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Abstract The objective of this article is to investigate a variant of ordered inclusion problems,
namely, H̃(·, ·)-compression (α, λ)-XOR-ordered NODSM mapping in real ordered Hilbert spaces
by using graph convergence approach. An associated resolvent operator is defined and some of
its properties are discussed. An equivalence between resolvent operator convergence and graph
convergence is established. An existence result for H̃(·, ·)-compression (α, λ)-XOR-ordered
NODSM mapping is proved using XOR and XNOR operations technique. Moreover, an or-
dered inclusion problem in real ordered Hilbert space is considered and an iterative algorithm
is presented. Also, the concept of graph convergence is applied to analyze the convergence of
the proposed algorithm. Finally, the notion of graph convergence is clarified by an illustrative
example.

1 Introduction

The theory of variational inequality is one of the most acclaimed tools in nonlinear analysis.
Since its inception in 1964 by Stampachia [35], it has been paid much attention and generalized
in various diverse directions due to its wide ranging applications in optimizations, economics,
engineering sciences, structural analysis, etc., see, [8, 10, 18, 19, 20]. One of the important
generalizations of variational inequality is variational inclusion, which includes variational in-
equality, equilibrium problems, game theory, optimizations and fixed point theory as special
cases.

The notable monotone operators were conceptualized by Zarantonello [39] and Minty [34].
A notable interest has been shown by several researchers to study monotone operators due the
following evolution equation

dx

dt
+A(x) = 0;x(0) = x0.

The above equation is strongly connected with monotone operators and many physical problems
can be expressed using this model. The maximal monotone operators provide a framework to
develop a suitable resolvent operator to find the approximate solutions of variational inequali-
ties and convex optimization problems. It is noteworthy to mention that the resolvent operator
associated with maximal monotone operator is a generalization of projection technique. Due to
this fact, researchers shown their interests to study the concepts of maximal monotone opera-
tors and their generalized forms, see, [2, 3, 14, 16, 17, 23, 24, 26, 27, 37, 41] and references
cited therein. These operators play crucial role in convex analysis, optimization, partial differen-
tial equations and differential inclusion problems. It was Li and Huang [29] who instigated the
graph convergence and established its relationship to resolvent operator convergence. Using this
concept, they showed the convergence of H(·, ·)-accretive operator in Banach spaces. Later on,
the technique of graph convergence was generalized to H(·, ·)-co-accretive operators and Yosida
approximation operators, for more related work, see; [5, 7] and references cited therein.

However, the underlying spaces in the traditional fixed point theory are topological space and
the presumed mappings must satisfy a certain type of continuity. Tarski [36] introduced the con-
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cept in which there are some ordering relations on the underlying spaces (pre-order, partial order
or lattice) and such spaces are not required to be equipped with topological structure. To assure
the existence of fixed point, the considered mappings satisfy some order-monotonic conditions
and it is unnecessary for them to have any continuity property. Since Banach spaces are the
fundamental underlying spaces on linear and nonlinear analysis, therefore a Banach space with
an ordering structure is called an ordered Banach space. This important idea has been widely
used in solving integral equations [11, 12, 21], vector variational inequalities [28], nonlinear
fractional evolution equations [25, 38] and Nesh equilibrium problems [9, 40], etc..

In recent past, the nonlinear mapping fixed point theory in ordered Banach spaces has been
studied considerably, see, [13, 15, 22, 38]. In 2008, Li [30] discussed the existence result and
convergence of the proposed algorithm for a class of nonlinear ordered variational inequalities.
In [1, 4, 31, 32, 33], approximate solutions of general nonlinear ordered variational inequalities
(ordered equations) are given in ordered Banach and Hilbert spaces.

With inducement from recent findings in this direction, we introduce a variant form of or-
dered inclusion problems, namely, H̃(·, ·)-compression (α, λ)-XOR-ordered NODSM mapping
in real ordered Hilbert spaces. The paper is lay out as follows. In section 2, we recollect basic
definitions, notions and tools required for the accomplishment of subsequent sections. Also, we
define the resolvent operator and discuss some of its characteristics. Section 3 deals with the def-
inition of graph convergence and its relationship with resolvent operator convergence associated
to H̃(·, ·)-compression (α, λ)-XOR-ordered NODSM mapping is also discussed. Moreover, an
illustrative example is given to justify the concept of graph convergence for H̃(·, ·)-compression
(α, λ)-XOR-ordered NODSM mapping. Section 4 begins with the formulation of ordered inclu-
sion problem and discuss the existence result for the proposed problem. In the last section, we
present an iterative algorithm and report its convergence analysis.

2 Preliminaries and auxiliary results

In this section, we mention basic definitions, perceptions and handy outcomes that are construc-
tive instruments in succeeding analysis which will be deployed throughout the paper.

Let Hp be a positive real ordered Hilbert space equipped with norm ‖ · ‖ and inner product
〈·, ·〉. Let d be the metric induced by the norm ‖ · ‖; CB(Hp) (respectively, 2Hp) be the family
of all nonempty closed and bounded subsets (respectively, all non empty subsets) of Hp. “ ≤ ”
denotes the partial ordering relation defined by the normal cone C with normal constant λC .
For any arbitrary κ̃1, κ̃2 ∈ Hp, the greatest lower bound and least upper bound of {κ̃1, κ̃2} is
represented by glb{κ̃1, κ̃2} and lub{κ̃1, κ̃2}, respectively with partial ordering relation ≤. AND,
OR, XOR and XNOR operators are denoted by ∧,∨,⊕ and �, respectively which are given
below by following relations:

(i) κ̃1 ∧ κ̃2 = glb{κ̃1, κ̃2},

(ii) κ̃1 ∨ κ̃2 = lub{κ̃1, κ̃2},

(iii) κ̃1 ⊕ κ̃2 = (κ̃1 − κ̃2) ∨ (κ̃2 − κ̃1),

(iv) κ̃1 � κ̃2 = (κ̃1 − κ̃2) ∧ (κ̃2 − κ̃1).

Now, we recall some familiar definitions, notions and results which are requisite to accomplish
the ambitions of this article.

Definition 2.1. A nonempty closed convex subset C of Hp is called a cone

(i) if m̃ ∈ C, α > 0⇒ αm̃ ∈ C;

(ii) if m̃ ∈ C and −m̃ ∈ C⇒ m̃ = 0.

Definition 2.2. Let C be a cone. Then

(i) C is called a normal cone, if there exists λC > 0 such that 0 ≤ κ̃1 ≤ κ̃2 ⇒ ‖κ̃1‖ ≤
λC‖κ̃2‖,∀κ̃1, κ̃2 ∈ Hp;

(ii) κ̃1 ≤ κ̃2 if and only if κ̃1 − κ̃2 ∈ C, ∀κ̃1, κ̃2 ∈ Hp;
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(iii) κ̃1 ∝ κ̃2 if and only if κ̃1 ≤ κ̃2 or κ̃2 ≤ κ̃1.

