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Abstract Consider a graph G(V, E) with vertex partition V = S1 ∪ S2 ∪ . . . ,∪St ∪ T where
each Si is a set with minimum two vertices having the same degree and T = V \∪Si. The degree
splitting graph DS(G) is obtained from G by adding vertices w1, w2, . . . , wt and joining wi to
each vertex of Si(1 ≤ i ≤ t). In this research article we characterize roman domination number
of degree splitting graph γR(DS(G)) and we obtain roman domination number and k-rainbow
domination number of degree splitting graphs. Also we establish many bounds on γR(DS(G))
and γrk(DS(G)) in terms of elements of G.

1 Introduction

In this paper we consider finite, simple and undirected graph G = (V, E) with vertex set
V = V (G) and edge set E = E(G). The number of edges incident on the vertex v is called
degree of a vertex d(v). The minimum and maximum degree of G is denoted by δ = δ(G)
and ∆ = ∆(G) respectively. If the degree of each vertex is r then the graph is called r-regular
graph i.e. if ∀v ∈ V (G), d(v) = r. For any vertex v ∈ V, the open neighborhood N(v) = {u ∈
V (G) \ uv ∈ E(G)} and the closed neighborhood N [v] = N(v) ∪ v. A connected acyclic graph
is called tree. We denote Kn for complete graph with n vertices, Cn for a cycle of length n, Pn

for a path of length n. For notation and graph theory terminology we refer [1].
The concept of Roman domination number was introduced by Cockaynea and et.al, and has

been well studied by many authors [3, 5, 6]. A Roman dominating function (RDF) on graph
G = (V,E) is a function f : V (G) → {0, 1, 2} such that whenever f(v) = 0 there exist a
neighboring vertex u of v such that f(u) = 2. The weight of f is w(f) =

∑
v∈V (G) f(v).

The minimum weight of RDF of G is called the roman domination number γR(G). A roman
dominating function f can be represented by the ordered partition (V0, V1, V2) of V, where Vi =
{v ∈ V |f(v) = i}. Clearly the weight w(f) = |V1|+ 2|V2|.

Proposition 1.1. ([5]) For any graph G, γ(G) ≤ γR(G) ≤ 2γ(G).

Theorem 1.2. ([4]) If G is a connected graph with n vertices, then γR(G) ≤ 4n/5.

In this paper we consider another variation of domination that is k-rainbow domination num-
ber. In the year 2003, M. A. Henning introduced and studied [8, 9] the application of k-rainbow
domination number. Assume that there are k different type of guards and for each vertex we
assign an arbitrary subset of these guards. If any vertex is not assigned by any type of guards(an
empty set) then it should have all type of guards in its neighboring locations and this assignment
is known as k-rainbow dominating function (kRDF). On the other hand, a k-rainbow dominat-
ing function of a graph G is a function f : V (G) → P ({1, . . . , k}) such that for every vertex
v ∈ V (G) with f(v) = ∅ then we have ⋃

u∈N(v)

f(u) = S.

The weight w(f) is the sum of carnality of f(v). Mathematically w(f) =
∑

v∈V (G) | f(v) |.
The minimum weight of a kRDF is called the k-rainbow domination number of G and is denoted
by γrk(G).
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Figure 1. Example for 2-rainbow dominating function. Here γ2r(G) = 4.

In 2004, R. Ponraj and S Somasundaram defined degree splitting graph [2]. Let G(V, E) be
a graph with vertex partition V = S1 ∪ S2 ∪ . . . ,∪St ∪ T where each Si(1 ≤ i ≤ t) is a set of
minimum two vertices having the same degree and T = V \ ∪Si. The degree splitting graph of
G is denoted by DS(G) is obtained from G by adding vertices w1, w2, . . . , wt and joining wi to
each vertex of Si(1 ≤ i ≤ t) .

Figure 2. Example of Degree Splitting Graph.

