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Abstract In this paper we extend the fixed point result of Brzdȩk et al. [7] in non-Archimedean
2-Banach spaces. Moreover, we investigate the hyperstability of Cauchy-Jensen functional equa-
tion in the considered space by using the above result and we give some outcomes.

1 Introduction and preliminaries

A certain formula or equation is applicable to model a physical process of a small change of
the formula or equation gives rise to a small change in the corresponding result. When this
happens, we say that formula or equation is called stable. One of the unsolved problems was
given by S. M. Ulam [21] tends to be the starting point for researching the stability problems
of functional equations. Ulam asked the following question concerning the stability of group
homomorphisms:
Given a group G, a metric group H with metric d(., .) and a positive number ε, does there exists
a δ > 0 such that if f : G → H satisfies : d(f(xy), f(x)f(y)) < δ for all x, y ∈ G, then a
homomorphism Φ : G→ H exists with d(f(x),Φ(x)) < ε for x ∈ G?
D. H. Hyers [15] gave the first partial answer to Ulam’s problem for the Cauchy equation

f(x+ y) = f(x) + f(y), (1.1)

in Banach spaces with δ = ε and

Φ(x) = lim
n→∞

f(2nx)

2n
.

The most classical result concerning the Hyers-Ulam stability for the Cauchy equation (1.1) has
been given by Th. M . Rassias [19].

Theorem 1.1. [19] Let E1 and E1 be two normed spaces, c ≥ 0 and p 6= 1 be fixed real numbers.
Let f : E1 → E2 be a mapping satisfying

‖f(x+ y)− f(x)− f(y)‖ ≤ c
(
‖x‖p + ‖y‖p

)
, x, y ∈ E1 \ {0}.

Then the following statements are valid
(1) If p ≥ 0 and E2 is complete, then there exists a unique additive function

T : E1 → E2 such that

‖f(x)− T (x)‖ ≤ c‖x‖p

|2p−1 − 1|
, x ∈ E1 \ {0}. (1.2)

(2) p < 0, then f is additive.
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This results is called the Hyers-Ulam - Rassias stability of Cauchy functional equation.
In 1994, P. Găvruţă [13] gave a generalization of the Hyers-Ulam-Rassias stability of approx-

imately additive mappings.

Theorem 1.2. Let G be an abilean group and (X, ‖.‖) a Banach space. Let ϕ : G×G→ R+ a
mapping satisfying, for all x, y ∈ G, the condition:

ϕ̃(x, y) =
∞∑
k=0

2−kϕ(2kx, 2ky) < +∞

Let f : G→ X be a mapping which fulfils, for each x, y ∈ G, the condition

‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ(x, y)

Then there exists a unique mapping T : G→ G such that

T (x+ y) = T (x) + T (y),

for all x, y ∈ G and :

‖f(x)− T (x)‖ ≤ 1
2
ϕ̃(x, y),

for all x ∈ G.

Since then, the problem of stability of several functional equations have been extensively
studied by many mathematicians (see, for instance, [2, 6, 7, 8, 13, 15, 19]).

A functional equation is called hyperstable when any function f satisfying the equation ap-
proximately, in some sense, must be actually a solution to it. The term hyperstability was used
for the first time probably in 2001 by Gy. Maksa and Zs. Páles [18], however, it seems that
the first hyperstability result was published in [5] and concerned the ring homomorphisms. The
hyperstability results for the Cauchy equation were investigated by J. Brzdȩk in [9, 10]. E. Gsel-
mann [14] studied the hyperstability of the parametric fundamental equation of information.

Note that the second statement of the Theorem 1.1, for p < 0 can be described as ϕ− hyper-
stability of the additive equation with ϕ(x, y) = c

(
‖x‖p + ‖y‖p

)
.

Throughout this paper, N stands for the set of all positive integers, N0 = N ∪ {0}, Nm0 the
set of all integers greater than or equals m0 (m0 ∈ N), R+ = [0,∞) and we use the notation X0
for the set X \ {0}.
Let us recall (see, for instance, [17]) some basic definitions and facts concerning non-Archimedean
2-normed spaces.

Definition 1.3. By a non-Archimedean field, we mean a field K equipped with a function (valu-
ation) | · | : K→ [0,∞) such that for all r, s ∈ K, the following conditions hold:

(1) |r| = 0 if and only if r = 0,
(2) |rs| = |r||s|,
(3) |r + s| ≤ max

{
|r|, |s|

}
.

The pair (K, |.|) is called a valued field.

Remark 1.4. In any non-Archimedean field, we have |1| = | − 1| = 1 and |n| ≤ 1 for n ∈ N.