Lemma 2.3. [15] Let C ⊆ Hp and κ̃1, κ̃2 ∈ Hp. Then the following assertions hold:

(i) ‖0̃⊕ 0̃‖ = ‖0̃‖ = 0̃;

(ii) ‖κ̃1 ∨ κ̃2‖ ≤ ‖κ̃1‖ ∨ ‖κ̃2‖ ≤ ‖κ̃1‖+ ‖κ̃2‖;

(iii) ‖κ̃1 ⊕ κ̃2‖ ≤ ‖κ̃1 − κ̃2‖ ≤ λC‖κ̃1 ⊕ κ̃2‖;

(iv) if κ̃1 ∝ κ̃2, then ‖κ̃1 ⊕ κ̃2‖ = ‖κ̃1 − κ̃2‖.

Lemma 2.4. [15] If p̃ ∝ q̃n and q̃n → q̃∗ as n→∞, then p̃ ∝ q̃∗, ∀n ∈ N .

Lemma 2.5. [31] Let C ⊆ Hp with relation ≤ induced by C. Then for any ã, b̃, κ̃1, κ̃2, κ̃3 ∈ Hp,
the following assertions hold:

(i) κ̃1 � κ̃1 = 0, κ̃1 � κ̃2 = κ̃2 � κ̃1 = −(κ̃1 ⊕ κ̃2) = −(κ̃2 ⊕ κ̃1);

(ii) if κ̃1 ∝ 0 then −κ̃1 ⊕ 0 ≤ κ̃1 ≤ κ̃1 ⊕ 0;

(iii) 0 ≤ κ̃1 ⊕ κ̃2, if κ̃1 ∝ κ̃2;

(iv) (λκ̃1)⊕ (λκ̃2) = |λ|(κ̃1 ⊕ κ̃2), for any real λ;

(v) if κ̃1 ∝ κ̃2 then κ̃1 ⊕ κ̃2 = 0 if and only if κ̃1 = κ̃2;

(vi) (ã+ b̃)� (κ̃1 + κ̃2) ≥ (ã� κ̃1) + (b̃� κ̃2);

(vii) (ã+ b̃)� (κ̃1 + κ̃2) ≥ (ã� κ̃2) + (b̃� κ̃1);

(viii) if κ̃1, κ̃2, κ̃3 are comparable, then (κ̃1 ⊕ κ̃2) ≤ (κ̃1 ⊕ κ̃3) + (κ̃3 ⊕ κ̃2);

(ix) ακ̃1 ⊕ βκ̃1 = |α− β|κ̃1 = (α⊕ β)κ̃1, if κ̃1 ∝ 0, for any real α, β.

Definition 2.6. [31] Ũ : Hp → Hp is said to be comparison mapping if for any κ̃1, κ̃2 ∈ Hp,
κ̃1 ∝ κ̃2 implies Ũ(κ̃1) ∝ Ũ(κ̃2), κ̃1 ∝ Ũ(κ̃1), κ̃2 ∝ Ũ(κ̃2).

Definition 2.7. [31] A comparison mapping Ũ : Hp → Hp is said to be

(i) strongly comparison, for any κ̃1, κ̃2 ∈ Hp, κ̃1 ∝ κ̃2 if and only if Ũ(κ̃1) ∝ Ũ(κ̃2);

(ii) γ-ordered compression mapping, if there exists a constant γ ∈ (0, 1) such that

Ũ(κ̃1)⊕ Ũ(κ̃2) ≤ γ(κ̃1 ⊕ κ̃2), ∀κ̃1, κ̃2 ∈ Hp.

Definition 2.8. Ũ : Hp → Hp is said to be ordered Lipschitz continuous if

‖Ũ(κ̃1)⊕ Ũ(κ̃2)‖ ≤ λ‖κ̃1 ⊕ κ̃2‖,∀κ̃1, κ̃2 ∈ Hp, κ̃1 ∝ κ̃2 and λ > 0.

Definition 2.9. P̃ : Hp → CB(Hp) is said to be ordered D-Lipschitz continuous if

D(P̃ (κ̃1), P̃ (κ̃2)) ≤ λP̃ ‖κ̃1 ⊕ κ̃2‖,∀κ̃1, κ̃2 ∈ Hp, κ̃1 ∝ κ̃2 and λP̃ > 0.

Definition 2.10. M̃ : Hp → 2Hp said to be comparison mapping, if for any pκ̃1 ∈ M̃(κ̃1), κ̃1 ∝
pκ̃1 and if κ̃1 ∝ κ̃2, then for any pκ̃1 ∈ M̃(κ̃1) and pκ̃2 ∈ M̃(κ̃2), pκ̃1 ∝ pκ̃2 , ∀κ̃1, κ̃2 ∈ Hp.

Definition 2.11. A comparison mapping M̃ : Hp → 2Hp is said to be

(i) α-non-ordinary difference mapping if there exists pκ̃1 ∈ M̃(κ̃1) and pκ̃2 ∈ M̃(κ̃2) such that

(pκ̃1 ⊕ pκ̃2)⊕ α(κ̃1 ⊕ κ̃2) = 0,∀κ̃1, κ̃2 ∈ Hp and α > 0;

(ii) α-ordered rectangular if there exists pκ̃1 ∈ M̃(κ̃1) and pκ̃2 ∈ M̃(κ̃2) such that

〈pκ̃1 � pκ̃2 ,−(κ̃1 ⊕ κ̃2)〉 ≥ α‖κ̃1 ⊕ κ̃2‖2,∀κ̃1, κ̃2 ∈ Hp and α > 0;
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(iii) λ-XOR-ordered strongly monotone compression mapping, if κ̃1 ∝ κ̃2 and for any pκ̃1 ∈
M̃(κ̃1) and pκ̃2 ∈ M̃(κ̃2), we have

λ(pκ̃1 ⊕ pκ̃2) ≥ (κ̃1 ⊕ κ̃2),∀κ̃1, κ̃2 ∈ Hp and λ > 0.

Definition 2.12. Let Ũ , Ṽ : Hp → Hp be the single-valued mappings. Then H̃ : Hp×Hp → Hp
is said to be

(i) τ1-ordered compression mapping with respect to Ũ , if there exists a constant τ1 ∈ (0, 1)
satisfying

H̃(Ũ(κ̃1), ·)⊕ H̃(Ũ(κ̃2), ·) ≤ τ1(κ̃1 ⊕ κ̃2), ∀κ̃1, κ̃2 ∈ Hp;

(ii) τ2-ordered compression mapping with respect to Ṽ , if there exists a constant τ2 ∈ (0, 1)
satisfying

H̃(·, Ṽ (κ̃1))⊕ H̃(·, Ṽ (κ̃2)) ≤ τ2(κ̃1 ⊕ κ̃2), ∀κ̃1, κ̃2 ∈ Hp;

(iii) mixed comparison mapping with respect to Ũ and Ṽ , if for all κ̃1, κ̃2 ∈ Hp, κ̃1 ∝ κ̃2 then
H̃(Ũ(κ̃1), Ṽ (κ̃1)) ∝ H̃(Ũ(κ̃2), Ṽ (κ̃2)), κ̃1 ∝ H̃(Ũ(κ̃1), Ṽ (κ̃1)) and κ̃2 ∝ H̃(Ũ(κ̃2), Ṽ (κ̃2));

(iv) mixed strongly comparison mapping with respect to Ũ and Ṽ , if for all κ̃1, κ̃2 ∈ Hp,
H̃(Ũ(κ̃1), Ṽ (κ̃1)) ∝ H̃(Ũ(κ̃2), Ṽ (κ̃2)) if and only if κ̃1 ∝ κ̃2, for all κ̃1, κ̃2 ∈ Hp.