Later B. Basavangouda, P. V. Patil and S. M. Hosamani [7] worked on Domination in Degree
Spliting graph. They studied variation in domination from the graph G to the degree splitting
graph DS(G). They established γ(DS(G)) ≤ dp

2
e, γ(DS(G)) ≤ |Wi

⋃
T |. Also they worked

on Domatic number of DS(G) found some bounds.
In this article, initially we determine numerical value of roman domination and k-rainbow

domination number for some graphs. We also obtain some bounds for γR(DS(G)) and γrk(DS(G)).

2 Roman Domination Number of Degree Splitting Graph

Theorem 2.1. If G = Pn be a path on n vertices, then

γR(DS(Pn)) = 4

Proof. Let G = Pn be a path with V (G) = {vi : 1 ≤ i ≤ n}. Let S1 and S2 are the two partition
of V (G) such that S1 = {v1, vn} and S2 = {vi : 2 ≤ i ≤ n − 1}. Clearly DS(G) is obtained
by adding two vertices w1 and w2 to V (G) and connecting two vertices v1 and vn to w1 and all
vertices of {v2, v3, . . . , vn−1} to w2. Then | V (DS(G)) |= n + 2 and | E(DS(G)) |= 2n + 1.
Let us define a roman dominating function g : V (DS(Pn)) → {0, 1, 2} with minimum weight
such that f(vi) = 0, f(w1) = f(w2) = 2, Hence γR(DS(Pn)) = 4.
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Theorem 2.2. If G be any r regular graph then γR(DS(G)) = 2.

Proof. Given G be any r-regular graph with vertex set {v1, v2, . . . , vn}. Then DS(G) = G+K1
and 4(DS(G)) = p − 1. Let us define roman dominating function f : V (DS(G)) → {0, 1, 2}
with minimum weight such that f(vi) = 0,∀v ∈ V (G) and f(w1) = 2. Hence γrk(DS(G)) =
2.

Theorem 2.3. For any graph G, γR(DS(G)) ≤ 2 | wi

⋃
T | .

Proof. Let G be any graph with p vertices. By the definition of degree splitting of graph DS(G),
V (DS(G)) = {S1, S2, . . . , St, T} where each Si, 1 ≤ i ≤ t and T is as defined in the definition.
Case 1: T = ∅ Since each wi, 1 ≤ i ≤ t is independent in DS(G) and clearly the set containing
each wi will be the maximal independent set in DS(G). Hence γR(DS(G)) ≤ 2 | wi |
Case 2: T 6= ∅. Clearly there exist at least one vertex vi in G of degree r and no other vertex of
same degree i.e. vi /∈ Si; 1 ≤ i ≤ t. Since G is induced subgraph of DS(G), to define roman
dominating function f(vi 6= 0). Hence

γR(DS(G)) ≤ 2 | wi

⋃
T | .

Theorem 2.4. For any graph G with p vertices, γR(DS(G)) ≤ 2dp2 e.
Proof. To prove the results we have the following cases.
Case 1: If T = ∅, then G has atmost Si ≤

p

2
. Hence wi ≤

p

2
. Therefore by previous Theorem ,

we get,

γR(DS(G)) ≤ 2. | wi | ≤ 2p
2 ≤ 2dp

2
e.

Case 2: If T 6= ∅. Then G has atmost Si ≤
p

2
− T . Hence wi ≤

p

2
− T . We have,

γR(DS(G)) ≤ 2. | wi + T | ≤ 2 | p
2
− T + T | 2 ≤ p

2 2 ≤ dp
2
e.

Theorem 2.5. Let G be any graph then γR(G).γR(DS(G)) ≤ 2 | wi | .
Proof. Let G be any graph with p vertices. By the definition of degree splitting of graph DS(G),
V (DS(G)) = {S1, S2, . . . , St, T} where each Si, 1 ≤ i ≤ t and T is as defined in the definition.