Example 1.5. In any field K the function | · | : K→ R+ given by

|x| :=

{
0, x = 0,
1, x 6= 0

is a valuation which is called trivial valuation, but the most important example of non-Archimedean
fields are p-adic numbers which have gained the interest of physicists for their research in some
problems coming from quantum physics, p-adic strings and super strings.
Let p be a fixed prime number and x a rational number, there exists a unique integer vp(x) ∈ Z
such that x = pvp(x) a

b where a and b are integer co-prime to p. The function defined in Q by
|x|p = pvp(x) is called a p-adic, an ultrametric or simply a non-Archimedean absolute value on
Q. The completion, denoted by Qp of Q with respect to the metric defined by the p-adic absolute
is called p-adic numbers.
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Definition 1.6. Let X be a vector space (with dimX > 1) over a scalar field K with a non-
Archimedean non-trivial valuation | · |. A function ||., .|| : X2 → R+ is called a non-Archimedean
2-norm (valuation) if it satisfies the following conditions:

(1) ‖x, y‖ = 0 if and only if x and y are linearly independent, x, y ∈ X ,
(2) ‖x, y‖ = ‖y, x‖ x, y ∈ X ,
(3) ‖rx, y‖ = |r| ‖x, y‖ (r ∈ K, x, y ∈ X),
(4) ‖x, y + z‖ ≤ max

{
‖x, y‖, ‖x, z‖

}
x, y, z ∈ X.

Then (X, ‖·, ·‖) is called a non-Archimedean 2-normed space or an ultrametric 2-normed space.

Example 1.7. Let p be a fixed prime number. For x = (x1, x2) and y = (y1, y2) we define the
non-Archimedean 2-norm in Qp

2 by ‖x, y‖p = |x1y2 − x2y1|p.

Definition 1.8. Let {xn} be a sequence in a non-Archimedean 2-normed space X .
(1) A sequence{xn}∞n=1 is a Cauchy sequence if there are linearly independent y, z ∈ X such

that
lim

n→∞
‖xn+1 − xn, y‖ = 0 = lim

n→∞
‖xn+1 − xn, z‖

(2) The sequence {xn} is said to be convergent if there exists x ∈ X (called limit of this
sequence and denoted by limn→∞ xn) such that

lim
n→∞

‖xn − x, y‖ = 0 y ∈ X

(3) If every Cauchy sequence in X converges, then the non-Archimedean 2-normed space X
is called a non-Archimedean 2-Banach space or an ultrametric 2-Banach space.

Lemma 1.9. [20]
(1) Let X be a non-Archimedean 2-Banach space over a non-Archimedean field K and

x, y, z ∈ X such that y and z are linearly independent and ‖x, y‖ = 0 = ‖x, z‖ , then x = 0.
(2) (xn)n∈N is a convergent sequence of element of X then :

lim
n→∞

‖xn, y‖ = ‖ lim
n→∞

xn, y‖ y ∈ X.

In section 2, we introduce and prove a new version of fixed point theorem of Brzdȩk [12]
in non-Archimedean 2-Banach space. This theorem has been considered as an important tool
for investigating the stability and hyperstability, in some way, of a several functional equations
by many mathematicians ( see for example [1, 4]). In section 3, we use our main results to
investigate the hyperstability of the following Cauchy-Jensen functional equation

f(x+ y) + f(x− y) = 2f(x), (1.3)

in non-Archimedean 2-Banach space. We also give some outcomes as particular cases and we
study the hyperstability of the inhomogeneous Cauchy-Jensen equation

f(x+ y) + f(x− y) = 2f(x) +G(x, y).

2 Fixed point theorem

In 2018, J. Brzdȩk and K. Ciepliński [12] presented and proved a new version of fixed point
theorem in 2-Banach spaces with some applications in stability theory of functional equations.
The following theorem is an analogous version of fixed theorem [12] in non-Archimedean 2-
Banach spaces.
First, we need to present the following hypotheses.

(H1) X is a nonempty set, (Y, ‖., .‖) is a non-Archimedean 2-Banach space over a non-
Archimedean field, Y0 is a subset of Y containing two linearly independent vectors, f1, ..., fk :
X −→ X , g1, ..., gk : Y0 −→ Y0 and L1, ..., Lk : X × Y0 −→ R+ are given.

(H2) T : Y X −→ Y X is an operator satisfying the inequality :∥∥T ξ(x)−T µ(x), y∥∥ ≤ max
1≤i≤k

{
Li(x, y)

∥∥ξ(fi(x))− µ(fi(x)), gi(y)∥∥} , ξ, µ ∈ Y X , x ∈ X, y ∈ Y0.