Definition 2.13. Let Ũ , Ṽ : Hp → Hp and H̃ : Hp ×Hp → Hp be the single-valued mappings.
M̃ : Hp → 2Hp is said to be H̃(·, ·)-compression (α, λ)-ordered NODSM with respect to Ũ and
Ṽ , if H̃ is β1 and β2-ordered compression mapping with respect to Ũ and Ṽ , respectively and M̃
is αM̃ -non ordinary difference, λ-XOR-ordered strongly monotone mapping such that

[H̃(Ũ , Ṽ )⊕ λM̃ ](Hp) = Hp,∀λ > 0 and 0 < β1, β2 < 1.

Definition 2.14. Let Ũ , Ṽ : Hp → Hp; H̃ : Hp ×Hp → Hp be the single-valued mappings and
M̃ : Hp → 2Hp be H̃(·, ·)-compression (α, λ)-ordered NODSM mapping with respect to Ũ and
Ṽ . The resolvent operator RH̃(·,·)

λ,M̃
: Hp → Hp is defined by

R
H̃(·,·)
λ,M̃

(ũ) = [H̃(Ũ , Ṽ )⊕ λM̃ ]−1(ũ), ∀ũ ∈ Hp, λ, α > 0, 0 < β1, β2 < 1. (2.1)

Proposition 2.15. Let Ũ , Ṽ : Hp → Hp and H̃ : Hp ×Hp → Hp be the single-valued mappings
such that H̃ is β1 and β2-ordered compression mapping with respect to Ũ and Ṽ , respectively.
Let M̃ : Hp → 2Hp be an α-ordered rectangular mapping with λα > β1 + β2 and (ũ⊕ ṽ) ∝ 0.
Then the resolvent operator RH̃(·,·)

λ,M̃
: Hp → Hp is a single-valued mapping.

Proof. Given w̃ ∈ Hp, ũ ∝ ṽ and λ > 0, let ũ, ṽ ∈ [H̃(Ũ , Ṽ )⊕ λM̃ ]−1(w̃). Then,

pũ =
1
λ
[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))] ∈ M̃(ũ),

and
pṽ =

1
λ
[w̃ ⊕ H̃(Ũ(ṽ), Ṽ (ṽ))] ∈ M̃(ṽ).

Following (i) and (ii) of Lemma 2.5, we have

pũ � pṽ =
1
λ
[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]� 1

λ
[w̃ ⊕ H̃(Ũ(ṽ), Ṽ (ṽ))]

=
1
λ
([w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]� [w̃ ⊕ H̃(Ũ(ṽ), Ṽ (ṽ))])

= −1
λ
([w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]⊕ [w̃ ⊕ H̃(Ũ(ṽ), Ṽ (ṽ))])

= −1
λ
([w̃ ⊕ w̃]⊕ [H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ṽ))])

= −1
λ
(0⊕ [H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ṽ))]

≤ −1
λ
[H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ṽ))].

(2.2)
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Since M̃ is α-ordered rectangular mapping, H̃ is β1 and β2-ordered compression mapping with
respect to Ũ and Ṽ , respectively. Therefore,

α‖ũ⊕ ṽ‖2 ≤ 〈pũ � pṽ,−(ũ⊕ ṽ)〉

≤ 〈−1
λ
(H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ṽ))),−(ũ⊕ ṽ)〉

=
1
λ
〈H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ṽ)), (ũ⊕ ṽ)〉

≤ 1
λ
〈H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ũ)), (ũ⊕ ṽ)〉

+
1
λ
〈H̃(Ũ(ṽ), Ṽ (ũ))⊕ H̃(Ũ(ṽ), Ṽ (ṽ)), (ũ⊕ ṽ)〉

≤ 1
λ
〈β1(ũ⊕ ṽ), (ũ⊕ ṽ)〉+

1
λ
〈β2(ũ⊕ ṽ), (ũ⊕ ṽ)〉

=
(β1 + β2)

λ
‖ũ⊕ ṽ‖2,

(2.3)

that is,
(
α− β1 + β2

λ

)
‖ũ⊕ ṽ‖2 ≤ 0. Since λα > β1 + β2, therefore ‖ũ⊕ ṽ‖ = 0.

Thus ũ = ṽ, i.e., the resolvent operator RH̃(·,·)
λ,M̃

associated to Ũ , Ṽ , H̃ and M̃ is a single-valued
mapping.

Proposition 2.16. Let Ũ , Ṽ : Hp → Hp and H̃ : Hp × Hp → Hp be the single-valued map-
pings such that H̃ is mixed strongly comparison mapping, β1 and β2-ordered compression map-
ping with respect to Ũ and Ṽ , respectively. Let M̃ : Hp → 2Hp be an H̃(·, ·)-compression
(α, λ)-XOR-NODSM mapping. Then the resolvent operator RH̃(·,·)

λ,M̃
: Hp → Hp is a comparison

mapping.

Proof. Given ũ, ṽ ∈ Hp, assume that ũ ∝ ṽ and

pũ =
1
λ
[ũ⊕ H̃(Ũ(R

H̃(·,·)
λ,M̃

(ũ)), Ṽ (R
H̃(·,·)
λ,M̃

(ũ)))] ∈ M̃(R
H̃(·,·)
λ,M̃

(ũ)), (2.4)

and
pṽ =

1
λ
[ṽ ⊕ H̃(Ũ(R

H̃(·,·)
λ,M̃

(ṽ)), Ṽ (R
H̃(·,·)
λ,M̃

(ṽ)))] ∈ M̃(R
H̃(·,·)
λ,M̃

(ṽ)). (2.5)

For the sake of computation, assume

T (ũ) = R
H̃(·,·)
λ,M̃

(ũ) and T (ṽ) = R
H̃(·,·)
λ,M̃

(ṽ).

Using the (α, λ)-XOR-oredered strong monotonicity of M̃ , (2.4) and (2.5), we have

(ũ⊕ ṽ) ≤ λ(pũ ⊕ pṽ)

(ũ⊕ ṽ) ≤ [ũ⊕ H̃(Ũ(T (ũ)), Ṽ (T (ũ)))]⊕ [ṽ ⊕ H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))]

(ũ⊕ ṽ) ≤ (ũ⊕ ṽ)⊕ (H̃(Ũ(T (ũ)), Ṽ (T (ũ))))⊕ (H̃(Ũ(T (ṽ)), Ṽ (T (ṽ))))

0 ≤ (H̃(Ũ(T (ũ)), Ṽ (T (ũ))))⊕ (H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))).

