A new approach to fixed point result in non-Archimedean 2-Banach space and some of its applications

R. El Ghali and S. Kabbaj
Communicated by T. Abdeljawad
MSC 2010 Classifications: Primary 20M99, 13F10; Secondary 13A15, 13M05.
Keywords and phrases: Stability, hyperstability, functional equation, non-Archimedean 2-Banach space, Cauchy-Jensen functional equation.

Acknowledgements

The author would like to thanks the anonymous referee for his careful reading and valuable suggestions to improve the quality of this paper.

Abstract

In this paper we extend the fixed point result of Brzdȩk et al. [7] in non-Archimedean 2-Banach spaces. Moreover, we investigate the hyperstability of Cauchy-Jensen functional equation in the considered space by using the above result and we give some outcomes.

1 Introduction and preliminaries

A certain formula or equation is applicable to model a physical process of a small change of the formula or equation gives rise to a small change in the corresponding result. When this happens, we say that formula or equation is called stable. One of the unsolved problems was given by S. M. Ulam [21] tends to be the starting point for researching the stability problems of functional equations. Ulam asked the following question concerning the stability of group homomorphisms:
Given a group G, a metric group H with metric $d(.,$.$) and a positive number \varepsilon$, does there exists $a \delta>0$ such that if $f: G \rightarrow H$ satisfies : $d(f(x y), f(x) f(y))<\delta$ for all $x, y \in G$, then a homomorphism $\Phi: G \rightarrow H$ exists with $d(f(x), \Phi(x))<\varepsilon$ for $x \in G$?
D. H. Hyers [15] gave the first partial answer to Ulam's problem for the Cauchy equation

$$
\begin{equation*}
f(x+y)=f(x)+f(y) \tag{1.1}
\end{equation*}
$$

in Banach spaces with $\delta=\varepsilon$ and

$$
\Phi(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}
$$

The most classical result concerning the Hyers-Ulam stability for the Cauchy equation (1.1) has been given by Th. M. Rassias [19].
Theorem 1.1. [19] Let E_{1} and E_{1} be two normed spaces, $c \geq 0$ and $p \neq 1$ be fixed real numbers. Let $f: E_{1} \rightarrow E_{2}$ be a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq c\left(\|x\|^{p}+\|y\|^{p}\right), \quad x, y \in E_{1} \backslash\{0\}
$$

Then the following statements are valid
(1) If $p \geq 0$ and E_{2} is complete, then there exists a unique additive function $T: E_{1} \rightarrow E_{2}$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{c\|x\|^{p}}{\left|2^{p-1}-1\right|}, \quad x \in E_{1} \backslash\{0\} \tag{1.2}
\end{equation*}
$$

(2) $p<0$, then f is additive.

This results is called the Hyers-Ulam - Rassias stability of Cauchy functional equation.
In 1994, P. Găvruţă [13] gave a generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings.
Theorem 1.2. Let G be an abilean group and $(X,\|\|$.$) a Banach space. Let \varphi: G \times G \rightarrow \mathbb{R}^{+} a$ mapping satisfying, for all $x, y \in G$, the condition:

$$
\tilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} x, 2^{k} y\right)<+\infty
$$

Let $f: G \rightarrow X$ be a mapping which fulfils, for each $x, y \in G$, the condition

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

Then there exists a unique mapping $\mathcal{T}: G \rightarrow G$ such that

$$
\mathcal{T}(x+y)=\mathcal{T}(x)+\mathcal{T}(y)
$$

for all $x, y \in G$ and:

$$
\|f(x)-\mathcal{T}(x)\| \leq \frac{1}{2} \tilde{\varphi}(x, y)
$$

for all $x \in G$.
Since then, the problem of stability of several functional equations have been extensively studied by many mathematicians (see, for instance, $[2,6,7,8,13,15,19]$).

A functional equation is called hyperstable when any function f satisfying the equation approximately, in some sense, must be actually a solution to it. The term hyperstability was used for the first time probably in 2001 by Gy. Maksa and Zs. Páles [18], however, it seems that the first hyperstability result was published in [5] and concerned the ring homomorphisms. The hyperstability results for the Cauchy equation were investigated by J. Brzdȩk in [9, 10]. E. Gselmann [14] studied the hyperstability of the parametric fundamental equation of information.

Note that the second statement of the Theorem 1.1, for $p<0$ can be described as φ - hyperstability of the additive equation with $\varphi(x, y)=c\left(\|x\|^{p}+\|y\|^{p}\right)$.

Throughout this paper, \mathbb{N} stands for the set of all positive integers, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}, \mathbb{N}_{m_{0}}$ the set of all integers greater than or equals $m_{0}\left(m_{0} \in \mathbb{N}\right), \mathbb{R}_{+}=[0, \infty)$ and we use the notation X_{0} for the set $X \backslash\{0\}$.
Let us recall (see, for instance, [17]) some basic definitions and facts concerning non-Archimedean 2-normed spaces.
Definition 1.3. By a non-Archimedean field, we mean a field \mathbb{K} equipped with a function (valuation) $|\cdot|: \mathbb{K} \rightarrow[0, \infty)$ such that for all $r, s \in \mathbb{K}$, the following conditions hold:
(1) $|r|=0$ if and only if $r=0$,
(2) $|r s|=|r||s|$,
(3) $|r+s| \leq \max \{|r|,|s|\}$.

The pair $(\mathbb{K},|\cdot|)$ is called a valued field.
Remark 1.4. In any non-Archimedean field, we have $|1|=|-1|=1$ and $|n| \leq 1$ for $n \in \mathbb{N}$.
Example 1.5. In any field \mathbb{K} the function $|\cdot|: \mathbb{K} \rightarrow \mathbb{R}_{+}$given by

$$
|x|:= \begin{cases}0, & x=0 \\ 1, & x \neq 0\end{cases}
$$

is a valuation which is called trivial valuation, but the most important example of non-Archimedean fields are p-adic numbers which have gained the interest of physicists for their research in some problems coming from quantum physics, p-adic strings and super strings.
Let p be a fixed prime number and x a rational number, there exists a unique integer $v_{p}(x) \in \mathbb{Z}$ such that $x=p^{v_{p}(x)} \frac{a}{b}$ where a and b are integer co-prime to p. The function defined in \mathbb{Q} by $|x|_{p}=p^{v_{p}(x)}$ is called a p-adic, an ultrametric or simply a non-Archimedean absolute value on \mathbb{Q}. The completion, denoted by \mathbb{Q}_{p} of \mathbb{Q} with respect to the metric defined by the p-adic absolute is called p-adic numbers.