(H3) Λ : RX×Y0
+ −→ RX×Y0

+ is a non-decreasing linear operator defined by

Λδ(x, y) := max
1≤i≤k

{
Li(x, y)δ

(
fi(x), gi(y)

)}
, δ ∈ RX×Y0

+ , x ∈ X, y ∈ Y0.
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Theorem 2.1. Let hypotheses (H1)-(H3) are valid and let ε : X × Y0 −→ R+ and ϕ : X −→ Y
be functions fulfilling the following two conditions

‖T ϕ(x)− ϕ(x), y‖ ≤ ε(x, y), x ∈ X, y ∈ Y0, (2.1)

lim
n→∞

Λ
nε(x, y) = 0, x ∈ X, y ∈ Y0. (2.2)

Then, for every x ∈ X , the limit
ψ(x) = lim

n→∞
T nϕ(x)

exists and defines a fixed point ψ of T with

‖ϕ(x)− ψ(x), y‖ ≤ sup
n∈N0

Λ
nε(x, y) = σ(x, y), x ∈ X, y ∈ Y0. (2.3)

Moreover, if
(Λσ)(x, y) ≤ sup

n∈N0

Λ
n+1ε(x, y), x ∈ X,x ∈ Y0, (2.4)

then ψ is a unique fixed point of T satisfying (2.3).

Proof. We show by induction that, for any n ∈ N0

‖T nϕ(x)− T n+1ϕ(x), y‖ ≤ Λ
nε(x, y), x ∈ X, y ∈ Y0. (2.5)

Indeed, it’s easy to see that if n = 0, then the inequality (2.5) is exactly (2.1). Now, we fix n ∈ N
and suppose that (2.5) hold for n, then by using the non-decreasing property of the operator Λ

and (H2), for any x ∈ X, y ∈ Y0, we get∥∥∥T n+1ϕ(x)− T n+2ϕ(x), y
∥∥∥ ≤ max

1≤i≤k

{
Li(x, y)

∥∥∥T nϕ
(
fi(x)

)
− T n+1ϕ

(
fi(x)

)
, gi(y)

∥∥}
≤ max

1≤i≤k

{
Li(x, y)Λ

nε
(
fi(x), gi(y)

)}
= Λ

n+1ε(x, y), (2.6)

then (2.5) holds for any n ∈ N. Moreover, by using (2.2) and (2.5), for any k ∈ N, n ∈ N0 and
x ∈ X and y ∈ Y0, we have∥∥∥T nϕ(x)− T n+kϕ(x), y

∥∥∥ ≤ max
0≤i≤k−1

{∥∥∥T n+iϕ(x)− T n+i+1ϕ(x), y
∥∥∥}

≤ max
0≤i≤k−1

{
Λ

n+iε(x, y)
}
, (2.7)

The sequence
(
T nϕ(x)

)
n∈N, for each x ∈ X , is a Cauchy sequence. Because Y is a complete

space, so this sequence is convergent and the limit ψ(x) = limn→∞ T nϕ(x) exists. Letting
k →∞ in (2.7), we obtain, for any n ∈ N, x ∈ X and y ∈ Y0, that :

‖T nϕ(x)− ψ(x), y‖ ≤ sup
i≥n

(Λiε(x, y))

= σn(x, y). (2.8)

For n = 0, it’s easy to show that (2.8) gives (2.3). Moreover, by using (2.8) and (H2), we find∥∥∥T n+1ϕ(x)− T ψ(x), y
∥∥∥ ≤ max

0≤i≤k

{
Li(x, y)

∥∥∥T nϕ
(
fi(x)

)
− ψ

(
fi(x)

)
, gi(y)‖

}
≤ Λ

(∥∥∥T nϕ(x)− ψ(x), y
∥∥∥)

≤ Λ

(
sup
i≥n

(Λiε(x, y))
)

≤ Λ(σn(x, y)), (2.9)
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for all n ∈ N, x ∈ X and y ∈ Y0. Letting n→∞ in (2.9) and using (2.2), we get

T ψ(x) = lim
n→∞

T n+1ϕ(x) = ψ(x)

for all x ∈ X which means that ψ is a fixed point of the operator T .
Next, we will prove the uniqueness of a fixed point. To do it, we suppose that (2.4) holds and
there exists an other fixed point χ ∈ Y X of T satisfying

‖ϕ(x)− χ(x), y‖ ≤ sup
n∈N0

Λ
nε(x, y) = σ(x, y), x ∈ X, y ∈ Y0.

Then, for each x ∈ X and y ∈ Y0, we have

‖ψ(x)− χ(x), y‖ ≤ max {‖ψ(x)− ϕ(x), y‖, ‖ϕ(x)− χ(x), y‖} .

