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Abstract This paper concerns the study of a class of fractional functional differential equa-
tions (FFDEs) involving Hilfer-Hadamard fractional derivative. The existence, uniqueness, and
Ulam-Hyers-Mittag-Leffler (UHLM) stability of solutions to the problem at hand are investi-
gated. Our discussion is based upon a known fixed point theorem of Banach, Picard operator
technique, and Gronwall inequality. An example is also given to show the applicability of our
results.

1 Introduction

The theme of fractional calculus (FC) deals with derivatives and integrals of any non-integer
order whether a real or complex, it has acquired great attention and increasingly of many math-
ematicians during the past decades, due mainly to its applications in many fields of applied
science, and engineering, etc. For recent developments in this area, we refer to monographs of
R. Hilfer (2000, [11]), Kilbas, et al. (2006, [14]), and references therein. In the same framework,
the original contribution of the stability of functional equations has been developed by Ulam in
[26]). Then follow it, Hyers in [13]. Next, the Ulam-Hyers stability was improved by Rassias in
[24].

Over the past few years, considerable attention has widely been given to the existence and
stability of solutions for various categories of FDEs, and has been studied by distinct types of
fractional derivatives such as Hilfer, Hadamard, Hilfer-Hadamard, and ψ-Hilfer, we refer to the
papers [2, 4, 5, 6, 12, 15, 16, 23, 27, 25, 28, 32], and the references therein.

Functional differential equations of fractional order have extensively been deliberated by
many researchers. Very briefly, interesting topics in this field are the investigation of some
qualitative properties of solutions e.g., existence, uniqueness, and stability, through fixed point
techniques. Although there are some articles on the stability results of FDEs in the Ulam–Hyers
sense (see to name a few [3, 9, 17, 18, 21, 22]). However, there are a few authors have expanded
some of the stability results studied in the Ulam–Hyers concept to another concept so-called
Ulam–Hyers- Mittag-Leffler, for further details see [7, 8, 19, 20, 30, 31]. For instance, J. Wang
and Y. Zhang in [31] established the Ulam-Hyers-Mittag-Leffler (UHML) stability of delayed
FDEs of the form

CDµ
0+σ(t) = ℵ(t, σ(t), σ(γ(t))), 0 < µ < 1, t ∈ [0, b],

σ(t) = ϕ(t), t ∈ [−r, 0], r > 0,

where CDµ
0+ is the Caputo-type fractional derivative of order µ, and ℵ : [0, b] × R×R → R,

γ : [0, b]→ [−r, b]) are continuous functions with γ(t) ≤ t.
Unfortunately, UHML stability of FDEs with Hadamard and Hilfer-Hadamard derivatives is

still not studied until now. Spurred by the aforementioned works, we will concentrate our atten-
tion on the more general problem so-called here Hilfer-Hadamard type for fractional functional
differential equation (for short, Hilfer-Hadamard FFDE) containing the initial condition and the
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initial functional:

HD
µ,ν
1+ σ(t) = ℵ(t, σ(t), σ(γ(t))), 0 < µ < 1, 0 ≤ ν ≤ 1, t ∈ (1, e], (1.1)

HI
1−ρ
1+ σ(1) = σ1, µ ≤ ρ = µ+ ν(1− µ), (1.2)

σ(t) = ϕ(t), t ∈ [−r, 1], 0 < r <∞, (1.3)

where HD
µ,ν
1+ is the fractional derivative of order µ and parameter ν in the Hilfer-Hadamard

sense, HI
1−ρ
1+ is fractional integral of order 1 − ρ in the Hadamard sense, ℵ : (1, e] × R2 → R,

γ : (1, e]→ [−r, e], ϕ : [−r, 1]→ R are continuous with γ(t) ≤ t, and σ1 ∈ R.
The focus of the paper is the generalization of some results on FFDEs that have been studied

in the literature [20, 30, 31], in this work, we obtain the existence, uniqueness and UHML
stability of solutions for Hilfer-Hadamard FFDE (1.1)-(1.3). Our discussion mainly depends on
the famous fixed point theorem of Banach, the Picard operator technique, and the inequalities
of Gronwall. The obtained results can be considered as a contribution to developing UHML
stability results for FFDEs involving Hilfer- Hadamard fractional derivative. In this concept and
as far as we know, it is the first work concerning FFDEs involving Hilfer-Hadamard fractional
derivative.

