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Abstract Results towards reaching Birkhoff-Kakutani theorem in topological polygroups are
studied and metametric on first countable T1 topological polygroup is obtained in a constructive
way which induces stronger topology than the underlying one.

1 A brief history of Polygroups

Polygroups [1, 13, 15] appeared in the literature as a special subclass of Marty’s hypergroups
[3]. Only a few articles [2, 4, 6, 7, 8, 9, 10, 12, 14] have addressed the concept of topological
hyperstructures so far. Heidari et al. [2] initiated the notion of topological polygroup as a gener-
alization of topological group and later Shadkami et al. [9, 10], Singha et al. [8], Jamalzadeh [4]
extended this field of study. In this setting, we define prenorm on a polygroup and study different
properties associated with it. Later, we use this notion on a topological polygroup to obtain a
metametric on it as in [11] and show that the topology induced by the metametric is stronger
than the underlying topology on the polygroup.

Let’s warm up with some basic definitions and results which will be treated as ready refer-
ences in the sequel. Let P be a nonempty set andP∗(P ) be the collection of all nonempty subsets
of P . A function ◦ : P ×P → P∗(P ) is called a hyperoperation on P and the ordered pair (P, ◦)
is called a hypergroupoid. The hyperoperation ◦ is extended to subsets of P in a usual way, i.e.,
for nonempty subsets H,K of P , H ◦K =

⋃
{h ◦ k : h ∈ H, k ∈ K}. For x ∈ P , the notations

x ◦H , H ◦ x are used for {x} ◦H and H ◦ {x}, respectively. The hypergroupoid (P, ◦) is called
(i) a semihypergroup if for all x, y, z ∈ P , x◦(y ◦z) = (x◦y)◦z; (ii) a quasihypergroup if for all
x ∈ P , x ◦P = P ◦ x = P ; (iii) a hypergroup if it is both semihypergroup and quasihypergroup.
A hypergroup P is called a polygroup if the following conditions hold:

(1) for all x ∈ P , there exists an element e (called the scalar identity) in P such that e ◦ x =
x ◦ e = {x};

(2) for each x ∈ P , there exists a unique element x−1 ∈ P (called the inverse of x) such that
e ∈ x ◦ x−1 ∩ x−1 ◦ x;

(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

Denote the polygroup by (P, ◦, e,−1 ).
For a nonempty subset A of P , A−1 := {x−1 : x ∈ A} and A is called symmetric if A−1 = A.
A nonempty subset K of a polygroup P is called a subpolygroup of P if (1) a, b ∈ K implies
a ◦ b ⊆ K and (2) a ∈ K implies a−1 ∈ K.
A nonempty subset C of a hypergroup (P, ◦) is said to be a complete part of P if for any nonzero
natural number n and for all x1, x2, · · · , xn of P , the following implication holds:

C ∩ (x1 ◦ x2 ◦ x3 ◦ · · · ◦ xn) 6= φ⇒ x1 ◦ x2 ◦ x3 ◦ · · · ◦ xn ⊆ C.

Lemma 1.1. ([14]) For a topological space (P, τ), the collection B = {SV : V ∈ τ}, where
SV = {U ∈ P∗(P ) : U ⊆ V } forms a base for some topology τ∗ on P∗(P ).

Definition 1.2. ([2]) Let (P, ◦, e,−1 ) be a polygroup and (P, τ) be a topological space. Then, the
system (P, ◦, e,−1 , τ) is said to be a topological polygroup if the mappings ◦ : P × P → P∗(P )
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and −1 : P → P are continuous while considering the product topology on P × P and the
topology τ∗ on P∗(P ).

Lemma 1.3. ([2]) In a topological polygroup (P, ◦, e,−1 , τ), the following results hold:

(i) the hyperoperation ◦ : P ×P → P∗(P ) is continuous if and only if for x, y ∈ P and W ∈ τ
such that x ◦ y ⊆W , then there exist U, V ∈ τ such that x ∈ U , y ∈ V and U ◦ V ⊆W ;

(ii) if U is an open subset as well as a complete part of P , then for a ∈ P , a ◦ U and U ◦ a are
open subsets of P ;

(iii) ifW ∈ τ and x ∈W , then there exists V ∈ τ containing e such that x◦V ⊆W , V ◦x ⊆W ;

(iv) if W ∈ τ and contains e, then there exists V ∈ τ containing e such that V ◦ V ⊆W ;

(v) if W ∈ τ and contains e, then there exists V ∈ τ containing e such that V −1 ⊆W ;

(vi) for every neighborhood U of e, there exists a symmetric neighborhood V of e such that
V ⊆ U .