By a similar proof of (2.7), we have ,for any k ∈ N,

‖ψ(x)− χ(x), y‖ =‖T kψ(x)− T kχ(x), y‖

≤ Λ
k
(
‖ψ(x)− χ(x), y‖

)
≤ Λ

k(σ(x, y))

≤ sup
n∈N0

Λ
n+k(ε(x, y)).

Letting n→∞ in the previous inequality and using (2.2), we obtain that ψ = χ. 2

3 Hyperstability results in non-Archimedean 2-Banach space

Taking Y0 = Y and gi : Y → Y as identities mapping for all i ∈ {1, 2, ..., k}. In the following
theorem, we use the fixed point Theorem 2.1 as a basic tool to investigate the hyperstability of
the Cauchy-Jensen functional equation (1.3) in a non-Archimedean 2-Banach space.
In the remaining part of the paper, we use X as a non empty set, (Y, ‖., .‖) a non-Archimedean
2-Banach space, and X ′ a non empty subset of X .

Theorem 3.1. Let h1, h2 : X ′ × Y → R+ be two functions such that

U :=
{
n ∈ N : αn = max{λ1(n+ 1)λ2(n+ 1) , λ1(2n+ 1)λ2(2n+ 1)} < 1

}
,

where
λi(n) = inf{t ∈ R+ : hi(nx, z) ≤ thi(x, z), x ∈ X ′, z ∈ Y }

for all n ∈ N, where i = 1, 2 such that

lim
n→∞

λ1(n)λ2(n) = 0.

Suppose that f : X ′ → Y satisfies the inequality

‖f(x+ y) + f(x− y)− 2f(x), z‖ ≤ h1(x, z)h2(y, z), (3.1)

for all x, y ∈ X ′ and z ∈ Y such that x+ y, x− y ∈ X ′. Then f is a Cauchy-Jensen on X ′.

Proof. Replacing x by (m + 1)x and y by mx where x, y ∈ X ′ and m ∈ N in the inequality
(3.1), we get

‖2f((m+1)x)−f((2m+1)x)−f(x), z‖ ≤ h1((m+1)x, z)h2(mx, z), x ∈ X ′, z ∈ Y. (3.2)

For each m ∈ N, we define the operator Tm : Y X′ → Y X′
and the function εm : X ′ × Y → R+

by
Tmξ(x) := 2ξ((m+ 1)x)− ξ((2m+ 1)x), ξ ∈ Y X′

, x ∈ X ′, z ∈ Y, m ∈ N,
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εm(x, z) := h1((m+ 1)x, z)h2(mx, z), x ∈ X ′, z ∈ Y, m ∈ N.

For every x ∈ X ′, z ∈ Y and m ∈ N, the inequality (3.2) becomes

‖Tmf(x)− f(x), z‖ ≤ εm(x, z) x ∈ X ′, z ∈ Y.

Furthermore, for every ξ, µ ∈ Y X′
, x ∈ X ′, z ∈ Y and m ∈ N, we have

‖Tmξ(x)− Tmµ(x), z‖ = ‖2ξ((m+ 1)x)− ξ((2m+ 1)x)− 2µ((m+ 1)x) + µ((2m+ 1)x), z‖

≤ max
{

2‖ξ((m+ 1)x)− µ((m+ 1)x), z‖, ‖ξ((2m+ 1)x)− µ((2m+ 1)x), z‖
}

≤ max
{
‖ξ((m+ 1)x)− µ((m+ 1)x), z‖, ‖ξ((2m+ 1)x)− µ((2m+ 1)x), z‖

}
.

It brings us to define the operator Λm : RX′×Y
+ → RX′×Y

+ by

Λmδ(x, z) := max
{
δ((m+ 1)x, z), δ((2m+ 1)x, z)

}
, δ ∈ RX′×Y

+ , x ∈ X ′, z ∈ Y.

Therefore, for each m ∈ N, the operator Λ := Λm has the form described in (H3) with k = 2,
f1(x) = (m + 1)x, f2(x) = (2m + 1)x, L1(x, z) = L2(x, z) = 1 , gi = IdY , i = 1, 2 for all
x ∈ X ′ and z ∈ Y . Observe that

εm(x, z) ≤ λ1(m+ 1)λ2(m)h1(x, z)h2(x, z), (3.3)

for all x ∈ X ′ and z ∈ Y . By induction, we will show that for each n ∈ N0, we have

Λ
n
mεm(x, z) ≤ λ1(m+ 1)λ2(m)αn

mh1(x, z)h2(x, z), x ∈ X ′, z ∈ Y. (3.4)

for all m ∈ U . For n = 0, it’s obvious to see that (3.4) is exactly (3.3). We fix k ∈ N and assume
that (3.4) holds for n = k. Then, using the non-decreasing of Λm, we have