Since each wi, 1 ≤ i ≤ t is independent in DS(G) and clearly the set containg each wi will
be the maximal independent set in DS(G). Hence γR(DS(G)) ≤ 2 | wi |

γR(G).γR(DS(G)) ≤ γR(G).2 | wi | .

Theorem 2.6. For any graph G, γR(G).γR(DS(G)) ≤
8.p.(p+ 1)

5
Proof. E. J. Cockayne et al. [5] showed that γ(G) ≤ γR(G) ≤ 2γ(G), for any connected graph
G with p vertices. Clearly by [2] we obtain,

γR(G).γR(DS(G)) ≤ 2.γ(G).2.γ(DS(G))

≤ 4.γ(G).γ(DS(G))

≤ 4.γ(G).dp
2
e

≤ 4.
4p
5
.dp

2
e

≤ 16.
p

5
.
p+ 1

2

≤ 8.p.(p+ 1)
5
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Theorem 2.7. Let G be any graph then γR(G) ≤ γR(DS(G)).

Theorem 2.8. Let G be graph of order n, γR(G) = γR(DS(G)) iff G = Kn

3 k-rainbow Domination Number of Degree Splitting Graph

Lemma 3.1. If Kn be a complete graph with n vertices then γrk(DS(Kn)) = min{k, n+ 1}.

Proof: Since complete graph Kn is (n − 1)-regular graph hence DS(Kn) is obtained by
adding one vertex w1 and connecting each vertex of Kn to w1. Therefore DS(Kn) = Kn+1.
γrk(Kn) = min{k, n}, so γrk(DS(Kn)) = min{k, n+ 1}.

Lemma 3.2. If Cn be a cycle of length n then γrk(Cn) = min{k, n+ 1}.

Proof: Clearly DS(Cn) =Wn+1. Therefore γrk(Cn) = min{k, n+ 1}.

Lemma 3.3. If Km, n be a complete bipartite graph (m 6= n) and γrk(Km, n) = γrk then
γrk(DS(Km,n)) ≤ γrk + 2.

Proof: The complete bipartite graph Km, n is (n, m)− regular graph. The degree splitting
graphDS(Km, n) contains V (DS(Km, n)) = V (Km, n)∪w1∪w2 and each vertex vi, 1 ≤ i ≤ m,
joins w1 and each vertex ui, 1 ≤ i ≤ n, joins w2. Hence DS(Km, n) = Km+1, n+1 − w1w2.
Let f be a k-rainbow dominating function with minimum weight γrk of Km, n. Let us define
the k-rainbow dominating function g : V (Ds(Km, n)) → P ({1, . . . , k}) such that g(vi) =
f(vi),∀vi ∈ V (Km, n) and |g(w1)| ≤ |g(w2)| ≤ 1. Hence γrk(DS(Km, n)) ≤ γrk + 2.

Theorem 3.4. If G = Pn be a path on n vertices, then

γrk(DS(Pn)) =


γrk + 2 if n = k

γrk + 1 if n < k

k + 3 if n > k.

Proof. Let G = Pn be a path with V (G) = {vi : 1 ≤ i ≤ n}. Let S1 and S2 are subset of V (G)
such that S1 = {v1, vn} and S2 = {vi : 2 ≤ i ≤ n − 1}. Clearly DS(G) is obtained by adding
two vertices w1 and w2 to V (G) and connecting two vertices v1 and vn to w1 and all vertices
of {v2, v3, . . . , vn−1} to w2. Then | V (DS(G)) |= n + 2 and | E(DS(G)) |= 2n + 1. Now
f : V (Pn) → P ({1, . . . , k}) be a k-rainbow dominating function with minimum weight γrk.
Let us define a k-rainbow dominating function g : V (DS(Pn))→ P ({1, . . . , k}) with minimum
weight the following cases arises,
Case 1: n = k.
Since |f(vi)| = 1, g(vi) = f(vi)∀vi ∈ V (Pn) and |g(w1|)| = |g(w2)| = 1. Hence