Metametric, introduced by Väisälä [5] is one of the generalizations of the well known concept
of metric in literature.
A metametric on a nonempty set P is a function m : P × P → [0,∞) satisfying the following
properties:

(1) for x, y ∈ P , m(x, y) = m(y, x);

(2) for x, y, z ∈ P , m(x, y) ≤ m(x, z) +m(z, y);

(2) if m(x, y) = 0 for x, y ∈ P , then x = y.

The ordered pair (P,m) is called a metametric space. For a ∈ P and r > 0 write Bm(a, r) =
{x ∈ P : m(x, a) < r}. The metametric m on P induces a Hausdorff topology τm in the
following way:

A subset U of P is open in P if for each a ∈ U there exists r > 0 such that Bm(a, r) ⊆ U .
Throughout this paper, all neighborhoods are assumed to be open.

2 Prenorms on a polygroup

Here, we obtain a metametric by the help of prenorm on a first countable T1 topological poly-
group and show that the topology induced by the metametric on the polygroup is stronger than
the underlying topology. So, let’s define prenorm on a polygroup first.

Definition 2.1. A Prenorm N on a polygroup P is a real-valued function with the following
properties

(PN1) N(e) = 0,
(PN2) for x ∈ P , N(x) = N(x−1),
(PN3) for x, y ∈ P , the set N(x ◦ y) is bounded above in R and

supN(x ◦ y) ≤ N(x) +N(y).

The following results are immediate after the above definition.

Proposition 2.2. The following results hold for a prenorm N on a polygroup P :

(i) for x ∈ P , N(x) ≥ 0,

(ii) for x, y ∈ P , |N(x)−N(y)| ≤ supN(x−1 ◦ y),

Proof. (i) For x ∈ P , e ∈ x ◦ x−1. Then, 0 = N(e) ≤ supN(x ◦ x−1) ≤ N(x) + N(x−1) =
2N(x). i.e., N(x) ≥ 0 for x ∈ P .

(ii) For x, y ∈ P , y ∈ x◦(x−1◦y). Then, y ∈ x◦t for some t ∈ x−1◦y andN(y) ≤ supN(x ◦ t) ≤
N(x) + N(t) ≤ N(x) + supN(x−1 ◦ y). i.e., N(y) − N(x) ≤ supN(x−1 ◦ y). Again, x−1 ∈
(x−1◦y)◦y−1, then x−1 ∈ s◦y−1 for some s ∈ x−1◦y. So,N(x) = N(x−1) ≤ supN(s ◦ y−1) ≤
N(s) +N(y−1) ≤ supN(x−1 ◦ y) +N(y). i.e., N(x)−N(y) ≤ supN(x−1 ◦ y).
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Proposition 2.3. For a prenorm N on a polygroup P , the set K = {x ∈ P : N(x) = 0} is a
subpolygroup of P .

Proof. For a, b ∈ K, take t ∈ a ◦ b. Then, 0 ≤ N(t) ≤ supN(a ◦ b) ≤ N(a) +N(b) = 0. Thus,
a ◦ b ⊆ K. Also, for a ∈ K, N(a−1) = N(a) = 0 implies a−1 ∈ K.

The following lemma illustrates the construction of a prenorm from a bounded real-valued
function on a polygroup.

Lemma 2.4. Consider a bounded real-valued function f on a polygroup P . Then, the function
Nf defined on P by

Nf (x) = sup {|f(t)− f(y)| : t ∈ y ◦ x and y ∈ P}

for x ∈ P , is a prenorm on P .

Proof. Nf (e) = 0. For x ∈ P ,

Nf (x
−1) = sup {|f(t)− f(y)| : t ∈ y ◦ x−1, y ∈ P}

= sup {|f(y)− f(t)| : y ∈ t ◦ x, t ∈ P} = Nf (x).

For x, y ∈ P , Nf (x ◦ y) is bounded. For t ∈ x ◦ y,

Nf (t) = sup {|f(r)− f(s)| : r ∈ s ◦ t, s ∈ P}
≤ sup {|f(r)− f(p)| : r ∈ s ◦ t, p ∈ s ◦ x, s ∈ P}

+ sup {|f(p)− f(s)| : r ∈ s ◦ t, p ∈ s ◦ x, s ∈ P}
≤ sup {|f(r)− f(p)| : r ∈ p ◦ y, p ∈ s ◦ x, s ∈ P}

+ sup {|f(p)− f(s)| : r ∈ p ◦ y, p ∈ s ◦ x, s ∈ P}
≤ sup {|f(r)− f(p)| : r ∈ p ◦ y, p ∈ P}

+ sup {|f(s)− f(p)| : s ∈ p ◦ x−1, p ∈ P}
= Nf (y) +Nf (x

−1) = Nf (y) +Nf (x).