Besides the aforementioned in the introduction section, the rest distribution of the work is
as follows: In Sect. 2, we rendering some needful definitions and results which are applied
throughout this work. Sect. 3 studies the existence, uniqueness and UHML stability of solu-
tions to Hilfer-Hadamard FFDE (1.1)-(1.3). In Sect. 4, we give an illustrating example of the
applicability of the results obtained. The last Sect. includes the conclusion of the work.

2 Preliminaries

In this segment, we insert some notations and key findings concerning with Hilfer-Hadamard
fractional derivative that assist in proving our theories for this work. Let us fix I = [1, e] and
let C[I,R] is a Banach space endorsed with the norm ‖σ‖C = sup{|σ(t)| ; t ∈ I}, σ ∈ C[I,R].
Denote by L1[I,R] be the space of Lebesgue integrable function σ on I, endowed with the norm
‖σ‖L1 =

∫
I
|σ(t)| dt <∞. As usual, AC[I,R] is the space of functions from I into R which are

absolutely continuous, and the spaces ACn[I,R] and ACn% [I,R] are defined by

ACn[I,R] = {σ : I → R : σ(n−1)(t) ∈ AC[I,R]};

ACn% [I,R] = {σ : I → R : %(n−1)σ(t) ∈ AC[I,R], % = t
d

dt
}.

Further, let ρ ∈ (0, 1] by C1−ρ,log[I,R] and C1
1−ρ,log[I,R] we denote the weighted spaces of

continuous functions defined by

C1−ρ,log[I,R] = {σ : (1, e]→ R : [log(t)]1−ρσ(t) ∈ C[I,R]}, and

C1
1−ρ,log[I,R] := {σ ∈ C[I,R] : σ(1) ∈ C1−ρ,log[I,R]}

endowed with the norms

‖σ‖C1−ρ,log =
∥∥[log(t)]1−ρσ(t)

∥∥
C
= max{

∣∣[log(t)]1−ρσ(t)
∣∣ ; t ∈ I}, and

‖σ‖C1
1−ρ,log

= ‖σ‖C + ‖σ(1)‖C1−ρ,log ,

respectively. Decidedly, C1−ρ,log[I,R] and C1
1−ρ,log[I,R] are Banach spaces with the norms ‖ ·

‖C1−ρ,log , and ‖·‖C1
1−ρ,log

respectively. Furthermore, C0
1−ρ,log[I,R] := C1−ρ,log[I,R].

Definition 2.1. [1] The left-sided Hadamard fractional integral of order µ > 0 for a function
σ : I → R is defined by

HI
µ
1+σ(t) =

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1σ(τ)

dτ

τ
,

on condition that HI
µ
1+(·) exists, where Γ(ω) =

∫∞
0 τω−1e−τdτ ; ω > 0 is called the Gamma

function, and log(·) = loge(·).
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Definition 2.2. [32] Let n − 1 < µ < n (n ∈ N0) and σ : I → R. The left-sided Hadamard
fractional derivative of order µ for a function σ : I → R is defined by

HD
µ
1+σ(t) =

%n

Γ(n− µ)

∫ t

1
(log t− log τ)n−µ−1σ(τ)

dτ

τ
,

where %n =

(
t ddt

)n
and n = [µ] + 1, here [µ] denotes the integer part of µ.

Definition 2.3. [32] Let n − 1 < µ < n and σ ∈ ACn% [I,R]. The left-sided Caputo-Hadamard
fractional derivative of order µ of σ is defined by

CHD
µ
1+σ(t) = HD

µ
1+

(
σ(t)−

n−1∑
k=0

%kσ(1)
k!

(log t− log τ)k
)
.

Moreover, if µ /∈ N0, then CHD
µ
1+σ(t) can be represented by

CHD
µ
1+σ(t) =

1
Γ(n− µ)

∫ t

1
(log t− log τ)n−µ−1 %nσ(τ)

dτ

τ
,

While if µ ∈ N, then we have CHD
µ
1+σ(t) = %nσ(t).