Λ
k+1
m εm(x, z) = Λm(Λk

mεm(x, z))

= max{Λk
mεm((m+ 1)x, z),Λk

mεm((2m+ 1)x, z)}

= λ1(m+ 1)λ2(m)αk
m max{h1((m+ 1)x, z)h2((m+ 1)x, z), h1((2m+ 1)x, z)h2((2m+ 1)x, z)}

≤ λ1(m+ 1)λ2(m)αk
mh1(x, z)h2(x, z)max{λ1(m+ 1)λ2(m+ 1), λ1(2m+ 1)λ2(2m+ 1)}

= λ1(m+ 1)λ2(m)αk+1
m h1(x, z)h2(x, z),

for all x ∈ X ′ and z ∈ Y . Letting n→∞ in (3.4), we get

lim
n→∞

Λ
n
mεm(x, z) = 0

for all x ∈ X ′,z ∈ Y and all m ∈ U . Then, according to Theorem 2.1, there exists , for each
m ∈ U , a fixed point Jm of Tm such that

‖f(x)− Jm(x), z‖ ≤ sup
n∈N0

Λ
n
mεm(x, z), (3.5)

for all x ∈ X ′ and all z ∈ Y and

lim
n→∞

T n
mf(x) = Jm(x), x ∈ X ′. (3.6)

Next, we will show, by induction, that for each n ∈ N0

‖T n
mf(x+ y) + T n

mf(x− y)− 2T n
mf(x), z‖ ≤ αn

mh1(x, z)h2(y, z), (3.7)

for all x, y, x− y, x+ y ∈ X ′, z ∈ Y and all m ∈ U .
Since the case n = 0 is just (3.1), we fix k ∈ N and suppose that (3.7) holds for n = k. Then, for
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all x, y ∈ X ′ such that x− y, x+ y ∈ X ′ and z ∈ Y we have

‖T k+1
m f(x+ y) + T k+1

m f(x− y)− 2T k+1
m f(x), z‖

= ‖Tm
(
T k
mf(x+ y)

)
+ Tm

(
T k
mf(x− y)

)
− 2Tm

(
T k
mf(x)

)
, z‖

= ‖2T k
mf((m+ 1)(x+ y))− T k

mf((2m+ 1)(x+ y)) + 2T k
mf((m+ 1)(x− y))

− T k
mf((2m+ 1)(x− y))− 4T k

mf((m+ 1)x) + 2T k
mf((2m+ 1)x), z‖

≤ max{2‖T k
mf((m+ 1)(x+ y)) + T k

mf((m+ 1)(x− y))− 2T k
mf((m+ 1)x), z‖;

‖T k
mf((2m+ 1)(x+ y)) + T k

mf((2m+ 1)(x− y))− 2T k
mf((2m+ 1)x), z‖}

≤ max{‖T k
mf((m+ 1)(x+ y)) + T k

mf((m+ 1)(x− y))− 2T k
mf((m+ 1)x), z‖;

‖T k
mf((2m+ 1)(x+ y)) + T k

mf((2m+ 1)(x− y))− 2T k
mf((2m+ 1)x), z‖}

≤ αk
m max{h1((m+ 1)x, z)h2((m+ 1)y, z);h1((2m+ 1)x, z)h2((2m+ 1)y, z)}

≤ αk
mh1(x, z)h2(y, z)max{λ1(m+ 1)λ2(m+ 1);λ1(2m+ 1)λ2(2m+ 1)}

= αk+1
m h1(x, z)h2(y, z).

Thus, we have shown that (3.7) holds for every n ∈ N0. Letting n → ∞ in (3.7), we obtain, for
each m ∈ U , that

Jm(x+ y) + Jm(x− y) = 2Jm(x), x, x+ y, x− y ∈ X ′.

In this way, we find a sequence {Jm}m∈U of a Cauchy-Jensen functions on X ′ such that

‖f(x)− Jm(x), z‖ ≤ sup
n∈N
{λ1(m+ 1)λ2(m)αn

mh1(x, z)h2(x, z)}, x ∈ X ′, z ∈ Y

It follows, with m→∞, that f is Cauchy-Jensen on X ′. 2

By similar method, we prove the following theorem.

Theorem 3.2. Let h : X ′ × Y → R+ be a function such that

U :=
{
n ∈ N : αn = max {λ(n+ 1) , λ(n)} < 1

}
6= φ,

where
λ(n) := inf{t ∈ R+ : h(nx, z) ≤ th(x, z), x ∈ X ′, z ∈ Y }

for all n ∈ N such that
lim

n→∞
λ(n) = 0.