Definition 1.6. Let X be a vector space (with $\operatorname{dim} X>1$) over a scalar field \mathbb{K} with a nonArchimedean non-trivial valuation $|\cdot|$. A function $\|.,\|:. X^{2} \rightarrow \mathbb{R}_{+}$is called a non-Archimedean 2-norm (valuation) if it satisfies the following conditions:
(1) $\|x, y\|=0$ if and only if x and y are linearly independent, $x, y \in X$,
(2) $\|x, y\|=\|y, x\| \quad x, y \in X$,
(3) $\|r x, y\|=|r|\|x, y\| \quad(r \in \mathbb{K}, x, y \in X)$,
(4) $\|x, y+z\| \leq \max \{\|x, y\|,\|x, z\|\} \quad x, y, z \in X$.

Then $(X,\|\cdot, \cdot\|)$ is called a non-Archimedean 2-normed space or an ultrametric 2-normed space.
Example 1.7. Let p be a fixed prime number. For $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$ we define the non-Archimedean 2-norm in $\mathbb{Q}_{p}{ }^{2}$ by $\|x, y\|_{p}=\left|x_{1} y_{2}-x_{2} y_{1}\right|_{p}$.
Definition 1.8. Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean 2-normed space X.
(1) A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ is a Cauchy sequence if there are linearly independent $y, z \in X$ such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, y\right\|=0=\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}, z\right\|
$$

(2) The sequence $\left\{x_{n}\right\}$ is said to be convergent if there exists $x \in X$ (called limit of this sequence and denoted by $\lim _{n \rightarrow \infty} x_{n}$) such that

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-x, y\right\|=0 \quad y \in X
$$

(3) If every Cauchy sequence in X converges, then the non-Archimedean 2-normed space X is called a non-Archimedean 2-Banach space or an ultrametric 2-Banach space.
Lemma 1.9. [20]
(1) Let X be a non-Archimedean 2-Banach space over a non-Archimedean field \mathbb{K} and $x, y, z \in X$ such that y and z are linearly independent and $\|x, y\|=0=\|x, z\|$, then $x=0$.
(2) $\left(x_{n}\right)_{n \in \mathbb{N}}$ is a convergent sequence of element of X then :

$$
\lim _{n \rightarrow \infty}\left\|x_{n}, y\right\|=\left\|\lim _{n \rightarrow \infty} x_{n}, y\right\| \quad y \in X
$$

In section 2, we introduce and prove a new version of fixed point theorem of Brzdȩk [12] in non-Archimedean 2-Banach space. This theorem has been considered as an important tool for investigating the stability and hyperstability, in some way, of a several functional equations by many mathematicians (see for example [1, 4]). In section 3, we use our main results to investigate the hyperstability of the following Cauchy-Jensen functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x) \tag{1.3}
\end{equation*}
$$

in non-Archimedean 2-Banach space. We also give some outcomes as particular cases and we study the hyperstability of the inhomogeneous Cauchy-Jensen equation

$$
f(x+y)+f(x-y)=2 f(x)+G(x, y) .
$$

2 Fixed point theorem

In 2018, J. Brzdȩk and K. Ciepliński [12] presented and proved a new version of fixed point theorem in 2-Banach spaces with some applications in stability theory of functional equations. The following theorem is an analogous version of fixed theorem [12] in non-Archimedean 2Banach spaces.
First, we need to present the following hypotheses.
$(\mathbf{H 1}) X$ is a nonempty set, $(Y,\|.,\|$.$) is a non-Archimedean 2-Banach space over a non-$ Archimedean field, Y_{0} is a subset of Y containing two linearly independent vectors, f_{1}, \ldots, f_{k} : $X \longrightarrow X, g_{1}, \ldots, g_{k}: Y_{0} \longrightarrow Y_{0}$ and $L_{1}, \ldots, L_{k}: X \times Y_{0} \longrightarrow \mathbb{R}_{+}$are given.
(H2) $\mathcal{T}: Y^{X} \longrightarrow Y^{X}$ is an operator satisfying the inequality :
$\|\mathcal{T} \xi(x)-\mathcal{T} \mu(x), y\| \leq \max _{1 \leq i \leq k}\left\{L_{i}(x, y)\left\|\xi\left(f_{i}(x)\right)-\mu\left(f_{i}(x)\right), g_{i}(y)\right\|\right\}, \quad \xi, \mu \in Y^{X}, x \in X, y \in Y_{0}$.
(H3) $\Lambda: \mathbb{R}_{+}^{X \times Y_{0}} \longrightarrow \mathbb{R}_{+}^{X \times Y_{0}}$ is a non-decreasing linear operator defined by

$$
\Lambda \delta(x, y):=\max _{1 \leq i \leq k}\left\{L_{i}(x, y) \delta\left(f_{i}(x), g_{i}(y)\right)\right\}, \quad \delta \in \mathbb{R}_{+}^{X \times Y_{0}}, \quad x \in X, y \in Y_{0}
$$

Theorem 2.1. Let hypotheses $(\mathbf{H 1})-(\mathbf{H} 3)$ are valid and let $\varepsilon: X \times Y_{0} \longrightarrow \mathbb{R}_{+}$and $\varphi: X \longrightarrow Y$ be functions fulfilling the following two conditions

$$
\begin{gather*}
\|\mathcal{T} \varphi(x)-\varphi(x), y\| \leq \varepsilon(x, y), \quad x \in X, y \in Y_{0} \tag{2.1}\\
\lim _{n \rightarrow \infty} \Lambda^{n} \varepsilon(x, y)=0, \quad x \in X, y \in Y_{0} \tag{2.2}
\end{gather*}
$$

Then, for every $x \in X$, the limit

$$
\psi(x)=\lim _{n \rightarrow \infty} \mathcal{T}^{n} \varphi(x)
$$

exists and defines a fixed point ψ of \mathcal{T} with

$$
\begin{equation*}
\|\varphi(x)-\psi(x), y\| \leq \sup _{n \in \mathbb{N}_{0}} \Lambda^{n} \varepsilon(x, y)=\sigma(x, y), \quad x \in X, y \in Y_{0} \tag{2.3}
\end{equation*}
$$

Moreover, if

$$
\begin{equation*}
(\Lambda \sigma)(x, y) \leq \sup _{n \in \mathbb{N}_{0}} \Lambda^{n+1} \varepsilon(x, y), \quad x \in X, x \in Y_{0} \tag{2.4}
\end{equation*}
$$

then ψ is a unique fixed point of \mathcal{T} satisfying (2.3).
Proof. We show by induction that, for any $n \in \mathbb{N}_{0}$

$$
\begin{equation*}
\left\|\mathcal{T}^{n} \varphi(x)-\mathcal{T}^{n+1} \varphi(x), y\right\| \leq \Lambda^{n} \varepsilon(x, y), \quad x \in X, y \in Y_{0} \tag{2.5}
\end{equation*}
$$