Definition 2.4. [15] Let n − 1 < µ < n, 0 ≤ ν ≤ 1, and σ ∈ ACn[I,R]. The left-sided
Hilfer-Hadamard fractional derivative of order µ of a function σ is defined by

HD
µ,ν
1+ σ(t) =

(
H
I
ν(n−µ)
1+ %n(HI

(1−ν)(n−µ)
1+ σ)

)
(t), (2.1)

One has
HD

µ,ν
1+ σ(t) =

(
H
I
ν(n−µ)
1+ (HD

ρ
1+σ)

)
(t), ρ = µ+ nν − µν,

HD
ρ
1+ = %n HI

(1−ν)(n−µ)
1+ = %n HI

n−ρ
1+ .

Remark 2.5.

(i) If ν = 0, then Hilfer-Hadamard fractional derivative HD
µ,ν
1+ (·) decay to Hadamard frac-

tional derivative HD
µ
1+(·).

(ii) If ν = 1, then Hilfer-Hadamard fractional derivative HD
µ,ν
1+ (·) decay to Caputo–Hadamard

fractional derivative CHD
µ
1+(·).

(iii) In a special case, if 0 < µ < 1 and 0 ≤ ν ≤ 1, then Hilfer-Hadamard fractional derivative
HD

µ,ν
1+ (·) also can be rewritten as

HD
µ,ν
1+ = HI

ν(1−µ)
1+ % HI

(1−ν)(1−µ)
1+ = HI

ν(1−µ)
1+ (HD

ρ
1+), ρ = µ+ ν − µν,

where HD
ρ
1+ = %

(
HI

(1−ν)(1−µ)
1+

)
= % HI

1−ρ
1+ .

Lemma 2.6. [15] If µ > 0, ν > 0, then we have

[
H
Iµ1+(log τ)ν−1](t) = Γ(ν)

Γ(ν + µ)

(
log(t)

)ν+µ−1
,

and [
H
Dµ

1+(log τ)ν−1](t) = Γ(ν)

Γ(ν − µ)
(

log(t)
)ν−µ−1

In exceptional condition, if ν = 1, then HD
µ,ν
1+ of a constant is not equal to zero, i.e.

(HD
µ
1+1)(t) =

1
Γ(1− µ)

(log t)−µ, 0 < µ < 1.
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Lemma 2.7. [15] Let µ > 0, ν > 0 and 0 < ρ ≤ 1. Then for all t ∈ (1, e] and σ ∈ C1−ρ,log[I,R],

HI
µ
1+ HI

ν
1+σ(t) = HI

µ+ν
1+ σ(t), (2.2)

and
HD

µ
1+ HI

µ
1+σ(t) = σ(t). (2.3)

Remark 2.8. In particular, if σ ∈ C[I,R], then the relations (2.2) and (2.3) hold at t ∈ I.

Let 0 < µ < 1, 0 < ρ ≤ 1. If σ ∈ C1−ρ,log[I,R] and HI
1−µ
1+ σ∈ C1

1−ρ,log[I,R], then

HI
µ
1+ HD

µ
1+σ(t) = σ(t)−

(HI
1−µ
1+ σ)(1)
Γ(µ)

(log t)µ−1, ∀t ∈ (1, e].

Now, we are going to present the Picard operator definition, the abstract Gronwall lemma, and
the generalized Gronwall inequality in the Hadamard fractional integral sense that be important
tools in our subsequent analysis.

Definition 2.9. [31] Let (U, d) be a metric space. We say that the operator T : U → U is a Picard
if there exists u∗ ∈ U such that:

(i) ϒT = u∗ is the fixed points set of the operator T , where ϒT = {u ∈ U : T (u) = u}.

(ii) For all u0 ∈ U the sequence {Tn(u0)}n∈N is a converges to u∗.

Lemma 2.10. [31] Let (U, d,≤) be an ordered metric space, and the Picard operator T : U → U
be an increasing with ϒT = {u∗T }. Then for u ∈ U,

u ≤ T (u)⇒ u ≤ u∗T while u ≥ T (u)⇒ u ≥ u∗T .

Lemma 2.11. [32] Let 0 < µ < 1, and ℘, ∅ : I → [1,+∞) be continuous functions. If γ is
nondecreasing function and there exist a constant } ≥ 0 such that

℘(t) ≤ ∅(t) + }
∫ t

1
(log t− log τ)µ−1℘(τ)

dτ

τ
, t ∈ I,

then

℘(t) ≤ ∅(t) +
∫ t

1

[ ∞∑
n=1

(}Γ(µ))n

Γ(nµ)
(log t− log τ)nµ−1∅(τ)

]
dτ

τ
, t ∈ I.