The above inequality gives

0 ≤ [H̃(Ũ(T (ũ)), Ṽ (T (ũ)))− H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))]

∨ [H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))− H̃(Ũ(T (ũ)), Ṽ (T (ũ)))].

Thus, we have

either 0 ≤ [H̃(Ũ(T (ũ)), Ṽ (T (ũ)))− H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))]

or 0 ≤ [H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))− H̃(Ũ(T (ũ)), Ṽ (T (ũ)))].

i.e.,
H̃(Ũ(T (ṽ)), Ṽ (T (ṽ))) ≤ H̃(Ũ(T (ũ)), Ṽ (T (ũ))) (2.6)
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or H̃(Ũ(T (ũ)), Ṽ (T (ũ))) ≤ H̃(Ũ(T (ṽ)), Ṽ (T (ṽ))). (2.7)

From (2.6) and (2.7), we have

H̃(Ũ(T (ũ)), Ṽ (T (ũ))) ∝ H̃(Ũ(T (ṽ)), Ṽ (T (ṽ)))

i.e.,
H̃(Ũ(R

H̃(·,·)
λ,M̃

(ũ)), Ṽ (R
H̃(·,·)
λ,M̃

T (ũ))) ∝ H̃(Ũ(R
H̃(·,·)
λ,M̃

(ṽ)), Ṽ (R
H̃(·,·)
λ,M̃

(ṽ))).

Since H̃ is a mixed strongly comparison mapping with respect to Ũ and Ṽ , then RH̃(·,·)
λ,M̃

(ũ) ∝

R
H̃(·,·)
λ,M̃

(ṽ), that is, RH̃(·,·)
λ,M̃

is a comparison mapping.

Lemma 2.17. [6] Let Ũ , Ṽ : Hp → Hp and H̃ : Hp ×Hp → Hp be the single-valued mappings
such that H̃ is mixed strongly comparison mapping with respect to Ũ and Ṽ , β1 and β2-ordered
compression mapping with respect to Ũ and Ṽ , respectively. If M̃ : Hp → 2Hp is H̃(·, ·)-
compression (α, λ)-XOR-NODSM, α-ordered rectangular mapping with λα > (β1 + β2), 0 <

β1, β2 < 1, then the resolvent operator RH̃(·,·)
λ,M̃

: Hp → Hp is
1

λα− (β1 + β2)
-Lipschitz continu-

ous. i.e.,
‖RH̃(·,·)

λ,M̃
(ũ)⊕RH̃(·,·)

λ,M̃
(ṽ)‖ ≤ Ω‖ũ⊕ ṽ‖,∀ũ, ṽ ∈ Hp,

where Ω =
1

λα− (β1 + β2)
.

3 Graph convergence for H̃(·, ·)-compression (α, λ)-XOR-NODSM
mapping

This section begins with the definition of the graph convergence. We establish the relation-
ship between the graph convergence and resolvent operator convergence associated to H̃(·, ·)-
compression (α, λ)-XOR-NODSM mapping.

The graph of a multi-valued mapping M̃ : Hp → 2Hp is defined by

graph(M̃) = {(ũ, ṽ) : ṽ ∈ M̃(ũ)}.

Definition 3.1. Let Ũ , Ṽ : Hp → Hp; H̃ : Hp × Hp → Hp be the single-valued mappings
and M̃n, M̃ : Hp × Hp → 2Hp be H̃(·, ·)-compression (α, λ)-XOR-NODSM mappings, n =
0, 1, 2, · · · . The sequence {M̃n} is said to be graph convergence to M̃ , indicated by M̃nG−→M̃ if
for each element (ũ, ṽ) ∈ graph(M̃), there exists {(ũn, ṽn)} ∈ graph(M̃n) such that

ũn → ũ and ṽn → ṽ as n→∞.

Theorem 3.2. Let Ũ , Ṽ : Hp → Hp and H̃ : Hp×Hp → Hp be the single-valued mappings such
that H̃ is β1-ordered compression mapping with respect to Ũ , β2-ordered compression mapping
with respect to Ṽ and H̃ is comparison mapping with respect to Ũ and Ṽ ,RH̃(·,·)

λ,M̃n
(ũ) ∝ RH̃(·,·)

λ,M̃n
(ṽ)

and R
H̃(·,·)
λ,M̃

(ũ) ∝ R
H̃(·,·)
λ,M̃

(ṽ). Let M̃n, M̃ : Hp → 2Hp be H̃(·, ·)-compression (α, λ)-XOR-
NODSM mappings for n = 0, 1, 2, · · · . Then M̃nG−→M̃ , if and only if

R
H̃(·,·)
λ,M̃n

(ũ)→ R
H̃(·,·)
λ,M̃

(ũ),∀ũ ∈ Hp, λ > 0, 0 < β1, β2 < 1,

where; RH̃(·,·)
λ,M̃n

(ũ) = [H̃(Ũ , Ṽ )⊕ λM̃n]−1(ũ) and RH̃(·,·)
λ,M̃

(ũ) = [H̃(Ũ , Ṽ )⊕ λM̃ ]−1(ũ).

Proof. Suppose that M̃nG−→M̃ , then for any given w̃ ∈ Hp, let

ũn = R
H̃(·,·)
λ,M̃n

(w̃) and ũ = R
H̃(·,·)
λ,M̃

(w̃).
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Then ũ = R
H̃(·,·)
λ,M̃

(w̃) = [H̃(Ũ , Ṽ )⊕ λM̃ ]−1(w̃), thus

1
λ
[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))] ∈ M̃(ũ),

which implies that (
ũ,

1
λ
[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]

)
∈ graph(M̃).

Thus, by the graph convergence it follows that there exists a sequence {(ũ′n, ṽ′n)} ∈ graph(M̃n)
such that

ũ′n → ũ and ṽ′n →
1
λ
[w̃ ⊕ H̃(Ũ ũ, Ṽ ũ)] as n→∞. (3.1)

Since ṽ′n ∈ M̃n(ũ′n), we have

H̃(Ũ(ũ′n), Ṽ (ũ
′
n))⊕ λṽ′n ∈ [H̃(Ũ , Ṽ )⊕ λM̃n](ũ

′
n)

and thus,
ũ′n = R

H̃(·,·)
λ,M̃n

[H̃(Ũ(ũ′n), Ṽ (ũ
′
n))⊕ λṽ′n].

Now,

‖ũn − ũ‖ ≤ ‖ũn − ũ
′

n‖+ ‖ũ
′

n − ũ‖

= ‖ũn ⊕ ũ
′

n‖+ ‖ũ
′

n ⊕ ũ‖

= ‖RH̃(·,·)
λ,M̃n

(w̃)⊕RH̃(·,·)
λ,M̃n

[H̃(Ũ(ũ′n), Ṽ (ũ
′
n))⊕ λṽ′n]‖+ ‖ũ

′

n ⊕ ũ‖.