Indeed, it's easy to see that if $n=0$, then the inequality (2.5) is exactly (2.1). Now, we fix $n \in \mathbb{N}$ and suppose that (2.5) hold for n, then by using the non-decreasing property of the operator Λ and (H2), for any $x \in X, y \in Y_{0}$, we get

$$
\begin{align*}
\left\|\mathcal{T}^{n+1} \varphi(x)-\mathcal{T}^{n+2} \varphi(x), y\right\| & \leq \max _{1 \leq i \leq k}\left\{L_{i}(x, y)\left\|\mathcal{T}^{n} \varphi\left(f_{i}(x)\right)-\mathcal{T}^{n+1} \varphi\left(f_{i}(x)\right), g_{i}(y)\right\|\right\} \\
& \leq \max _{1 \leq i \leq k}\left\{L_{i}(x, y) \Lambda^{n} \varepsilon\left(f_{i}(x), g_{i}(y)\right)\right\} \\
& =\Lambda^{n+1} \varepsilon(x, y) \tag{2.6}
\end{align*}
$$

then (2.5) holds for any $n \in \mathbb{N}$. Moreover, by using (2.2) and (2.5), for any $k \in \mathbb{N}, n \in \mathbb{N}_{0}$ and $x \in X$ and $y \in Y_{0}$, we have

$$
\begin{align*}
\left\|\mathcal{T}^{n} \varphi(x)-\mathcal{T}^{n+k} \varphi(x), y\right\| & \leq \max _{0 \leq i \leq k-1}\left\{\left\|\mathcal{T}^{n+i} \varphi(x)-\mathcal{T}^{n+i+1} \varphi(x), y\right\|\right\} \\
& \leq \max _{0 \leq i \leq k-1}\left\{\Lambda^{n+i} \varepsilon(x, y)\right\}, \tag{2.7}
\end{align*}
$$

The sequence $\left(\mathcal{T}^{n} \varphi(x)\right)_{n \in \mathbb{N}}$, for each $x \in X$, is a Cauchy sequence. Because Y is a complete space, so this sequence is convergent and the limit $\psi(x)=\lim _{n \rightarrow \infty} \mathcal{T}^{n} \varphi(x)$ exists. Letting $k \rightarrow \infty$ in (2.7), we obtain, for any $n \in \mathbb{N}, x \in X$ and $y \in Y_{0}$, that :

$$
\begin{align*}
\left\|\mathcal{T}^{n} \varphi(x)-\psi(x), y\right\| & \leq \sup _{i \geq n}\left(\Lambda^{i} \varepsilon(x, y)\right) \\
& =\sigma_{n}(x, y) . \tag{2.8}
\end{align*}
$$

For $n=0$, it's easy to show that (2.8) gives (2.3). Moreover, by using (2.8) and (H2), we find

$$
\begin{align*}
\left\|\mathcal{T}^{n+1} \varphi(x)-\mathcal{T} \psi(x), y\right\| & \leq \max _{0 \leq i \leq k}\left\{L_{i}(x, y)\left\|\mathcal{T}^{n} \varphi\left(f_{i}(x)\right)-\psi\left(f_{i}(x)\right), g_{i}(y)\right\|\right\} \\
& \leq \Lambda\left(\left\|\mathcal{T}^{n} \varphi(x)-\psi(x), y\right\|\right) \\
& \leq \Lambda\left(\sup _{i \geq n}\left(\Lambda^{i} \varepsilon(x, y)\right)\right) \\
& \leq \Lambda\left(\sigma_{n}(x, y)\right) \tag{2.9}
\end{align*}
$$

for all $n \in \mathbb{N}, x \in X$ and $y \in Y_{0}$. Letting $n \rightarrow \infty$ in (2.9) and using (2.2), we get

$$
\mathcal{T} \psi(x)=\lim _{n \rightarrow \infty} \mathcal{T}^{n+1} \varphi(x)=\psi(x)
$$

for all $x \in X$ which means that ψ is a fixed point of the operator \mathcal{T}.
Next, we will prove the uniqueness of a fixed point. To do it, we suppose that (2.4) holds and there exists an other fixed point $\chi \in Y^{X}$ of \mathcal{T} satisfying

$$
\|\varphi(x)-\chi(x), y\| \leq \sup _{n \in \mathbb{N}_{0}} \Lambda^{n} \varepsilon(x, y)=\sigma(x, y), \quad x \in X, y \in Y_{0}
$$

Then, for each $x \in X$ and $y \in Y_{0}$, we have

$$
\|\psi(x)-\chi(x), y\| \leq \max \{\|\psi(x)-\varphi(x), y\|,\|\varphi(x)-\chi(x), y\|\}
$$

By a similar proof of (2.7), we have , for any $k \in \mathbb{N}$,

$$
\begin{aligned}
\|\psi(x)-\chi(x), y\|= & \left\|\mathcal{T}^{k} \psi(x)-\mathcal{T}^{k} \chi(x), y\right\| \\
& \leq \Lambda^{k}(\|\psi(x)-\chi(x), y\|) \\
& \leq \Lambda^{k}(\sigma(x, y)) \\
& \leq \sup _{n \in \mathbb{N}_{0}} \Lambda^{n+k}(\varepsilon(x, y))
\end{aligned}
$$

Letting $n \rightarrow \infty$ in the previous inequality and using (2.2), we obtain that $\psi=\chi$.

3 Hyperstability results in non-Archimedean 2-Banach space

Taking $Y_{0}=Y$ and $g_{i}: Y \rightarrow Y$ as identities mapping for all $i \in\{1,2, \ldots, k\}$. In the following theorem, we use the fixed point Theorem 2.1 as a basic tool to investigate the hyperstability of the Cauchy-Jensen functional equation (1.3) in a non-Archimedean 2-Banach space.
In the remaining part of the paper, we use X as a non empty set, $(Y,\|.,\|$.$) a non-Archimedean$ 2-Banach space, and X^{\prime} a non empty subset of X.