Suppose that f : X ′ → Y satisfies the inequality

‖f(x+ y) + f(x− y)− 2f(x), z‖ ≤ h(x, z) + h(y, z), (3.8)

for all x, y ∈ X ′ such that x+ y, x− y ∈ X ′ and z ∈ Y . Then f is a Cauchy-Jensen on X ′.

Proof. Replacing x by (m+ 1)x and y by mx for m ∈ N in (3.8), we get

‖2f((m+ 1)x)− f((2m+ 1)x)− f(x), z‖ ≤ h((m+ 1)x, z) + h(mx, z), (3.9)

for all x ∈ X ′ and z ∈ Y . For each m ∈ U , we define the operator Tm : Y X′ → Y X′
by

Tmξ(x) := 2ξ((m+ 1)x)− ξ((2m+ 1)x), ξ ∈ Y X′
, x ∈ X ′.

Further, putting

εm(x, z) = h((m+ 1)x, z) + h((m+ 1)x, z) ≤
(
λ(m+ 1) + λ(m)

)
h(x, z), (3.10)
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for all x ∈ X ′ and z ∈ Y , then the inequality (3.9) takes the form

‖Tmf(x)− f(x), z‖ ≤ εm(x, z), x ∈ X ′, z ∈ Y.

For each m ∈ U , the operator Λm : RX′×Y
+ → RX′×Y

+ which is defined by

Λmδ(x) = max{δ((m+ 1)x, z) , δ(mx, z)}, δ ∈ RX′×Y
+ , x ∈ X ′, z ∈ Y

has the form described in (H3) with k = 2 and

f1(x) = (m+ 1)x, f2(x) = mx, L1(x, z) = L2(x, z) = 1

for all x ∈ X ′. Moreover, for every ξ, µ ∈ Y X′
, x ∈ X ′ and z ∈ Y , we have

‖Tmξ(x)− Tmµ(x), z‖
= ‖2ξ((m+ 1)x)− ξ((2m+ 1)x)− 2µ((m+ 1)x) + µ((2m+ 1)x), z‖
≤ max {2‖ξ((m+ 1)x, z)− µ((m+ 1)x, z)‖ , ‖ξ((2m+ 1)x, z)− µ((2m+ 1)x, z)‖}
≤ max {‖ξ((m+ 1)x, z)− µ((m+ 1)x, z)‖ , ‖ξ((2m+ 1)x, z)− µ((2m+ 1)x, z)‖} .

So, (H2) is valid. Also, by using mathematical induction on n ∈ N0, we will show , for each
x ∈ X ′ and z ∈ Y , that

Λ
n
mεm(x, z) ≤

(
λ(m+ 1) + λ(m)

)
αn
mh(x, z), (3.11)

where αm := max {λ(m+ 1) , λ(m)} for all m ∈ U . From (3.10), we obtain that the inequality
(3.11) holds for n = 0. Next, we will assume that (3.11) holds for n = k, where k ∈ N. Then
we have

Λ
k+1
m εm(x, z) =Λm

(
Λ

k
mεm(x, z)

)
= max

{
Λ

k
mεm

(
(m+ 1)x, z

)
, Λ

k
mεm(mx, z)

}
≤
(
λ(m+ 1) + λ(m)

)
αk
m max

{
ϕ
(
(m+ 1)x, z

)
, ϕ(mx, z)

}
≤
(
λ(m+ 1) + λ(m)

)
αk+1
m ϕ(x, z), x ∈ X ′0, z ∈ Y.

This shows that (3.11) holds for n = k + 1. Now we can conclude that the inequality (3.11)
holds for all n ∈ N0. From (3.11), we obtain

lim
n→∞

Λ
nεm(x, z) = 0,

for all x ∈ X ′ , z ∈ Y and all m ∈ U . Hence, according to Theorem 2.1, there exists, for each
m ∈ U , a unique solution Jm : X ′ → Y of the equation

Jm(x) = Jm((m+ 1)x)− 2Jm((2m+ 1)x), x ∈ X ′, (3.12)

such that

‖f(x)− Jm(x), z‖ ≤ sup
n∈N0

{(
λ(m+ 1) + λ(m)

)
αn
mh(x, z)

}
, x ∈ X ′, z ∈ Y. (3.13)

Moreover,
Jm(x) := lim

n→∞

(
T n
mf
)
(x)

for all x ∈ X ′. Now, we show that

‖T n
mf(x+ y) + T n

mf(x− y)− 2T n
mf(x), z‖ ≤ αn

m

(
h(x, z) + h(y, z)