Utilizing the Lipschitz continuity of RH̃(·,·)
λ,M̃n

, we have

‖ũn − ũ‖ ≤ Ω‖w̃ ⊕ [H̃(Ũ(ũ′n), Ṽ (ũ
′
n))⊕ λṽ′n]‖+ ‖ũ

′

n ⊕ ũ‖

≤ Ω‖w̃ ⊕ [H̃(Ũ(ũ′n), Ṽ (ũ
′
n))− λṽ′n]‖+ ‖ũ

′

n ⊕ ũ‖

≤ Ω‖[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]− λṽ′n‖

+ Ω‖H̃(Ũ(ũ′n), Ṽ (ũ
′
n))− H̃(Ũ(ũ), Ṽ (ũ))‖+ ‖ũ

′

n ⊕ ũ‖

≤ Ω‖[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]− λṽ′n‖+ Ω‖H̃(Ũ(ũ′n), Ṽ (ũ
′
n))− H̃(Ũ(ũ), Ṽ (ũ′n))‖

+ Ω‖H̃(Ũ(ũ), Ṽ (ũ′n))− H̃(Ũ(ũ), Ṽ (ũ))‖+ ‖ũ
′

n ⊕ ũ‖

≤ Ω‖[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]− λṽ′n‖+ Ω‖H̃(Ũ(ũ′n), Ṽ (ũ
′
n))⊕ H̃(Ũ(ũ), Ṽ (ũ′n))‖

+ Ω‖H̃ (̃A(ũ), Ṽ (ũ′n))⊕ H̃(Ũ(ũ), Ṽ (ũ))‖+ ‖ũ
′

n ⊕ ũ‖.

Since H̃ is β1 and β2-ordered compression mapping with respect to Ũ and Ṽ , respectively, then

‖ũn − ũ‖ ≤ Ω‖[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]− λṽ′n‖+ Ω(β1 ⊕ β2)‖ũ
′

n ⊕ ũ‖+ ‖ũ
′

n ⊕ ũ‖

= Ω‖[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]− λṽ′n‖+ [1 + Ω(β1 ⊕ β2)]‖ũ
′

n ⊕ ũ‖

= Ω‖[w̃ ⊕ H̃(Ũ(ũ), Ṽ (ũ))]− λṽ′n‖+ [1 + Ω(β1 ⊕ β2)]‖ũ
′

n − ũ‖.

From (3.1), we know that ũ′n → ũ and λṽ′n →
[
w̃ ⊕ H̃(Ũ ũ, Ṽ ũ)

]
as n→∞, then

‖ũn − ũ‖ → 0 as n→∞,

which implies that
R
H̃(·,·)
λ,M̃n

(w̃)→ R
H̃(·,·)
λ,M̃

(w̃).

Conversely, suppose that

R
H̃(·,·)
λ,M̃n

(w̃)→ R
H̃(·,·)
λ,M̃(·,·)(w̃), ∀w̃ ∈ Hp, λ > 0.
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Let (ũ, ṽ) ∈ graph(M̃), then ṽ ∈ M̃(ũ). Thus we have

H̃(Ũ(ũ), Ṽ (ũ))⊕ λṽ ∈ [H̃(Ũ , Ṽ )⊕ λM̃ ](ũ)

and hence
ũ = R

H̃(·,·)
λ,M̃

[H̃(Ũ(ũ), Ṽ (ũ))⊕ λṽ]. (3.2)

Let
ũn = R

H̃(·,·)
λ,M̃n

[H̃(Ũ(ũ), Ṽ (ũ))⊕ λṽ], (3.3)

Then we get
1
λ
[H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ũn), Ṽ (ũn))⊕ λṽ] ∈ M̃n(ũn).

Let ṽ
′

n = 1
λ [H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ũn), Ṽ (ũn))⊕ λṽ]. Then

‖ṽ′

n − ṽ‖ = ‖ 1
λ [H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ũn), Ṽ (ũn))⊕ λỹ]− ỹ‖

≤ 1
λ‖[H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ũn), Ṽ (ũn))]⊕ (ỹ ⊕ ỹ)‖

≤ 1
λ‖[H̃(Ũ(ũ), Ṽ (ũ))⊕ H̃(Ũ(ũn), Ṽ (ũn))‖.

Again using the fact that H̃ is β1 and β2-ordered compression mapping with respect to Ũ and Ṽ ,
respectively, then

‖ṽ′

n − ṽ‖ ≤ 1
λ(β1 + β2)‖ũn ⊕ ũ‖

≤ 1
λ(β1 + β2)‖ũn − ũ‖.

(3.4)

Also from (3.2) and (3.3), we have

‖ũn − ũ‖ = ‖RH̃(·,·)
λ,M̃n

[H̃(Ũ(ũ), Ṽ (ũ))⊕ λṽ]−RH̃(·,·)
λ,M̃

[H̃(Ũ(ũ), Ṽ (ũ))⊕ λṽ]‖

= ‖(RH̃(·,·)
λ,M̃n

−RH̃(·,·)
λ,M̃

)[H̃(Ũ(ũ), Ṽ (ũ))⊕ λṽ]‖.

Since RH̃(·,·)
λ,M̃n

→ R
H̃(·,·)
λ,M̃

, we have ‖ũn − ũ‖ → 0 as n → ∞. Thus from (3.4), we have

‖ṽ′

n − ṽ‖ → 0 as n→∞. Hence M̃nG−→M̃ . This completes the proof.

The graph convergence for H̃(·, ·)-compression (α, λ)-XOR-NODSM mapping is verified by
the following illustration.

Example 3.3. Let Hp = R2
+ = R+ × R+ with usual inner product and norm and let C =

[0, 1]× [0, 1] be a normal cone. Let Ũ , Ṽ : Hp → Hp be the single-valued mappings defined by

Ũ(x1, x2) =
(x1

2
,
x2

3

)
, ∀(x1, x2) ∈ Hp ×Hp,

Ṽ (x1, x2) =
(x1

3
,
x2

4

)
, ∀(x1, x2) ∈ Hp ×Hp.

Let H̃ : Hp ×Hp → Hp be a bi-mapping defined by

H̃(Ũ(x), Ṽ (x)) = Ũ(x)⊕ Ṽ (x), ∀x = (x1, x2) ∈ Hp ×Hp.

Then for any u = (u1, u2), x, y ∈ Hp ×Hp, x ∝ y, we have

H̃(Ũ(x), u)⊕ H̃(Ũ(y), u) = (Ũ(x)⊕ u)⊕ (Ũ(y)⊕ u)

=
[(x1

2
,
x2

3

)
⊕ (u1, u2)

]
⊕
[(y1

2
,
y2

3

)
⊕ (u1, u2)

]
≤ 1

2
[(x1, x2)⊕ (y1, y2)]

=
1
2
(x⊕ y).
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i.e., H̃(Ũ(x), u)⊕ H̃(Ũ(y), u) ≤ 1
2
(x⊕ y).

Hence, H̃(Ũ , Ṽ ) is 1
2 -ordered compression mapping with respect to Ũ . Similarly, one can show

that H̃(Ũ , Ṽ ) is 1
3 -ordered compression mapping with respect to Ṽ .