Theorem 3.1. Let $h_{1}, h_{2}: X^{\prime} \times Y \rightarrow \mathbb{R}_{+}$be two functions such that

$$
\mathcal{U}:=\left\{n \in \mathbb{N}: \alpha_{n}=\max \left\{\lambda_{1}(n+1) \lambda_{2}(n+1), \lambda_{1}(2 n+1) \lambda_{2}(2 n+1)\right\}<1\right\}
$$

where

$$
\lambda_{i}(n)=\inf \left\{t \in \mathbb{R}_{+}: h_{i}(n x, z) \leq t h_{i}(x, z), \quad x \in X^{\prime}, z \in Y\right\}
$$

for all $n \in \mathbb{N}$, where $i=1,2$ such that

$$
\lim _{n \rightarrow \infty} \lambda_{1}(n) \lambda_{2}(n)=0
$$

Suppose that $f: X^{\prime} \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x), z\| \leq h_{1}(x, z) h_{2}(y, z) \tag{3.1}
\end{equation*}
$$

for all $x, y \in X^{\prime}$ and $z \in Y$ such that $x+y, x-y \in X^{\prime}$. Then f is a Cauchy-Jensen on X^{\prime}.
Proof. Replacing x by $(m+1) x$ and y by $m x$ where $x, y \in X^{\prime}$ and $m \in \mathbb{N}$ in the inequality (3.1), we get

$$
\|2 f((m+1) x)-f((2 m+1) x)-f(x), z\| \leq h_{1}((m+1) x, z) h_{2}(m x, z), \quad x \in X^{\prime}, z \in Y
$$

For each $m \in \mathbb{N}$, we define the operator $\mathcal{T}_{m}: Y^{X^{\prime}} \rightarrow Y^{X^{\prime}}$ and the function $\varepsilon_{m}: X^{\prime} \times Y \rightarrow \mathbb{R}_{+}$ by

$$
\mathcal{T}_{m} \xi(x):=2 \xi((m+1) x)-\xi((2 m+1) x), \quad \xi \in Y^{X^{\prime}}, x \in X^{\prime}, z \in Y, m \in \mathbb{N}
$$

$$
\varepsilon_{m}(x, z):=h_{1}((m+1) x, z) h_{2}(m x, z), \quad x \in X^{\prime}, z \in Y, m \in \mathbb{N} .
$$

For every $x \in X^{\prime}, z \in Y$ and $m \in \mathbb{N}$, the inequality (3.2) becomes

$$
\left\|\mathcal{T}_{m} f(x)-f(x), z\right\| \leq \varepsilon_{m}(x, z) \quad x \in X^{\prime}, z \in Y
$$

Furthermore, for every $\xi, \mu \in Y^{X^{\prime}}, x \in X^{\prime}, z \in Y$ and $m \in \mathbb{N}$, we have

$$
\begin{aligned}
\| \mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} & \mu(x), z\|=\| 2 \xi((m+1) x)-\xi((2 m+1) x)-2 \mu((m+1) x)+\mu((2 m+1) x), z \| \\
& \leq \max \{2\|\xi((m+1) x)-\mu((m+1) x), z\|,\|\xi((2 m+1) x)-\mu((2 m+1) x), z\|\} \\
& \leq \max \{\|\xi((m+1) x)-\mu((m+1) x), z\|,\|\xi((2 m+1) x)-\mu((2 m+1) x), z\|\}
\end{aligned}
$$

It brings us to define the operator $\Lambda_{m}: \mathbb{R}_{+}^{X^{\prime} \times Y} \rightarrow \mathbb{R}_{+}^{X^{\prime} \times Y}$ by

$$
\Lambda_{m} \delta(x, z):=\max \{\delta((m+1) x, z), \delta((2 m+1) x, z)\}, \quad \delta \in \mathbb{R}_{+}^{X^{\prime} \times Y}, x \in X^{\prime}, z \in Y
$$

Therefore, for each $m \in \mathbb{N}$, the operator $\Lambda:=\Lambda_{m}$ has the form described in (H3) with $k=2$, $f_{1}(x)=(m+1) x, f_{2}(x)=(2 m+1) x, L_{1}(x, z)=L_{2}(x, z)=1, g_{i}=I d_{Y}, i=1,2$ for all $x \in X^{\prime}$ and $z \in Y$. Observe that

$$
\begin{equation*}
\varepsilon_{m}(x, z) \leq \lambda_{1}(m+1) \lambda_{2}(m) h_{1}(x, z) h_{2}(x, z) \tag{3.3}
\end{equation*}
$$

for all $x \in X^{\prime}$ and $z \in Y$. By induction, we will show that for each $n \in \mathbb{N}_{0}$, we have

$$
\begin{equation*}
\Lambda_{m}^{n} \varepsilon_{m}(x, z) \leq \lambda_{1}(m+1) \lambda_{2}(m) \alpha_{m}^{n} h_{1}(x, z) h_{2}(x, z), \quad x \in X^{\prime}, z \in Y \tag{3.4}
\end{equation*}
$$

for all $m \in \mathcal{U}$. For $n=0$, it's obvious to see that (3.4) is exactly (3.3). We fix $k \in \mathbb{N}$ and assume that (3.4) holds for $n=k$. Then, using the non-decreasing of Λ_{m}, we have

$$
\begin{aligned}
& \Lambda_{m}^{k+1} \varepsilon_{m}(x, z)=\Lambda_{m}\left(\Lambda_{m}^{k} \varepsilon_{m}(x, z)\right) \\
& =\max \left\{\Lambda_{m}^{k} \varepsilon_{m}((m+1) x, z), \Lambda_{m}^{k} \varepsilon_{m}((2 m+1) x, z)\right\} \\
& =\lambda_{1}(m+1) \lambda_{2}(m) \alpha_{m}^{k} \max \left\{h_{1}((m+1) x, z) h_{2}((m+1) x, z), h_{1}((2 m+1) x, z) h_{2}((2 m+1) x, z)\right\} \\
& \leq \lambda_{1}(m+1) \lambda_{2}(m) \alpha_{m}^{k} h_{1}(x, z) h_{2}(x, z) \max \left\{\lambda_{1}(m+1) \lambda_{2}(m+1), \lambda_{1}(2 m+1) \lambda_{2}(2 m+1)\right\} \\
& =\lambda_{1}(m+1) \lambda_{2}(m) \alpha_{m}^{k+1} h_{1}(x, z) h_{2}(x, z),
\end{aligned}
$$

for all $x \in X^{\prime}$ and $z \in Y$. Letting $n \rightarrow \infty$ in (3.4), we get

$$
\lim _{n \rightarrow \infty} \Lambda_{m}^{n} \varepsilon_{m}(x, z)=0
$$

for all $x \in X^{\prime}, z \in Y$ and all $m \in \mathcal{U}$. Then, according to Theorem 2.1, there exists, for each $m \in \mathcal{U}$, a fixed point J_{m} of \mathcal{T}_{m} such that

$$
\begin{equation*}
\left\|f(x)-J_{m}(x), z\right\| \leq \sup _{n \in \mathbb{N}_{0}} \Lambda_{m}^{n} \varepsilon_{m}(x, z) \tag{3.5}
\end{equation*}
$$

for all $x \in X^{\prime}$ and all $z \in Y$ and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mathcal{T}_{m}^{n} f(x)=J_{m}(x), \quad x \in X^{\prime} \tag{3.6}
\end{equation*}
$$