)
(3.14)

for every z ∈ Y , x, y ∈ X ′ such that x+ y , x − y ∈ X ′ and n ∈ N0. Since the case n = 0 is
just (3.8), take k ∈ N and assume that (3.14) holds for n = k, where k ∈ N and every x, y ∈ X ′
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such that x+ y, x− y ∈ X ′. Then∥∥T k+1
m f(x+ y) + T k+1

m f(x− y)− 2T k+1
m f(x), z

∥∥
=
∥∥∥Tm(T k

mf(x+ y)
)
+ Tm

(
T k
mf(x− y)

)
− 2Tm

(
T k
mf(x)

)
, z
∥∥∥

=
∥∥2T k

mf
(
(m+ 1)(x+ y)

)
− T k

mf
(
(2m+ 1)(x+ y)

)
+ 2T k

mf
(
(m+ 1)(x− y)

)
− T k

mf
(
(2m+ 1)(x− y)

)
− 4T k

mf
(
(m+ 1)x

)
+ 2T k

mf
(
(2m+ 1)x

)
, z

≤ max
{

2
∥∥T k

mf
(
(m+ 1)(x+ y)

)
+ T k

mf
(
(m+ 1)(x− y)

)
− 2T k

mf
(
(m+ 1)x

)
, z
∥∥ ,∥∥T k

mf
(
(2m+ 1)(x+ y)

)
+ T k

mf
(
(2m+ 1)(x− y)

)
− 2T k

mf
(
(2m+ 1)x

)
, z
∥∥

≤ max
{∥∥T k

mf
(
(m+ 1)(x+ y)

)
+ T k

mf
(
(m+ 1)(x− y)

)
− 2T k

mf
(
(m+ 1)x

)
, z
∥∥ ,∥∥T k

mf
(
(2m+ 1)(x+ y)

)
+ T k

mf
(
(2m+ 1)(x− y)

)
− 2T k

mf
(
(2m+ 1)x

)
, z
∥∥

≤ max
{
αk
m

(
h
(
(m+ 1)x, z

)
+ h

(
(m+ 1)y, z

))
, αk

m

(
h
(
(2m+ 1)x, z

)
+ h

(
(2m+ 1)y, z

))}
≤ αk

m max
{
λ(m+ 1) , λ(2m+ 1)

}(
h(x, z) + h(y, z)

)
= αk+1

m

(
h(x, z) + h(y, z)

)
.

Thus, by induction we have shown that (3.14) holds for every n ∈ N0. Letting n→∞ in (3.14),
we obtain that

Jm(x+ y) + Jm(x− y) = 2Jm(x),

for all x, y ∈ X ′ such that x + y, x − y ∈ X ′. In this way, we obtain a sequence {Jm}m∈U of
Cauchy-Jensen functions on X ′ such that

‖f(x)− Jm(x), z‖ ≤ sup
n∈N0

{(
λ(m+ 1) + λ(2m+ 1)

)
αn
mh(x, z)

}
, x ∈ X ′, z ∈ Y.

It implies that

‖f(x)− Jm(x), z‖ ≤
(
λ(m+ 1) + λ(2m+ 1)

)
αn
mh(x, z), x ∈ X ′, z ∈ Y.

It follows, with m→∞, that f is a Cauchy-Jensen on X ′.

4 Consequences

In this section, we assume that X ′ = X0 = X \ {0}. According the Theorem 3.1 and Theorem
3.2, we derive the following two corollaries.

Corollary 4.1. Let (X, ‖.‖X) be a normed space and (Y, ‖., .‖) be a non-Archimedean 2-Banach
space, s be a fixed element in Y and let c ≥ 0, r ≥ 0 ,p, q ∈ R such that p+ q < 0. Suppose that
f : X ′ → Y is a function satisfying the inequality

‖f(x+ y) + f(x− y)− 2f(x), z‖ ≤ c ‖x‖pX ‖y‖
q
X ‖z, s‖

r, (4.1)

for all x, y ∈ X ′ such that x+ y, x− y ∈ X ′ and z ∈ Y. Then f is a Cauchy-Jensen on X ′.

Proof. The proof follows from Theorem 3.1 by taking h1, h2 : X ′ × Y → R+ as follows:

h1(x, z) = c1‖x‖pX‖z, s‖
r1

and
h2(y, z) = c2‖y‖qX‖z, s‖

r2
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for all x, y ∈ X ′ and all z ∈ Y , where c1, c2 ∈ R+, r1, r2 ∈ R and p, q ∈ R such that , r1+r2 ≥ 0
and p+ q < 0.
For each m ∈ N, we define λ1(m) as in Theorem 3.1

λ1(m) = inf {t ∈ R+ : h1(mx, z) ≤ t h1(x, z)} , x ∈ X ′, z, s ∈ Y
= inf {t ∈ R+ : c1m

p‖x‖pX‖z, s‖
r1 ≤ tc1‖x‖pX‖z, s‖

r1} , x ∈ X ′, z, s ∈ Y
= mp.

