγ
α
k
[F ](z)

∣∣∣∣ ≥ ∧2
(
|α|
k
− 1
)
max
|z|=1
|F (z)|.

Replacing F (z) by P (kz), we get

max
|z|=1

∣∣∣∣Dγ
α
k
[P ](kz)

∣∣∣∣ ≥ ∧2
(
|α|
k
− 1
)
max
|z|=1
|P (kz)|

=
∧
2

(
|α| − k
k

)
max
|z|=k
|P (z)|.

With the help of lemma (3.6), this implies

max
|z|=1

∣∣∣∣Dγ
α
k
[P ](kz)

∣∣∣∣ ≥ ∧2
(
|α| − k
k

)
max
|z|=k
|P (z)|

≥ ∧
2

(
|α| − k
k

)
2kn

1 + kn
max
|z|=1
|P (z)|.

Which gives

max
|z|=1

∣∣∣∣Dγ
α
k
[P ](kz)

∣∣∣∣ ≥ ∧( |α| − k1 + kn

)
kn−1max

|z|=1
|P (z)|. (4.3)

Also we have

max
|z|=1

∣∣∣∣Dγ
α
k
[P ](kz)

∣∣∣∣ = max
|z|=1

∣∣∣∣ ∧ P (kz) + (αk − z
)
P γ(kz)

∣∣∣∣
= max
|z|=1

∣∣∣∣ ∧ P (kz) + (α− kzk

)
P (kz)

n∑
j=1

γj
z − zj

k

∣∣∣∣
= max
|z|=1

∣∣∣∣ ∧ P (kz) + (α− kzk

)
kP (kz)

n∑
j=1

γj
kz − zj

∣∣∣∣
= max
|z|=1

∣∣∣∣ ∧ P (kz) + (α− kz)P (kz)
n∑
j=1

γj
kz − zj

∣∣∣∣
= max
|z|=1
|G(kz)|

= max
|z|=k
|G(z)|,
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where G(z) = ∧P (z) + (α− z)P (z)
n∑
j=1

γj
z−zj is a polynomial of degree atmost n− 1.

On using lemma (3.5), this gives

max
|z|=1

∣∣∣∣Dγ
α
k
[P ](kz)

∣∣∣∣ = max
|z|=k
|G(z)|

≤ kn−1max
|z|=1
|G(z)|

= kn−1max
|z|=1

∣∣∣∣ ∧ P (z) + (α− z)P (z)
n∑
j=1

γj
z − zj

∣∣∣∣
= kn−1max

|z|=1
|Dγ

α[P ](z)|.

Hence,

max
|z|=1

∣∣∣∣Dγ
α
k
[P ](kz)

∣∣∣∣ ≤ kn−1max
|z|=1
|Dγ

α[P ](z)|. (4.4)

On combining inequalities (4.3) and (4.4), we get

kn−1max
|z|=1
|Dγ

α[P ](z)| ≥ ∧
(
|α| − k
1 + kn

)
kn−1max

|z|=1
|P (z)|.

This implies,

max
|z|=1
|Dγ

α[P ](z)| ≥ ∧
(
|α| − k
1 + kn

)
max
|z|=1
|P (z)|.

Which proves the result.

Acknowledgements. The authors would like to thank the anonymous referee for comments and
suggestions.

References
[1] A.Aziz, Inequalities for the derivative of a polynomial, Proc. Amer. Math. Soc., Vol.89(1983), pp.259-266.

[2] A.Aziz, Inequalities for the polar derivative of a polynomial. J. Approx. Theory 55(2), 183-193 (1988)

[3] A.Aziz and N.A. Rather, A refinement of a Theorem of Paul Turan concerning polynomi-
als.Math.Inequal.Appl. 1,231-238(1998).

[4] A. Aziz and N. A. Rather, On an inequality concerning the polar derivative of a polynomial, Proc. Indian
Acad. Sci. (Math. Sci.), 117(2007), 349 - 357.

[5] Ishfaq Dar and A. Iqbal, Some lower bounds for the derivative of certain Polynomials, Ann Univ Ferrara
66, 295-300 (2020), https://doi.org/10.1007/s11565-020-00344-4.

[6] J. L. Diaz-Barrero and J. J. Egozcue, A generalization of the Gauss Lucas theorem, Czech. Math. J. 58
(2008) 481-486.

[7] N. K. Govil, On the Derivative of a polynomial, Proceedings of American Mathematical Society, Vol. 41
(1973), 543-546.

[8] M. A. Malik, On the derivative of a polynomial, Journal of London Mathematical society, Vol. 2, No.1,
1969, pp. 57-60.

[9] M. Marden, Geometry of polynomials, Math. Surveys, Amer. Math. Soc., 1989.

[10] N. A. Rather, A. Iqbal, and I. Dar, On the zeros of a class of generalized derivatives, Rend. Circ. Mat.
Palermo, II. Ser (2020). https://doi.org/10.1007/s12215-020-00552-z.

[11] N. A. Rather and Ishfaq Dar, Some applications of the Boundary Schwarz lemma for Polynomials with
restricted zeros, Applied Mathematics E-Notes 20 (2020), 422–431.

[12] N. A. Rather, Ishfaq Dar and A. Iqbal, Some extensions of a theorem of Paul Turán concerning polyno-
mials, Kragujevac Journal of Mathematics, 46 (6), 969–979.

[13] N. A. Rather, Ishfaq Dar and A. Iqbal, On a refinement of Turán’s inequality, Complex Anal Synerg. 6
(21) (2020). https://doi.org/10.1007/s40627-020-00058-5.



Inequalities for the generalized polar derivative of a polynomial 557

[14] N. A. Rather, Ishfaq Dar and A. Iqbal, Some inequalities for Polynomials with restricted zeros, Ann Univ
Ferrara (2020), https://doi.org/10.1007/s11565-020-00353-3.

[15] N. A. Rather, A. Iqbal and Ishfaq Dar, Inequalities concerning the Polar derivatives of Polynomials with
restricted zeros, Non linear Funct. Anal. and Appl.,Vol. 24 (2019), 813-826.

[16] N. A. Rather, Liyaqat Ali and Ishfaq Dar, Inequalities for the derivative of polynomials with restricted
zeros, Korean J. Math. 28, (2020), No. 4, pp. 931-942.

[17] A. C. Schaeffer, Inequalities of A. Markoff and S. N. Bernstein for polynomials and related functions,
Bull. Amer. Math. Soc., 47(1941), 565-579.

[18] P. Turan, Über die Ableitung von polynomen, Compositio Mathematica, Vol. 7, 1939, pp. 89-95.

Author information
N. A. Rather, Liyaqat Ali, M Shafi, Ishfaq Dar∗, Department of Mathematics, University of Kashmir,
Srinagar-190006, India.
E-mail: ishfaq619@gmail.com

Received: September 10, 2021

Accepted: February 1, 2022


	1 Introduction
	2 Main Results
	3 Lemmas
	4 Proof of Theorems