Next, we will show, by induction, that for each $n \in \mathbb{N}_{0}$

$$
\begin{equation*}
\left\|\mathcal{T}_{m}^{n} f(x+y)+\mathcal{T}_{m}^{n} f(x-y)-2 \mathcal{T}_{m}^{n} f(x), z\right\| \leq \alpha_{m}^{n} h_{1}(x, z) h_{2}(y, z) \tag{3.7}
\end{equation*}
$$

for all $x, y, x-y, x+y \in X^{\prime}, z \in Y$ and all $m \in \mathcal{U}$.
Since the case $n=0$ is just (3.1), we fix $k \in \mathbb{N}$ and suppose that (3.7) holds for $n=k$. Then, for
all $x, y \in X^{\prime}$ such that $x-y, x+y \in X^{\prime}$ and $z \in Y$ we have

$$
\begin{aligned}
& \left\|\mathcal{T}_{m}^{k+1} f(x+y)+\mathcal{T}_{m}^{k+1} f(x-y)-2 \mathcal{T}_{m}^{k+1} f(x), z\right\| \\
& =\left\|\mathcal{T}_{m}\left(\mathcal{T}_{m}^{k} f(x+y)\right)+\mathcal{T}_{m}\left(\mathcal{T}_{m}^{k} f(x-y)\right)-2 \mathcal{T}_{m}\left(\mathcal{T}_{m}^{k} f(x)\right), z\right\| \\
& =\| 2 \mathcal{T}_{m}^{k} f((m+1)(x+y))-\mathcal{T}_{m}^{k} f((2 m+1)(x+y))+2 \mathcal{T}_{m}^{k} f((m+1)(x-y)) \\
& -\mathcal{T}_{m}^{k} f((2 m+1)(x-y))-4 \mathcal{T}_{m}^{k} f((m+1) x)+2 \mathcal{T}_{m}^{k} f((2 m+1) x), z \| \\
& \leq \max \left\{2\left\|\mathcal{T}_{m}^{k} f((m+1)(x+y))+\mathcal{T}_{m}^{k} f((m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((m+1) x), z\right\| ;\right. \\
& \left.\left\|\mathcal{T}_{m}^{k} f((2 m+1)(x+y))+\mathcal{T}_{m}^{k} f((2 m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((2 m+1) x), z\right\|\right\} \\
& \leq \max \left\{\left\|\mathcal{T}_{m}^{k} f((m+1)(x+y))+\mathcal{T}_{m}^{k} f((m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((m+1) x), z\right\| ;\right. \\
& \left.\left\|\mathcal{T}_{m}^{k} f((2 m+1)(x+y))+\mathcal{T}_{m}^{k} f((2 m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((2 m+1) x), z\right\|\right\} \\
& \leq \alpha_{m}^{k} \max \left\{h_{1}((m+1) x, z) h_{2}((m+1) y, z) ; h_{1}((2 m+1) x, z) h_{2}((2 m+1) y, z)\right\} \\
& \leq \alpha_{m}^{k} h_{1}(x, z) h_{2}(y, z) \max \left\{\lambda_{1}(m+1) \lambda_{2}(m+1) ; \lambda_{1}(2 m+1) \lambda_{2}(2 m+1)\right\} \\
& =\alpha_{m}^{k+1} h_{1}(x, z) h_{2}(y, z) .
\end{aligned}
$$

Thus, we have shown that (3.7) holds for every $n \in \mathbb{N}_{0}$. Letting $n \rightarrow \infty$ in (3.7), we obtain, for each $m \in \mathcal{U}$, that

$$
J_{m}(x+y)+J_{m}(x-y)=2 J_{m}(x), \quad x, x+y, x-y \in X^{\prime}
$$

In this way, we find a sequence $\left\{J_{m}\right\}_{m \in \mathcal{U}}$ of a Cauchy-Jensen functions on X^{\prime} such that

$$
\left\|f(x)-J_{m}(x), z\right\| \leq \sup _{n \in \mathbb{N}}\left\{\lambda_{1}(m+1) \lambda_{2}(m) \alpha_{m}^{n} h_{1}(x, z) h_{2}(x, z)\right\}, \quad x \in X^{\prime}, z \in Y
$$

It follows, with $m \rightarrow \infty$, that f is Cauchy-Jensen on X^{\prime}.
By similar method, we prove the following theorem.
Theorem 3.2. Let $h: X^{\prime} \times Y \rightarrow \mathbb{R}_{+}$be a function such that

$$
\mathcal{U}:=\left\{n \in \mathbb{N}: \alpha_{n}=\max \{\lambda(n+1), \lambda(n)\}<1\right\} \neq \phi
$$

where

$$
\lambda(n):=\inf \left\{t \in \mathbb{R}_{+}: h(n x, z) \leq t h(x, z), \quad x \in X^{\prime}, z \in Y\right\}
$$

for all $n \in \mathbb{N}$ such that

$$
\lim _{n \rightarrow \infty} \lambda(n)=0
$$

Suppose that $f: X^{\prime} \rightarrow Y$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x), z\| \leq h(x, z)+h(y, z), \tag{3.8}
\end{equation*}
$$

for all $x, y \in X^{\prime}$ such that $x+y, x-y \in X^{\prime}$ and $z \in Y$. Then f is a Cauchy-Jensen on X^{\prime}.
Proof. Replacing x by $(m+1) x$ and y by $m x$ for $m \in \mathbb{N}$ in (3.8), we get

$$
\begin{equation*}
\|2 f((m+1) x)-f((2 m+1) x)-f(x), z\| \leq h((m+1) x, z)+h(m x, z) \tag{3.9}
\end{equation*}
$$

for all $x \in X^{\prime}$ and $z \in Y$. For each $m \in \mathcal{U}$, we define the operator $\mathcal{T}_{m}: Y^{X^{\prime}} \rightarrow Y^{X^{\prime}}$ by

$$
\mathcal{T}_{m} \xi(x):=2 \xi((m+1) x)-\xi((2 m+1) x), \quad \xi \in Y^{X^{\prime}}, x \in X^{\prime}
$$

Further, putting

$$
\begin{equation*}
\varepsilon_{m}(x, z)=h((m+1) x, z)+h((m+1) x, z) \leq(\lambda(m+1)+\lambda(m)) h(x, z) \tag{3.10}
\end{equation*}
$$

for all $x \in X^{\prime}$ and $z \in Y$, then the inequality (3.9) takes the form

$$
\left\|\mathcal{T}_{m} f(x)-f(x), z\right\| \leq \varepsilon_{m}(x, z), \quad x \in X^{\prime}, z \in Y
$$