Let M̃, M̃n : Hp → 2Hp be multi-valued mappings defined by

M̃(x) = {3x1, 3x2},∀x = (x1, x2) ∈ Hp,

M̃n(x) = {3x1 +
1
n
, 3x2 +

3
2n
},∀x = (x1, x2) ∈ Hp.

Then it is easy to substantiate that M̃ is a comparison mapping. Let px = (3x1, 3x2) ∈ M̃(x)
and py = (3y1, 3y2) ∈ M̃(y), then

(px ⊕ py) + 3(x, y) = ((3x1, 3x2)⊕ (3y1, 3y2))⊕ 3(x⊕ y)
= 3[(x⊕ y)⊕ (x⊕ y)] = 0.

Hence, M̃ is 3-non-ordinary difference mapping. Also

(px ⊕ py) + 3(x, y) = ((3x1, 3x2)⊕ (3y1, 3y2)) = 3[(x⊕ y)],

which implies that 1
3(px ⊕ py) ≥ (x ⊕ y). Thus, M̃ is a 1

3 -XOR-ordered strongly monotone
mapping. Also for any x = (x1, x2) ∈ Hp, λ = 1, we have

[H̃(Ũ , Ṽ ) + λM̃ ](Hp) = Hp.

Hence, M̃ is H̃(·, ·)-compression (α, λ)-ordered NODSM mapping with respect to Ũ and Ṽ .

Now, we show that M̃nG−→M̃ . Let u =
(u1

3
,
u2

4

)
and un =

(u1

3
+

1
n
,
u2

4
+

2
n

)
. Then

vn = M̃n(un) =
(
u1 +

4
n
,

3u2

4
+

15
2n

)
and v = M̃(u) =

(
u1,

3u2

4

)
. Thus we have

lim
n→∞

vn = v and lim
n→∞

un = u, as n→∞.

Hence, M̃nG−→M̃ as n→∞.

R
H̃(·,·)
λ,M̃

(x) = [H̃(Ũ , Ṽ )⊕ λM̃ ]−1(x)

= [(Ũ(x)⊕ Ṽ (x))⊕ M̃(x)]−1(x)

=
(

23
6 x1,

25
6 x2

)−1
=
(

6
23x1,

6
25x2

)
.

(3.5)

Thus, we have

‖RH̃(·,·)
λ,M̃

(x)⊕RH̃(·,·)
λ,M̃

(y)‖ =
∥∥∥( 6

23
x1,

6
25
x2

)
⊕
( 6

23
x1,

6
25
x2

)∥∥∥
≤ 6

23
‖x⊕ y‖.

Therefore, the resolvent operator RH̃(·,·)
λ,M̃

is 6
23 -Lipschitz continuous mapping.

Next, we establish the relation between graph convergence and resolvent operator conver-
gence of H̃(·, ·)-compression (α, λ)-ordered NODSM mapping.

Now for λ = 1, the resolvent operator is given by

R
H̃(·,·)
λ,M̃n

(x) = [H̃(Ũ , Ṽ )⊕ λM̃n]−1(x)

= [(Ũ(x)⊕ Ṽ (x))⊕ M̃n(x)]−1(x),

=
(

23
6 x1 +

1
n ,

25
6 x2 +

3
2n

)−1

=
(

6
23x1 − 6

23n ,
6

25x2 − 9
25n

)
.

(3.6)

It follows from (3.5) and (3.6) that

‖RH̃(·,·)
λ,M̃n

(x)−RH̃(·,·)
λ,M̃

(x)‖ → 0, as n→∞.

Thus, we have
R
H̃(·,·)
λ,M̃n

(x)→ R
H̃(·,·)
λ,M̃

(x)⇔ M̃nG−→M̃.
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4 Conceptualization of the ordered inclusion problem and existence result

In what follows, we conceptualize the ordered inclusion problem associated to H̃(·, ·)-compression
(α, λ)-XOR-NODSM mapping. We establish an ordered fixed point problem for considered or-
dered inclusion problem and examine the existence of unique solution using XOR and XNOR
operations.

Let Hp be a real ordered positive Hilbert space. Let Ũ , Ṽ , g̃ : Hp → Hp and H̃, T̃ : Hp ×
Hp → Hp be the single-valued mappings; let P̃ , Q̃, R̃ : Hp → CB(Hp) be the multi-valued
mappings. Let M̃ : Hp×Hp → 2Hp be an H̃(·, ·)-compression (α, λ)-ordered NODSM mapping
with respect to Ũ and Ṽ . We propose the following ordered inclusion problem:

Find x̃ ∈ Hp, ũ ∈ P̃ (x̃), ṽ ∈ Q̃(x̃) and w̃ ∈ R̃(x̃) such that

0 ∈ T̃ (ũ, ṽ)⊕ M̃(g̃(x̃), w̃). (4.1)

Note that the ordered inclusion problem (4.1) is more prevalent. For diverse selection of
the mappings involved in the formulation, our problem include many problems existing in the
literature as specialization; see, [6, 29, 32, 33].

Now, we establish the correspondence between ordered fixed point problem and ordered
inclusion problem.

Lemma 4.1. The ordered inclusion problem (4.1) has a solution (x̃, ũ, ṽ, w̃), if and only if
(x̃, ũ, ṽ, w̃), x̃ ∈ Hp, ũ ∈ P̃ (x̃), ṽ ∈ Q̃(x̃) and w̃ ∈ R̃(x̃) solves the following ordered fixed
point problem

x̃ = R
H̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)].

where λ > 0 is a constant.

Proof. By following the definition of resolvent operator, we have

x̃ = R
H̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]

⇔H̃(Ũ(x̃), Ṽ (x̃))⊕ λM̃(g̃(x̃), w̃) = [H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]

⇔0 ∈ T̃ (ũ, ṽ)⊕ M̃(g̃(x̃), w̃).

Theorem 4.2. Let Ũ , Ṽ , g̃ : Hp → Hp and H̃, T̃ : Hp × Hp → Hp be the single-valued map-
pings such that H̃ is mixed strongly comparison mapping with respect to Ũ and Ṽ , β1 and
β2-ordered compression mapping with respect to Ũ and Ṽ , respectively and T̃ is γ

′

T̃
and γ

′′

T̃
-

ordered compression mapping in the first and second argument, respectively. Let P̃ , Q̃, R̃ :
Hp → CB(Hp) be ordered D-Lipschitz continuous mapping with constants ζP̃ , ζQ̃, ζR̃, respec-
tively. Let M̃ : Hp × Hp → 2Hp be an H̃(·, ·)-compression (α, λ) ordered NODSM mapping.
Let RH̃(·,·)

λ,M̃(g(·),w̃1)
(x̃1) ∝ RH̃(·,·)

λ,M̃(g(·),w̃2)
(x̃2), x̃1 ∝ x̃2 and the following condition is satisfied:

λC[Ω(β1 + β2) + |λ|(γ
′

T̃
ζP̃ + γ

′′

T̃
ζQ̃) + ϑζR̃] < 1, (4.2)

where Ω =
1

λα− (β1 + β2)
, λα > (β1 + β2). In addition the following condition holds:

‖RH̃(·,·)
λ,M̃(g(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)] ⊕RH̃(·,·)
λ,M̃(g̃(·),w̃2)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]‖
≤ ϑ‖w̃1 ⊕ w̃2‖.