Hence, supNf (x ◦ y) ≤ Nf (x) +Nf (y).

Proposition 2.5. A prenorm N on a topological polygroup P , where the open subsets are com-
plete parts is continuous if and only if for every ε > 0 there exists a neighborhood U of e such
that N(x) < ε, for each x ∈ U .

Proof. IfN is continuous on P , then the condition holds. For the converse take x ∈ P and ε > 0.
Consider a neighborhood U of the identity e satisfying the condition as stated in Proposition 2.5.
Then, x ◦ U is a neighborhood of x. Take y ∈ x ◦ U . Then, y ∈ x ◦ u for some u ∈ U and
u ∈ x−1 ◦ y, which implies x−1 ◦ y ⊆ U . Then, (ii) of Proposition 2.2 implies |N(x)−N(y)| ≤
supN(x−1 ◦ y) ≤ ε. Thus, N is continuous at x.

Let’s define different type of balls for a polygroup.

Definition 2.6. For a prenorm N on a topological polygroup P , define unit ball to be the set
BN = {x ∈ P : N(x) < 1} and N -ball of radius r to be the set BN (r) = {x ∈ P : N(x) < r}.

If N is continuous, then the above balls are open in P .

To use later in the sequel, let’s develop few results.

Lemma 2.7. Let {Un : n ∈ ω = N ∪ {0}} be a sequence of symmetric neighborhoods of the
identity e in a topological polygroup P such that Un+1 ◦Un+1 ⊆ Un, for each n ∈ ω. Then, there
exists a prenorm N on P satisfying the following condition:

(PN4) {x ∈ P : N(x) < 1/2n} ⊆ Un ⊆ {x ∈ P : N(x) ≤ 2/2n}
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Proof. Take V (1) = U0, fixing n ∈ ω, assume that V (m/2n) are neighborhoods of e for m =
1, 2, · · · , 2n. Then, put V (1/2n+1) = Un+1, V (2m/2n+1) = V (m/2n) form = 1, 2, · · · , 2n and
V ((2m+1)/2n+1) = V (m/2n)◦Un+1 = V (m/2n)◦V (1/2n+1) for m = 1, 2, · · · , 2n−1. This
defines neighborhoods V (r) of the identity e for every positive dyadic rational number r ≤ 1.
Put V (m/2n) = P for m > 2n. As in general case [11] the following condition holds:

(‡) V (m/2n) ◦ V (1/2n) ⊆ V ((m+ 1)/2n), for all integers m > 0 and n ≥ 0.

Define a real-valued function f on P as follows:
For x ∈ P ,

f(x) = inf {r > 0 : x ∈ V (r)}.

Then f is well-defined, as x ∈ V (2) = P , for x ∈ P . (‡) implies if 0 < r < s for positive dyadic
rational numbers r and s, then V (r) ⊆ V (s). Here, r and s are positive dyadic rational numbers.
Thus the following fact arises:

If f(x) < r, then x ∈ V (r).

f is non-negative and bounded above by 2. Then, Lemma 2.4 ensures the function N defined on
P by

N(x) = sup
t∈y◦x, y∈P

|f(t)− f(y)|, for all x ∈ P

is a prenorm on P .
To prove the condition (PN4), take x ∈ P such that N(x) < 1/2n. Then f(x) = |f(e ◦
x) − f(e)| ≤ N(x) < 1/2n, as f(e) = 0. This implies x ∈ V (1/2n) = Un. To prove the
remaining part take x ∈ V (1/2n). For any y ∈ P there exists a positive integer k such that
(k − 1)/2n ≤ f(y) < k/2n. Then y ∈ V (k/2n). V (1/2n) is symmetric, so x−1 ∈ V (1/2n) and
y ◦ x and y ◦ x−1 both are contained in V (k/2n) ◦ V (1/2n) ⊆ V ((k + 1)/2n). Therefore,

f(t) ≤ (k + 1)/2n, for all t ∈ y ◦ x

and

f(t) ≤ (k + 1)/2n, for all t ∈ y ◦ x−1.

So we obtain

f(t)− f(y) ≤ (k + 1)/2n − (k − 1)/2n ≤ 2/2n, for all t ∈ y ◦ x

and

f(t)− f(y) ≤ (k + 1)/2n − (k − 1)/2n ≤ 2/2n, for all t ∈ y ◦ x−1.

After replacing y, t in the last inequality, it becomes

f(t)− f(y) ≥ −2/2n, for all t ∈ y ◦ x.