In particular, if the function ∅(t) be a nondecreasing on I , then we have

℘(t) ≤ ∅(t)Eµ(}Γ(µ)(log t)µ).

Here the symbol Eµ(·) means Mittag-Leffler function defined by

Eµ(z) =
∞∑
k=0

zk

Γ(kµ+ 1)
, z ∈ C.

Now we will introduce some concepts of UHML stability analysis.
Let be a positive real number ε > 0. Then for ℵ ∈ C1−ρ,log[I,R] and θ ∈ C ([−r, e], R), we

consider the Hilfer-Hadamard FFDE (1.1)-(1.3) associated with the following inequality:

|HDµ,ν
1+ θ(t)− ℵ(t, θ(t), θ(γ(t)))| ≤ εEµ(log t)µ. (2.4)

Definition 2.12. Hilfer-Hadamard FFDE (1.1)-(1.3) is UHML stable with respect to Eµ(log t)µ if
there exists a real number cEµ > 0 such that, for each ε > 0 and each solution θ ∈ C ([−r, e], R)
satisfying inequality (2.4), there exist a solution σ ∈ C ([−r, e], R) of problem (1.1)-(1.3) toe the
line

|θ(t)− σ(t)| ≤ cEµεEµ(log t)µ, t ∈ [−r, e].
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Remark 2.13. A function θ ∈ C1−ρ,log[I,R] is a solution of inequality (2.4) if and only if there
exists a function depends on θ, let it be h̃(t) ∈ C1−ρ,log[I,R] such that |h̃(t)| ≤ εEµ(log t)µ, for
t ∈ (1, e] and HD

µ,ν
1+ θ(t) = ℵ(t, θ(t), θ(γ(t))) + h̃(t), t ∈ (1, e].

Lemma 2.14. Let ℵ : (1, e]×R×R→ R be a continuous function. Then the problem (1.1)-(1.2)
is equivalent to

σ(t) =
(log t)ρ−1

Γ(ρ)
σ1 +

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dτ

τ
, t ∈ (1, e].

Lemma 2.15. Let 0 < µ < 1, ρ = µ + ν(1 − µ), and θ ∈ C1−ρ,log[I,R] satisfying inequality
(2.4). Then θ is a solution of the following integral inequality∣∣∣∣θ(t)− (log t)ρ−1

Γ(ρ)
θ1 −

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, θ(τ), θ(γ(τ)))dτ

τ

∣∣∣∣
≤ εEµ(log t)µ.

Proof. Thanks to Remark 2.13, we have

HD
µ,ν
1+ θ(t) = ℵ(t, θ(t), θ(γ(t))) + h̃(t), t ∈ (1, e].

The Lemma 2 and the condition HI
1−ρ
1+ θ(1) = θ1 lead us to

θ(t) =
(log t)ρ−1

Γ(ρ)
θ1 +

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, θ(τ), θ(γ(τ)))dτ

τ

+
1

Γ(µ)

∫ t

1
(log t− log τ)µ−1h̃(τ)

dτ

τ
, t ∈ (1, e].

From the last equation and using Remark 2.13 again, we get∣∣∣∣θ(t)− (log t)ρ−1

Γ(ρ)
θ1 −

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, θ(τ), θ(γ(τ)))dτ

τ

∣∣∣∣
≤ 1

Γ(µ)

∫ t

1
(log t− log τ)µ−1 ∣∣h̃(τ)∣∣ dτ

τ
.

≤ ε

Γ(µ)

∫ t

1
(log t− log τ)µ−1Eµ(log τ)µ

dτ

τ

≤ ε

Γ(µ)

∫ t

1
(log t− log τ)µ−1

∞∑
k=0

(log τ)kµ

Γ(kµ+ 1)
dτ

τ

= ε

∞∑
k=0

1
Γ(kµ+ 1)

[
1

Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)(kµ)

dτ

τ

]

= ε

∞∑
k=0

(log t)(k+1)µ

Γ((k + 1)µ+ 1)

≤ ε
∞∑
n=0

(log t)nµ

Γ((nµ+ 1)

= εEµ(log t)µ.

The proof of the following lemma is similar to proofs presented in the literature [20, 22, 31].