(4.3)
Then ordered inclusion problem (4.1) has a unique solution.

Proof. Define a single-valued mapping G̃ : Hp → Hp by

G̃(x̃) = R
H̃(·,·)
λ,M̃(g(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)].
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It follows from Lemma 2.5 that

0 ≤ G̃(x̃1)⊕ G̃(x̃2)

= R
H̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃1), Ṽ (x̃1))⊕ λT̃ (ũ1, ṽ1)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃2)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]

≤ RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃1), Ṽ (x̃1))⊕ λT̃ (ũ1, ṽ1)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃2)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)].

(4.4)

Employing Lemma 2.3, we have

‖G̃(x̃1)⊕ G̃(x̃2)‖ ≤ ‖RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃1), Ṽ (x̃1))⊕ λT̃ (ũ1, ṽ1)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃2)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]‖

≤ λC‖RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃1), Ṽ (x̃1))⊕ λT̃ (ũ1, ṽ1)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]‖

+ λC‖RH̃(·,·)
λ,M̃(g̃(·),w̃1)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃2)

[H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]‖.

(4.5)

Employing Lemma 2.17 and assumption (4.3), we get

‖G̃(x̃1)⊕ G̃(x̃2)‖ ≤ λCΩ‖[H̃(Ũ(x̃1), Ṽ (x̃1))⊕ λT̃ (ũ1, ṽ1)]

⊕ [H̃(Ũ(x̃2), Ṽ (x̃2))⊕ λT̃ (ũ2, ṽ2)]‖+ λCϑ‖w̃1 ⊕ w̃2‖
≤ λCΩ‖[H̃(Ũ(x̃1), Ṽ (x̃1))⊕ H̃(Ũ(x̃2), Ṽ (x̃2))]

− (λT̃ (ũ1, ṽ1)⊕ λT̃ (ũ2, ṽ2))‖+ λCϑ‖w̃1 ⊕ w̃2‖
≤ λCΩ‖H̃(Ũ(x̃1), Ṽ (x̃1))⊕ H̃(Ũ(x̃2), Ṽ (x̃2))‖
+ |λ|‖T̃ (ũ1, ṽ1)⊕ T̃ (ũ2, ṽ2)‖+ λCϑ‖w̃1 ⊕ w̃2‖.

(4.6)

Since H̃ is β1 and β2-ordered compression mapping with respect to Ũ and Ṽ , respectively, then

‖H̃(Ũ(x̃1), Ṽ (x̃1)) ⊕H̃(Ũ(x̃2), Ṽ (x̃2))‖
≤ ‖H̃(Ũ(x̃1), Ṽ (x̃1))⊕ H̃(Ũ(x̃2), Ṽ (x̃1))

− [H̃(Ũ(x̃2), Ṽ (x̃1))⊕ H̃(Ũ(x̃2), Ṽ (x̃2))]‖
≤ ‖H̃(Ũ(x̃1), Ṽ (x̃1))⊕ H̃(Ũ(x̃2), Ṽ (x̃1))‖
+ ‖H̃(Ũ(x̃2), Ṽ (x̃1))⊕ H̃(Ũ(x̃2), Ṽ (x̃2))‖

≤ (β1 + β2)‖x̃1 ⊕ x̃2‖.

(4.7)

Since T̃ is γ
′

T̃
and γ

′′

T̃
-ordered compression mapping in the first and second argument, respec-

tively, P̃ is ordered D-Lipschitz continuous mapping with constant ζP̃ and Q̃ is ordered D-
Lipschitz continuous mapping with constant ζQ̃, therefore

‖T̃ (ũ1, ṽ1)⊕ T̃ (ũ2, ṽ2)‖ ≤ ‖T̃ (ũ1, ṽ1)⊕ T̃ (ũ2, ṽ1)⊕ T̃ (ũ2, ṽ1)⊕ T̃ (ũ2, ṽ2)‖
≤ ‖(T̃ (ũ1, ṽ1)⊕ T̃ (ũ2, ṽ1))− (T̃ (ũ2, ṽ1)⊕ T̃ (ũ2, ṽ2))‖
≤ ‖T̃ (ũ1, ṽ1)⊕ T̃ (ũ2, ṽ1)‖+ ‖T̃ (ũ2, ṽ1)⊕ T̃ (ũ2, ṽ2)‖
≤ γ′

T̃
‖ũ1 ⊕ ũ2‖+ γ

′′

T̃
‖ṽ1 ⊕ ṽ2‖

≤ γ′

T̃
D(P̃ (x̃1), P̃ (x̃2)) + γ

′′

T̃
D(Q̃(x̃1), Q̃(x̃2))

≤ γ′

T̃
ζP̃ ‖x̃1 ⊕ x̃2‖+ γ

′′

T̃
ζQ̃‖x̃1 ⊕ x̃2‖

= (γ
′

T̃
ζP̃ + γ

′′

T̃
ζQ̃)‖x̃1 ⊕ x̃2‖.

(4.8)
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Utilizing the assumption that R̃ is ordered D-Lipschitz continuous with constant ζR̃, we get

‖w̃1 ⊕ w̃2‖ ≤ D(R̃(x̃1), R̃(x̃2)) ≤ ζR̃‖x̃1 ⊕ x̃2‖. (4.9)

Making use of (4.7)-(4.9), (4.6) becomes

‖G̃(x̃1)⊕ G̃(x̃2)‖ ≤ [λCΩ(β1 + β2) + |λ|λC(γ
′

T̃
ζP̃ + γ

′′

T̃
ζQ̃) + λCϑζR]‖x̃1 ⊕ x̃2‖

= Θ‖x̃1 ⊕ x̃2‖,
(4.10)

where Θ = λC[Ω(β1+β2)+ |λ|(γ
′

T̃
ζP̃ +γ

′′

T̃
ζQ̃)+ϑζR̃] and Ω =

1
λα− (β1 + β2)

. It follows from

the assumption (4.2) that 0 < Θ < 1. Hence, (4.10) and Banach contraction principle guarantees
that G̃ is a contraction mapping. Then there exists a unique x̃ ∈ Hp such that

G̃(x̃) = R
H̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)].

Thus, by Lemma 4.1, we can deduce that (x̃, ũ, ṽ, w̃), x̃ ∈ Hp, ũ ∈ P̃ (x̃), ṽ ∈ Q̃(x̃) and w̃ ∈ R̃(x̃)
is a unique solution of the ordered inclusion problem (4.1).

5 Iterative algorithm and convergence analysis

This section begins with the construction of iterative algorithm. Finally, the convergence analysis
of the sequences generated by the proposed iterative algorithm to the unique solution of ordered
inclusion problem (4.1) is discussed.