Combining we get |f(t)− f(y)| ≤ 2/2n, for all t ∈ y ◦ x.
Hence, N(x) = sup

t∈y◦x, y∈P
|f(t)− f(y)| ≤ 2/2n.

Theorem 2.8. In a topological polygroup P , for each neighborhood U of e there exists a prenorm
N on P such that the unit ball BN is contained in U . Moreover, if the open subsets of P are
complete parts, then N is continuous.

Proof. P being a topological polygroup, we can construct a sequence of symmetric neighbor-
hoods {Un : n ∈ ω} of e in P satisfying all the conditions of Lemma 2.7 such that U0 = U .
Then, by Lemma 2.7 there exists a prenorm N on P such that the unit ball BN of N is contained
in U0 = U .

The second assertion follows from Proposition 2.5.

Let’s prove the main result of the paper.
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Theorem 2.9. Every first countable topological polygroup satisfying T1-axiom of separability
possesses a metametric. Moreover, the topology induced by the metametric is stronger than the
underlying topology on the polygroup.

Proof. Let P be a first countable topological polygroup which satisfies T1 separation axiom.
Suppose {Wn : n ∈ ω} be a countable base of P at e. Then, a sequence of symmetric neigh-
borhoods {Un : n ∈ ω} of e can be constructed such that Un ⊆ Wn and Un+1 ◦ Un+1 ⊆ Un for
n ∈ ω. So, by Lemma 2.7, there exists a prenorm N on P such that BN (1/2n) ⊆ Un, for each
n ∈ ω. For x, y ∈ P , set m(x, y) = supN(x ◦ y−1). Then,

(1) for x ∈ P , m(x, x) = supN(x ◦ x−1) ≥ 0 as e ∈ x ◦ x−1.

(2) For x, y ∈ P ,

m(x, y) = sup {N(t) : t ∈ x ◦ y−1}
= sup {N(t−1) : t−1 ∈ y ◦ x−1}
= sup {N(s) : s ∈ y ◦ x−1} = m(y, x).

(3) For x, y, z ∈ P , x ◦ y−1 ⊆ (x ◦ z−1) ◦ (z ◦ y−1). Take t ∈ x ◦ y−1, then t ∈ p ◦ q for some
p ∈ x ◦ z−1 and q ∈ z ◦ y−1. So, N(t) ≤ supN(p ◦ q) ≤ N(p)+N(q) ≤ supN(x ◦ z−1)+
supN(z ◦ y−1) = m(x, z) +m(z, y). This implies m(x, y) ≤ m(x, z) +m(z, y).

(4) Ifm(x, y) = 0 for some x, y ∈ P , i.e., supN(x ◦ y−1) = 0, then x◦y−1 ⊆ BN (1/2n) ⊆ Un

for each n ∈ ω⇒ x ◦ y−1 ⊆
⋂

n∈ω
Un = {e}, as P is a T1 space. This implies x = y.

To prove the second assertion, let τ, τm be the underlying topology and the topology induced by
the metametric m on P , respectively. Take a member W of τ and x ∈ W . Then, there exists
Uk, for some k ∈ ω such that Uk ◦ x ⊆ W . So, by Lemma 2.7, BN (1/2k) ◦ x ⊆ Uk ◦ x ⊆ W .
Claim that Bm(x, 1/2k) ⊆ BN (1/2k) ◦ x. For, take p ∈ Bm(x, 1/2k), then m(x, p) < 1/2k,
i.e., supN(p ◦ x−1) < 1/2k, which implies N(t) < 1/2k for all t ∈ p ◦ x−1. Consequently,
p ∈ t ◦ x ⊆ BN (1/2k) ◦ x, which implies W ∈ τm.

Let’s conclude the section with following remark.

Remark 2.10. The reverse inequality in Theorem 2.9, i.e., τm ⊆ τ may not be true in general.
For, consider ([0, 1], τ) as a subspace of R with standard topology. For x, y ∈ [0, 1], let ◦ be the
hyperoperation defined as follows

x ◦ y =

{
{max{x, y}}, if x 6= y;
[0, x], if x = y.

Then, ([0, 1], ◦, τ) is a topological polygroup which is first countable and satisfies T1-axiom of
separability. So, there exists a prenorm which induces a metametric m on [0, 1]. A basis for the
topology τm on [0, 1] generated by the metametric m is the collection B = {Bm(a, r) : a ∈
[0, 1] with m(a, a) = 0, r > 0}

⋃
{{b} : b ∈ [0, 1] with m(b, b) > 0}. Take x ∈ [0, 1] such that

m(x, x) > 0. Then, there exists no element containing such x in τ which is contained in {x}.
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