For each $m \in \mathcal{U}$, the operator $\Lambda_{m}: \mathbb{R}_{+}^{X^{\prime} \times Y} \rightarrow \mathbb{R}_{+}^{X^{\prime} \times Y}$ which is defined by

$$
\Lambda_{m} \delta(x)=\max \{\delta((m+1) x, z), \delta(m x, z)\}, \quad \delta \in \mathbb{R}_{+}^{X^{\prime} \times Y}, x \in X^{\prime}, z \in Y
$$

has the form described in (H3) with $k=2$ and

$$
f_{1}(x)=(m+1) x, \quad f_{2}(x)=m x, \quad L_{1}(x, z)=L_{2}(x, z)=1
$$

for all $x \in X^{\prime}$. Moreover, for every $\xi, \mu \in Y^{X^{\prime}}, x \in X^{\prime}$ and $z \in Y$, we have

$$
\begin{aligned}
& \left\|\mathcal{T}_{m} \xi(x)-\mathcal{T}_{m} \mu(x), z\right\| \\
& =\|2 \xi((m+1) x)-\xi((2 m+1) x)-2 \mu((m+1) x)+\mu((2 m+1) x), z\| \\
& \leq \max \{2\|\xi((m+1) x, z)-\mu((m+1) x, z)\|,\|\xi((2 m+1) x, z)-\mu((2 m+1) x, z)\|\} \\
& \leq \max \{\|\xi((m+1) x, z)-\mu((m+1) x, z)\|,\|\xi((2 m+1) x, z)-\mu((2 m+1) x, z)\|\}
\end{aligned}
$$

So, (H2) is valid. Also, by using mathematical induction on $n \in \mathbb{N}_{0}$, we will show, for each $x \in X^{\prime}$ and $z \in Y$, that

$$
\begin{equation*}
\Lambda_{m}^{n} \varepsilon_{m}(x, z) \leq(\lambda(m+1)+\lambda(m)) \alpha_{m}^{n} h(x, z) \tag{3.11}
\end{equation*}
$$

where $\alpha_{m}:=\max \{\lambda(m+1), \lambda(m)\}$ for all $m \in \mathcal{U}$. From (3.10), we obtain that the inequality (3.11) holds for $n=0$. Next, we will assume that (3.11) holds for $n=k$, where $k \in \mathbb{N}$. Then we have

$$
\begin{aligned}
\Lambda_{m}^{k+1} \varepsilon_{m}(x, z)= & \Lambda_{m}\left(\Lambda_{m}^{k} \varepsilon_{m}(x, z)\right)=\max \left\{\Lambda_{m}^{k} \varepsilon_{m}((m+1) x, z), \Lambda_{m}^{k} \varepsilon_{m}(m x, z)\right\} \\
& \leq(\lambda(m+1)+\lambda(m)) \alpha_{m}^{k} \max \{\varphi((m+1) x, z), \varphi(m x, z)\} \\
& \leq(\lambda(m+1)+\lambda(m)) \alpha_{m}^{k+1} \varphi(x, z), \quad x \in X_{0}^{\prime}, z \in Y
\end{aligned}
$$

This shows that (3.11) holds for $n=k+1$. Now we can conclude that the inequality (3.11) holds for all $n \in \mathbb{N}_{0}$. From (3.11), we obtain

$$
\lim _{n \rightarrow \infty} \Lambda^{n} \varepsilon_{m}(x, z)=0
$$

for all $x \in X^{\prime}, z \in Y$ and all $m \in \mathcal{U}$. Hence, according to Theorem 2.1, there exists, for each $m \in \mathcal{U}$, a unique solution $J_{m}: X^{\prime} \rightarrow Y$ of the equation

$$
\begin{equation*}
J_{m}(x)=J_{m}((m+1) x)-2 J_{m}((2 m+1) x), \quad x \in X^{\prime} \tag{3.12}
\end{equation*}
$$

such that

$$
\begin{equation*}
\left\|f(x)-J_{m}(x), z\right\| \leq \sup _{n \in \mathbb{N}_{0}}\left\{(\lambda(m+1)+\lambda(m)) \alpha_{m}^{n} h(x, z)\right\}, x \in X^{\prime}, z \in Y \tag{3.13}
\end{equation*}
$$

Moreover,

$$
J_{m}(x):=\lim _{n \rightarrow \infty}\left(\mathcal{T}_{m}^{n} f\right)(x)
$$

for all $x \in X^{\prime}$. Now, we show that

$$
\begin{equation*}
\left\|\mathcal{T}_{m}^{n} f(x+y)+\mathcal{T}_{m}^{n} f(x-y)-2 \mathcal{T}_{m}^{n} f(x), z\right\| \leq \alpha_{m}^{n}(h(x, z)+h(y, z)) \tag{3.14}
\end{equation*}
$$

for every $z \in Y, x, y \in X^{\prime}$ such that $x+y, x-y \in X^{\prime}$ and $n \in \mathbb{N}_{0}$. Since the case $n=0$ is just (3.8), take $k \in \mathbb{N}$ and assume that (3.14) holds for $n=k$, where $k \in \mathbb{N}$ and every $x, y \in X^{\prime}$
such that $x+y, x-y \in X^{\prime}$. Then

$$
\begin{aligned}
& \left\|\mathcal{T}_{m}^{k+1} f(x+y)+\mathcal{T}_{m}^{k+1} f(x-y)-2 \mathcal{T}_{m}^{k+1} f(x), z\right\| \\
& =\left\|\mathcal{T}_{m}\left(\mathcal{T}_{m}^{k} f(x+y)\right)+\mathcal{T}_{m}\left(\mathcal{T}_{m}^{k} f(x-y)\right)-2 \mathcal{T}_{m}\left(\mathcal{T}_{m}^{k} f(x)\right), z\right\| \\
& =\| 2 \mathcal{T}_{m}^{k} f((m+1)(x+y))-\mathcal{T}_{m}^{k} f((2 m+1)(x+y))+2 \mathcal{T}_{m}^{k} f((m+1)(x-y)) \\
& -\mathcal{T}_{m}^{k} f((2 m+1)(x-y))-4 \mathcal{T}_{m}^{k} f((m+1) x)+2 \mathcal{T}_{m}^{k} f((2 m+1) x), z \\
& \leq \max \left\{2\left\|\mathcal{T}_{m}^{k} f((m+1)(x+y))+\mathcal{T}_{m}^{k} f((m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((m+1) x), z\right\|\right. \\
& \left\|\mathcal{T}_{m}^{k} f((2 m+1)(x+y))+\mathcal{T}_{m}^{k} f((2 m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((2 m+1) x), z\right\| \\
& \leq \max \left\{\left\|\mathcal{T}_{m}^{k} f((m+1)(x+y))+\mathcal{T}_{m}^{k} f((m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((m+1) x), z\right\|\right. \\
& \left\|\mathcal{T}_{m}^{k} f((2 m+1)(x+y))+\mathcal{T}_{m}^{k} f((2 m+1)(x-y))-2 \mathcal{T}_{m}^{k} f((2 m+1) x), z\right\| \\
& \leq \max \left\{\alpha_{m}^{k}(h((m+1) x, z)+h((m+1) y, z)), \alpha_{m}^{k}(h((2 m+1) x, z)+h((2 m+1) y, z))\right\} \\
& \leq \alpha_{m}^{k} \max \{\lambda(m+1), \lambda(2 m+1)\}(h(x, z)+h(y, z)) \\
& =\alpha_{m}^{k+1}(h(x, z)+h(y, z)) .
\end{aligned}
$$