Lemma 2.16. Let 0 < µ < 1, ρ = µ + ν(1 − µ) and assume that ℵ : (1, e] × R × R → R be
a function such that ℵ(., σ(.), σ(γ(.))) ∈ C1−ρ,log[I,R]. Then a function σ ∈ C1−ρ,log[I,R] is a
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solution of Hilfer-Hadamard FFDE (1.1) with the initial condition HI
1−ρ
1+ σ(1) = σ1 and initial

functional σ(t) = ϕ(t), t ∈ [−r, 1] if and only if σ satisfies the following integral equation

σ(t) =


ϕ(t) , t ∈ [−r, 1],

(log t)ρ−1

Γ(ρ) σ1 +
1

Γ(µ)

∫ t
1 (log t− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dττ , t ∈ (1, e].

3 Existence and uniqueness results

This section gives some sufficient condition to warranty the existence, uniqueness and UHML
stability of solutions for the Hilfer Hadamard FFDE (1.1)-(1.3) in C([−r, e], R)∩C1−ρ,log([I,R).

Let us insert the following hypotheses to aid in proving our main results:

(H1) ℵ : (1, e]×R×R→ R be a function such that ℵ(., σ(.), σ(γ(.))) ∈ C1−ρ,log[I,R], for any
σ ∈ C1−ρ,log[I,R] and γ ∈ C([1, e], [−r, e]) with γ(t) ≤ t and 0 < r <∞.

(H2) There exists a constant Kℵ > 0 such that

|ℵ(t, p1, p2)− ℵ(t, q1, q2)| ≤ Kℵ
2∑
i=1

|pi − qi|,∀t ∈ (1, e], pi, qi ∈ R i = 1, 2.

(H3) The following inequality holds:
2KℵΓ(ρ)

Γ(µ+ ρ)
< 1.

Theorem 3.1. Assume that hypotheses (H1)− (H3) are satisfied. Then

(i) problem (1.1)-(1.3) has a unique solution in C([−r, e], R) ∩ C1−ρ,log([I,R);

(ii) Hilfer-Hadamard type FFDE (1.1) is UHML stable.

Proof. Thanks to Lemma (2.16), the problem (1.1)-(1.3) can be converted into its equivalent
integral model, which takes the form

σ(t) =


ϕ(t), t ∈ [−r, 1],

(log t)ρ−1

Γ(ρ) σ1 +
1

Γ(µ)

∫ t
1 (log t− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dττ , t ∈ (1, e].

(3.1)

To demonstrate our first part, we just show the existence of solution for the model (3.1)
which can be transformed into a fixed point problem in the space C([−r, e], R) with respect to
an operator Rℵ : C([−r, e], R)→ C([−r, e], R) defined by

Rℵ(σ)(t) =


ϕ(t), t ∈ [−r, 1],

(log t)ρ−1

Γ(ρ) σ1 +
1

Γ(µ)

∫ t
1 (log t− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dττ , t ∈ (1, e].

(3.2)
Now, we confirm thatRℵ is well-define. It is clear that, for any continuous function ℵ(·, σ(·), σ(γ(·))),
an operator Rℵ is continuous too. In fact,
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Case 1. For all t, t+ ε ∈ (1, e] (ε > 0) and σ ∈ C([−r, e], R), we have

|Rℵ(σ)(t+ ε)−Rℵ(σ)(t)|

=

∣∣∣∣(log t+ ε)ρ−1

Γ(ρ)
σ1 +

1
Γ(µ)

∫ t+ε

1
(log (t+ ε)− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dτ

τ

− (log t)ρ−1

Γ(ρ)
σ1 −

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dτ

τ

∣∣∣∣
→ 0, as t+ ε→ t.

Case 2. For t, t+ ε ∈ [−r, 1] and σ ∈ C([−r, e], R), we have

|Rℵ(σ)(t+ ε)−Rℵ(σ)(t)| = |ϕ(t+ ε)− ϕ(t)| → 0, as t+ ε→ t.