γrk(DS(Pn)) = γrk + 2. (3.1)

Case 2: n > k
Clearly d(w2) = n − 2. Hence |g(w1)| = |g(v1)| = |g(vn)| = 1 and g(w2) = {1, . . . , k}
g(vi) = ∅ ∀ 2 ≤ vi ≤ n. Hence

γrk(DS(Pn)) = k + 3. (3.2)

case 3: n < k
Here g(vi) = f(vi)∀vi ∈ V (Pn) |g(w1|)| = 1 and g(w2) = ∅ Hence

γrk(DS(Pn)) = γrk + 1. (3.3)

From equations (2), (3) and (4),

γrk(DS(Pn)) =


γrk + 2 if n = k

γrk + 1 if n < k

k + 3 if n > k.
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Theorem 3.5. If G be any r regular graph then γrk(DS(G)) = k.

Proof. Given G be any r-regular graph with ertex set {v1, v2, . . . , vn}. Then DS(G) = G+K1
and 4(DS(G)) = p − 1. Let us define k-rainbow dominating function f : V (DS(G)) →
P (1, 2, . . . , k) with minimum weight such that f(vi) = ∅,∀v ∈ V (G) and f(w1) = {1, 2, . . . , k}.
Hence γrk(DS(G)) = k.

Theorem 3.6. For any graph G, γrk(DS(G)) ≤ k | wi

⋃
T | .

Proof. Let G be any graph with p vertices. By the definition of degree splitting of graph DS(G),
V (DS(G)) = {S1, S2, . . . , St, T} where each Si, 1 ≤ i ≤ t and T is as defined in the defination.
Case 1: T = ∅ Since each wi, 1 ≤ i ≤ t is independent in DS(G) and clearly the set containg
each wi will be the maximal independent set in DS(G). Hence γrk(DS(G)) ≤ k | wi |
Case 2: T 6= ∅. Clearly there exist at least one vertex vi in G of degree r and no other vertex of
same degree i.e. vi /∈ Si; 1 ≤ i ≤ t. Since G is induced subgraph of DS(G), to define k-rainbow
dominating function f(vi 6= ∅). Hence

γrk(DS(G)) ≤ k | wi

⋃
T | . (3.4)

Theorem 3.7. For any graph G with p vertices, γrk(DS(G)) ≤ kdp2 e.

Proof. To prove the results we have the following cases.
Case 1: If T = ∅, then G has atmost Si ≤

p

2
. Hence wi ≤

p

2
. Therefore by Theorem 3.7, we get,

γrk(DS(G)) ≤ k. | wi | ≤ k p
2 ≤ kd

p

2
e.

Case 2: If T 6= ∅. Then G has atmost Si ≤
p

2
− T . Hence wi ≤

p

2
− T . We have,

γrk(DS(G)) ≤ k. | wi + T | ≤ k | p
2
− T + T | k ≤ p

2 k ≤ d
p

2
e.

Theorem 3.8. Let G be any graph then γrk(G).γrk(DS(G)) ≤ k | wi | .

Proof. Let G be any graph with p vertices. By the definition of degree splitting of graph DS(G),
V (DS(G)) = {S1, S2, . . . , St, T} where each Si, 1 ≤ i ≤ t and T is as defined in the defination.

Since each wi, 1 ≤ i ≤ t is independent in DS(G) and clearly the set containg each wi will
be the maximal independent set in DS(G). Hence γrk(DS(G)) ≤ k | wi |

γrk(G).γrk(DS(G)) ≤ γrk(G).k | wi | . (3.5)

4 Concluding Remarks

In this article we have mainly focused on finding the roman and k rainbow domination num-
ber for degree splitting graph. We obtained some bounds for γR(DS(G)) and γR(DS(G)).
The derived results in this paper can be extended to study the roman domination number for
DS(P (n, 2)), (DS(P (n, 3)), DS(Cn2Cm)), DS(Cn2Pm) and DS(Pn2Pm).
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