Thus, by induction we have shown that (3.14) holds for every $n \in \mathbb{N}_{0}$. Letting $n \rightarrow \infty$ in (3.14), we obtain that

$$
J_{m}(x+y)+J_{m}(x-y)=2 J_{m}(x),
$$

for all $x, y \in X^{\prime}$ such that $x+y, x-y \in X^{\prime}$. In this way, we obtain a sequence $\left\{J_{m}\right\}_{m \in \mathcal{U}}$ of Cauchy-Jensen functions on X^{\prime} such that

$$
\left\|f(x)-J_{m}(x), z\right\| \leq \sup _{n \in \mathbb{N}_{0}}\left\{(\lambda(m+1)+\lambda(2 m+1)) \alpha_{m}^{n} h(x, z)\right\}, \quad x \in X^{\prime}, z \in Y
$$

It implies that

$$
\left\|f(x)-J_{m}(x), z\right\| \leq(\lambda(m+1)+\lambda(2 m+1)) \alpha_{m}^{n} h(x, z), \quad x \in X^{\prime}, z \in Y
$$

It follows, with $m \rightarrow \infty$, that f is a Cauchy-Jensen on X^{\prime}.

4 Consequences

In this section, we assume that $X^{\prime}=X_{0}=X \backslash\{0\}$. According the Theorem 3.1 and Theorem 3.2 , we derive the following two corollaries.

Corollary 4.1. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $(Y,\|.,\|$.$) be a non-Archimedean 2-Banach$ space, s be a fixed element in Y and let $c \geq 0, r \geq 0, p, q \in \mathbb{R}$ such that $p+q<0$. Suppose that $f: X^{\prime} \rightarrow Y$ is a function satisfying the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x), z\| \leq c\|x\|_{X}^{p}\|y\|_{X}^{q}\|z, s\|^{r} \tag{4.1}
\end{equation*}
$$

for all $x, y \in X^{\prime}$ such that $x+y, x-y \in X^{\prime}$ and $z \in Y$. Then f is a Cauchy-Jensen on X^{\prime}.
Proof. The proof follows from Theorem 3.1 by taking $h_{1}, h_{2}: X^{\prime} \times Y \rightarrow \mathbb{R}_{+}$as follows:

$$
h_{1}(x, z)=c_{1}\|x\|_{X}^{p}\|z, s\|^{r_{1}}
$$

and

$$
h_{2}(y, z)=c_{2}\|y\|_{X}^{q}\|z, s\|^{r_{2}}
$$

for all $x, y \in X^{\prime}$ and all $z \in Y$, where $c_{1}, c_{2} \in \mathbb{R}_{+}, r_{1}, r_{2} \in \mathbb{R}$ and $p, q \in \mathbb{R}$ such that, $r_{1}+r_{2} \geq 0$ and $p+q<0$.
For each $m \in \mathbb{N}$, we define $\lambda_{1}(m)$ as in Theorem 3.1

$$
\begin{aligned}
\lambda_{1}(m) & =\inf \left\{t \in \mathbb{R}_{+}: h_{1}(m x, z) \leq t h_{1}(x, z)\right\}, \quad x \in X^{\prime}, z, s \in Y \\
& =\inf \left\{t \in \mathbb{R}_{+}: c_{1} m^{p}\|x\|_{X}^{p}\|z, s\|^{r_{1}} \leq t c_{1}\|x\|_{X}^{p}\|z, s\|^{r_{1}}\right\}, x \in X^{\prime}, z, s \in Y \\
& =m^{p} .
\end{aligned}
$$

Also, for $m \in \mathbb{N}$, we have $\lambda_{2}(m)=m^{q}$. Therefore,

$$
\lim _{m \rightarrow \infty} \lambda_{1}(m+1) \lambda_{2}(m)=\lim _{m \rightarrow \infty}(m+1)^{p}(m)^{q}=\lim _{m \rightarrow \infty}(m+1)^{p+q}=0 .
$$

Furthermore, we get

$$
\begin{aligned}
\alpha_{m}= & \max \left\{\lambda_{1}(m+1) \lambda_{2}(m+1), \lambda_{1}(2 m+1) \lambda_{2}(2 m+1)\right\} \\
& =\max \left\{(m+1)^{p+q},(2 m+1)^{p+q}\right\} \\
& =(m+1)^{p+q} .
\end{aligned}
$$

Then \mathcal{U} is a non empty set. According to Theorem 3.1, f is a Cauchy-Jensen on X^{\prime}.
By a similar method, we can prove the following corollary as a particular case of Theorem 3.2 where $h(x, z)=c\|x\|_{X}^{p}\|z, s\|^{r}$ with $c \geq 0, p<0$, and $r \geq 0$.

Corollary 4.2. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $(Y,\|.,\|$.$) be a non-Archimedeen 2-Banach$ space, s be a fixed element in Y and let $c \geq 0, p<0, r \geq 0$ and $f: X^{\prime} \rightarrow Y$ satisfy

$$
\|f(x+y)+f(x-y)-2 f(x), z\| \leq c\left(\|x\|_{X}^{p}+\|y\|_{X}^{p}\right)\|z, s\|^{r}
$$

for all $x, y \in X^{\prime}$ such that $x+y, x-y \in X^{\prime}$ and $z \in Y$. Then f is a Cauchy-Jensen on X^{\prime}.
In the following two corollaries, we discuss the hyperstability of the inhomogeneous CauchyJensen functional equation.