Algorithm 5.1. Let Ũ , Ṽ , g̃ : Hp → Hp and H̃, T̃ : Hp × Hp → Hp be the single-valued
mappings; let P̃ , Q̃, R̃ : Hp → CB(Hp) be the multi-valued mappings. Let M̃ : Hp×Hp → 2Hp

be a set-valued H̃(·, ·)-compression (α, λ)-ordered NODSM mapping with respect to Ũ and Ṽ .
For any x̃0 ∈ Hp, ũ0 ∈ P̃ (x̃0), ṽ ∈ Q̃(x̃0) and w̃ ∈ R̃(x̃0), compute the sequences {x̃n},

{ũn}, {ṽn} and {w̃n} by the following iteration process:

x̃n+1 = (1− a)x̃n + a[R
H̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]],
ũn+1 ∈ P̃ (x̃n+1) : ‖ũn+1 ⊕ ũn‖ ≤ D(P̃ (x̃n+1), P̃ (x̃n)),

ṽn+1 ∈ Q̃(x̃n+1) : ‖ṽn+1 ⊕ ṽn‖ ≤ D(Q̃(x̃n+1), Q̃(x̃n)),

w̃n+1 ∈ R̃(x̃n+1) : ‖w̃n+1 ⊕ w̃n‖ ≤ D(R̃(x̃n+1), R̃(x̃n)),

where a ∈ [0, 1], λ > 0 and n = 0, 1, 2, · · · .

Theorem 5.2. Suppose that the mappings Ũ , Ṽ , g̃, H̃, T̃ , P̃ , Q̃, R̃ and M̃ are same as in Theorem
4.1. Let M̃n : Hp×Hp → 2Hp be an H̃(·, ·)-compression (α, λ)-ordered NODSM mapping with
respect to Ũ and Ṽ such that M̃nG−→M̃ and xn ∝ x. If the following condition holds:

0 < λC[(1− a) + aΩ(β1 + β2) + aΩ|λ|(γ
′

T̃
ζP̃ + γ

′′

T̃
ζQ̃)] < 1. (5.1)

Then the iterative sequences {x̃n}, {ũn}, {ṽn} and {w̃n} generated by Algorithm 5.1 converge
strongly to the unique solution (x̃, ũ, ṽ, w̃), x̃ ∈ Hp, ũ ∈ P̃ (x̃), ṽ ∈ Q̃(x̃) and w̃ ∈ R̃(x̃) of
ordered inclusion problem (4.1).

Proof. It follows from Algorithm 5.1 and Lemma 2.5 that

0 ≤ x̃n+1 ⊕ x̃
=
[
(1− a)x̃n + a

(
R
H̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]
)]

⊕
[
(1− a)x̃+ a

(
R
H̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]
)]

≤ (1− a)(x̃n ⊕ x̃) + a
[
R
H̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]
]
.

(5.2)
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Utilizing Lemma 2.3, we have

‖x̃n+1 ⊕ x̃‖ ≤ λC[‖(1− a)(x̃n ⊕ x̃) + a[R
H̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]]‖]

≤ λC(1− a)‖x̃n ⊕ x̃‖+ λCa‖RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), B(x̃n))⊕ λT̃ (ũn, ṽn)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]‖

≤ λC(1− a)‖x̃n ⊕ x̃‖+ λCa‖RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]

⊕RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]

⊕RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]‖

≤ λC(1− a)‖x̃n ⊕ x̃‖+ λCa‖RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]

⊕RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]‖

+ λCa‖RH̃(·,·)
λ,M̃n(g̃(·),w̃n)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]‖.
(5.3)

It follows from Lemma 2.17 that

‖x̃n+1 ⊕ x̃‖ ≤ λC(1− a)‖x̃n ⊕ x̃‖+ λCaΩ‖[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]
⊕ [H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ))]‖+ λCaκn

≤ λC(1− a)‖x̃n ⊕ x̃‖+ λCaΩ‖[H̃(Ũ(x̃n), Ṽ (x̃n))⊕ λT̃ (ũn, ṽn)]
− [H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ))]‖+ λCaκn

≤ λC(1− a)‖x̃n ⊕ x̃‖+ λCaΩ‖H̃(Ũ(x̃n), Ṽ (x̃n))⊕ H̃(Ũ(x̃), Ṽ (x̃))‖
+ |λ|λCaΩ‖T̃ (ũn, ṽn)⊕ T̃ (ũ, ṽ)‖+ λCaκn,

(5.4)

where
κn = ‖RH̃(·,·)

λ,M̃n(g̃(·),w̃n)
[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]

⊕RH̃(·,·)
λ,M̃(g̃(·),w̃)

[H̃(Ũ(x̃), Ṽ (x̃))⊕ λT̃ (ũ, ṽ)]‖.
(5.5)

By using similar arguments as from (4.6)-(4.8) and Lemma 2.3, (5.4) yields

‖x̃n+1 ⊕ x̃‖ ≤ [λC(1− a) + λCaΩ(β1 + β2) + |λ|λCaΩ(γ
′

T̃
ζP̃ + γ

′′

T̃
ζQ̃)]‖x̃n ⊕ x̃‖+ λCaκn

≤ [λC(1− a) + λCaΩ(β1 + β2) + λ|λCaΩ|(γ′

T̃
ζP̃ + γ

′′

T̃
ζQ̃)]‖x̃n − x̃‖+ λCaκn.

(5.6)
It follows from (5.5) and Theorem 3.2 that

κn → 0 as n→∞. (5.7)

Thus, we have
‖x̃n+1 ⊕ x̃‖ ≤ Θ2‖x̃n − x̃‖, (5.8)

where Θ2 = λC[(1− a) + aΩ(β1 + β2) + aΩ|λ|(γ′

T̃
ζP̃ + γ

′′

T̃
ζQ̃)]. It follows from the condition

(5.1) that 0 < Θ2 < 1. Therefore {x̃n} is a Cauchy sequence inHp andHp is complete therefore
there exists a point x̃ ∈ Hp such that x̃n → x̃ as n→∞. It follows from the Algorithm 5.1 that

‖ũn+1 ⊕ ũ‖ ≤ D(P̃ (x̃n+1), P̃ (x̃)) ≤ ζP̃ ‖x̃n+1 − x̃‖. (5.9)

‖ṽn+1 ⊕ ṽ‖ ≤ D(Q̃(x̃n+1), Q̃(x̃)) ≤ ζQ̃‖x̃n+1 − x̃‖. (5.10)

and
‖w̃n+1 ⊕ w̃‖ ≤ D(R̃(x̃n+1), R̃(x̃)) ≤ ζR̃‖x̃n+1 − x̃‖. (5.11)

From (5.9), (5.10) and (5.11), one can see that {ũn}, {ṽn} and {w̃n} are also Cauchy sequences in
Hp. Therefore there exist ũ, ṽ, w̃ ∈ Hp such that ũn → ũ, ṽn → ṽ and w̃n → w̃ as n→∞. Thus
{(x̃n, ũn, ṽn, w̃n)} converges strongly to the unique solution (x̃, ũ, ṽ, w̃) of ordered inclusion
problem (4.1). This completes the proof.
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