Also, for m ∈ N, we have λ2(m) = mq. Therefore,

lim
m→∞

λ1(m+ 1)λ2(m) = lim
m→∞

(m+ 1)p(m)q = lim
m→∞

(m+ 1)p+q = 0.

Furthermore, we get

αm =max
{
λ1(m+ 1)λ2(m+ 1) , λ1(2m+ 1)λ2(2m+ 1)

}
= max

{
(m+ 1)p+q , (2m+ 1)p+q

}
= (m+ 1)p+q.

Then U is a non empty set. According to Theorem 3.1, f is a Cauchy-Jensen on X ′.

By a similar method, we can prove the following corollary as a particular case of Theorem
3.2 where h(x, z) = c ‖x‖pX‖z, s‖r with c ≥ 0 , p < 0 , and r ≥ 0.

Corollary 4.2. Let (X, ‖.‖X) be a normed space and (Y, ‖., .‖) be a non-Archimedeen 2-Banach
space, s be a fixed element in Y and let c ≥ 0, p < 0 , r ≥ 0 and f : X ′ → Y satisfy

‖f(x+ y) + f(x− y)− 2f(x), z‖ ≤ c
(
‖x‖pX + ‖y‖pX

)
‖z, s‖r,

for all x, y ∈ X ′
such that x+ y, x− y ∈ X ′

and z ∈ Y . Then f is a Cauchy-Jensen on X ′.

In the following two corollaries, we discuss the hyperstability of the inhomogeneous Cauchy-
Jensen functional equation.

Corollary 4.3. Let (X, ‖.‖X) be a normed space and (Y, ‖., .‖) be a non-Archimedean 2-Banach
space, s be a fixed element in Y and let G : X ′2 → Y such that G(x0, y0) 6= 0 for some
x0, y0 ∈ X ′ and ∥∥G(x, y), z∥∥ ≤ c ‖x‖pX ‖y‖qX ‖z, s‖r, (4.2)

for all x, y ∈ X ′ such that x+y, x−y ∈ X ′ and z ∈ Y where c ≥ 0, p, q ∈ R such that p+q < 0.
Then the functional equation

g(x+ y) + g(x− y) = 2g(x) +G(x, y), (4.3)

for all x, y ∈ X ′ with x+ y, x− y ∈ X ′, has no solution in the class of functions g : X → Y .

Proof. Suppose that f : X → Y is a solution to (4.3). Then∥∥∥f(x+ y) + f(x− y)− 2f(x), z
∥∥∥ = ∥∥∥2f(x) +G(x, y)− 2f(x), z

∥∥∥
=
∥∥G(x, y), z∥∥

≤ c ‖x‖pX ‖y‖
q
X ‖z, s‖

r, x, y,∈ X ′, z ∈ Y.

Consequently, by Theorem 3.1, f is a Cauchy-Jensen on X ′, whence

G(x0, y0) = f(x0 + y0) + f(x0 − y0)− 2f(x0) = 0,

which is a contradiction.
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Corollary 4.4. Let (X, ‖.‖X) be a normed space and (Y, ‖., .‖) be a non-Archimedean 2-Banach
space, s be a fixed element in Y and p, q ∈ R such that p + q < 0. Assume that G : X ′2 → Y
and f : X ′ → Y satisfy the inequality∥∥f(x+ y) + f(x− y)− 2f(x)−G(x, y), z

∥∥ ≤ c ‖x‖pX ‖y‖qX ‖z, s‖r, (4.4)

for all x, y ∈ X ′ with x+ y, x− y ∈ X ′ and z ∈ Y . If the functional equation

f(x+ y) + f(x− y) = 2f(x) +G(x, y), x, y ∈ X ′, (4.5)

has a solution f0 : X ′ → Y , then f is a solution of functional equation 4.5 on X ′.

Proof. From (4.4), we get that the function K : X ′ → Y defined by K := f − f0 satisfies (4.1).
Consequently, Corollary 4.1 implies that K is a Cauchy-Jensen on X ′. Therefore,

f(x+ y) + f(x− y)− 2f(x)−G(x, y) = K(x+ y) + f0(x+ y) +K(x− y) + f0(x− y)
− 2K(x)− 2f0(x)−G(x, y)

= 0.

for all x, y ∈ X ′ with x+ y, x− y ∈ X ′. Which means f is a solution of functional equation 4.5
on X ′.
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