Corollary 4.3. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and $(Y,\|.,\|$.$) be a non-Archimedean 2-Banach$ space, s be a fixed element in Y and let $G: X^{\prime 2} \rightarrow Y$ such that $G\left(x_{0}, y_{0}\right) \neq 0$ for some $x_{0}, y_{0} \in X^{\prime}$ and

$$
\begin{equation*}
\|G(x, y), z\| \leq c\|x\|_{X}^{p}\|y\|_{X}^{q}\|z, s\|^{r}, \tag{4.2}
\end{equation*}
$$

for all $x, y \in X^{\prime}$ such that $x+y, x-y \in X^{\prime}$ and $z \in Y$ where $c \geq 0, p, q \in \mathbb{R}$ such that $p+q<0$. Then the functional equation

$$
\begin{equation*}
g(x+y)+g(x-y)=2 g(x)+G(x, y) \tag{4.3}
\end{equation*}
$$

for all $x, y \in X^{\prime}$ with $x+y, x-y \in X^{\prime}$, has no solution in the class of functions $g: X \rightarrow Y$.
Proof. Suppose that $f: X \rightarrow Y$ is a solution to (4.3). Then

$$
\begin{aligned}
\|f(x+y)+f(x-y)-2 f(x), z\| & =\|22(x)+G(x, y)-2 f(x), z\| \\
& =\|G(x, y), z\| \\
& \leq c\|x\|_{X}^{p}\|y\|_{X}^{q}\|z, s\|^{r}, \quad x, y, \in X^{\prime}, \quad z \in Y .
\end{aligned}
$$

Consequently, by Theorem 3.1, f is a Cauchy-Jensen on X^{\prime}, whence

$$
G\left(x_{0}, y_{0}\right)=f\left(x_{0}+y_{0}\right)+f\left(x_{0}-y_{0}\right)-2 f\left(x_{0}\right)=0,
$$

which is a contradiction.

Corollary 4.4. Let $\left(X,\|.\|_{X}\right)$ be a normed space and $(Y,\|.,\|$.$) be a non-Archimedean 2-Banach$ space, s be a fixed element in Y and $p, q \in \mathbb{R}$ such that $p+q<0$. Assume that $G: X^{\prime 2} \rightarrow Y$ and $f: X^{\prime} \rightarrow Y$ satisfy the inequality

$$
\begin{equation*}
\|f(x+y)+f(x-y)-2 f(x)-G(x, y), z\| \leq c\|x\|_{X}^{p}\|y\|_{X}^{q}\|z, s\|^{r} \tag{4.4}
\end{equation*}
$$

for all $x, y \in X^{\prime}$ with $x+y, x-y \in X^{\prime}$ and $z \in Y$. If the functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+G(x, y), \quad x, y \in X^{\prime} \tag{4.5}
\end{equation*}
$$

has a solution $f_{0}: X^{\prime} \rightarrow Y$, then f is a solution of functional equation 4.5 on X^{\prime}.
Proof. From (4.4), we get that the function $K: X^{\prime} \rightarrow Y$ defined by $K:=f-f_{0}$ satisfies (4.1). Consequently, Corollary 4.1 implies that K is a Cauchy-Jensen on X^{\prime}. Therefore,

$$
\begin{aligned}
f(x+y)+f(x-y)-2 f(x)-G(x, y)= & K(x+y)+f_{0}(x+y)+K(x-y)+f_{0}(x-y) \\
& -2 K(x)-2 f_{0}(x)-G(x, y) \\
= & 0 .
\end{aligned}
$$

for all $x, y \in X^{\prime}$ with $x+y, x-y \in X^{\prime}$. Which means f is a solution of functional equation 4.5 on X^{\prime}.

References

[1] L. Aiemsomboon, W. Sintunavarat, On generalized hyperstability of a general linear equation, Acta Math. Hungar. 149, 413-422 (2016),
[2] M. Almahalebi and S. Kabbaj, Hyperstability of Cauchy-Jensen type functional equation, Advances in Research. 2 (12), 1017-1025 (2014).
[3] M. Almahalebi, On the stability of a generalization of Jensen functional equation, Acta Math. Hungar. 154 (1) 187-198 (2018).
[4] M. Almahalebi, Stability of a generalization of Cauchy's and the quadratic functional equations, J. Fixed Point Theory Appl. 20: 12 (2018), https://doi.org/10.1007/s11784-018-0503-z.
[5] D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math.J. 16 385-397 (1949).
[6] J. Brzdẹk, J. Chudziak and Zs. Páles, A fixed point approach to stability of functional equations, Nonlinear Anal. 74 6728-6732 (2011).
[7] J. Brzdȩk and K. Ciepliński, A fixed point approach to the stability of functional equations in nonArchimedean metric spaces, Nonlinear Analysis. 74 6861-6867 (2011) .
[8] J. Brzdȩk, Stability of additivity and fixed point method, Fixed Point Theory and App. (2013), 285, 9 pages.
[9] J. Brzdẹk, Hyperstability of the Cauchy equation on restricted domains, Acta Math. Hungar. 141 58-67 (2013).
[10] J. Brzdȩk, Remarks on hyperstability of the Cauchy functional equation, Aequat. Math., 86 255-267 (2013).
[11] J. Brzdȩk, A hyperstability result for the Cauchy equation, Bull. Aust. Math. Soc. 89 33-40 (2014).
[12] J. Brzdȩk and K. Ciepliński, On a fixed point theorem in 2-Banach spaces and some of it's applications, Acta. Math. Scientia. 38 (2) 377-390 (2018).
[13] P. Găvruţa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 , 431-436 (1994).
[14] E. Gselmann, Hyperstability of a functional equation, Acta Math. Hungar. 124 179-188 (2009).
[15] D. H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci.U.S.A. 27 222-224 (1941).
[16] B. Jessen, J. Karpf and A. Thorup, Some functional equations in groups and rings, Math. Scand. 22 257265 (1968).
[17] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Kluwer Academic Publishers,Dordrecht. (1997).
[18] Gy. Maksa and Zs. Páles, Hyperstability of a class of linear functional equations, Acta Math. 17 (2) 107112 (2001).
[19] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer.Math. Soc. 72 297300 (1978).
[20] W. -G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl. 376 193-202 (2011).
[21] S. M. Ulam, A Collection of Mathematical Problems, Interscience, New York (1960). Reprented as: problems in Modern Mathematics. New york(1964).

Author information

R. El Ghali and S. Kabbaj, Department of Mathematics, Faculty of Sciences, University of Ibn Tofail, BP 133 Kenitra, Morocco.
E-mail: rachid2810@gmail.com; samkabbaj@yahoo.fr

Received: December 2, 2020
Accepted: March 7, 2021