Next, we just need to prove that Rℵ : C([−r, e], R)→ C([−r, e], R) given by (3.2) is a contrac-
tion mapping on C([−r, e], R) w. r. t. ‖.‖C1−ρ,log[I,R]. Indeed, the case t ∈ [−r, 1] is trivial. For
each t ∈ (1, e], and for any σ, σ̃ ∈ C([−r, e], R), we have

|Rℵ(σ)(t)−Rℵ(σ̃)(t)|

≤ 1
Γ(µ)

∫ t

1
(log t− log τ)µ−1|ℵ(τ, σ(τ), σ(γ(τ)))− ℵ(τ, σ̃(τ), σ̃(γ(τ)))|dτ

τ

≤ Kℵ
Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)ρ−1

{
(log τ)1−ρ

[
|σ(τ)− σ̃(τ)|+ |σ(γ(τ))− σ̃(γ(τ))|

]}dτ
τ

≤ Kℵ
Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)ρ−1

[
max
τ∈(1,e]

(log τ)1−ρ|σ(τ)− σ̃(τ)|

+ max
τ∈(1,e]

(log τ)1−ρ|σ(γ(τ))− σ̃(γ(τ))|
]
dτ

τ

≤ 2Kℵ‖σ − σ̃‖C1−ρ,log[I,R]
1

Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)ρ−1 dτ

τ

=
2KℵΓ(ρ)(log t)ρ+µ−1

Γ(µ+ ρ)
‖σ − σ̃‖C1−ρ,log[I,R], (3.3)

which implies

‖Rℵ(σ)−Rℵ(σ̃)‖C1−ρ,log[I,R] ≤
2KℵΓ(ρ)(log e)µ

Γ(µ+ ρ)
‖σ − σ̃‖C1−ρ,log[I,R].

=
2KℵΓ(ρ)

Γ(µ+ ρ)
‖σ − σ̃‖C1−ρ,log[I,R].

Due to (H3), Rℵ is contraction mapping via the norm ‖ · ‖C1−ρ,log[I,R] on C1−ρ,log([I,R). Hence,
we infer that Rℵ has a unique fixed point according to the outstanding fixed point theorem of
Banach. Claim (1) was substantiated.

Now, we demonstrate the claim (2). Assume that solution θ ∈ C([−r, e], R)∩C1−ρ,log([I,R)
satisfying inequality (2.4). We denote by σ ∈ C([−r, e], R)∩C1−ρ,log([I,R) the unique solution
of the following problem

HD
µ,ν
1+ σ(t) = ℵ(t, σ(t), σ(γ(t))), 0 < µ < 1, 0 ≤ ν ≤ 1, t ∈ (1, e],

HI
1−ρ
1+ σ(1) =H I1−ρ

1+ θ(1), µ ≤ ρ = µ+ ν(1− µ),
σ(t) = θ(t), t ∈ [−r, 1].
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It follows from Lemma 2.16 that

σ(t) =


θ(t) , t ∈ [−r, 1],

(log t)ρ−1

Γ(ρ) θ1 +
1

Γ(µ)

∫ t
1 (log t− log τ)µ−1ℵ(τ, σ(τ), σ(γ(τ)))dττ , t ∈ (1, e],

(3.4)

where we used the fact

HI
1−ρ
1+ σ(1) =H I1−ρ

1+ θ(1) which implies σ1 = θ1.

In light of Lemma 2.15, we have∣∣∣∣θ(t)− (log t)ρ−1

Γ(ρ)
θ1 −

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, θ(τ), θ(γ(τ)))dτ

τ

∣∣∣∣
≤ εEµ(log t)µ, t ∈ (1, e]. (3.5)

Note that |σ(t)− θ(t)| = 0 for t ∈ [−r, 1]. For all t ∈ (1, e], we have from (H2), (3.5) and (3.4)
that

|θ(t)− σ(t)|

≤
∣∣∣∣θ(t)− (log t)ρ−1

Γ(ρ)
θ1 −

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1ℵ(τ, θ(τ), θ(γ(τ)))dτ

τ

∣∣∣∣
+

1
Γ(µ)

∫ t

1
(log t− log τ)µ−1 |ℵ(τ, θ(τ), θ(γ(τ)))− ℵ(τ, σ(τ), σ(γ(τ)))| dτ

τ

≤ εEµ(log t)µ

+
Kℵ

Γ(µ)

∫ t

1
(log t− log τ)µ−1

[
|θ(τ)− σ(τ)|+ |θ(γ(τ))− σ(γ(τ))|

]
dτ

τ
. (3.6)

According to the last inequality forw ∈ C([−r, e], R+), we consider the operatorR1 : C([−r, e], R+)→
C([−r, e], R+) defined by

R1(w)(t) =



0 , t ∈ [−r, 1],

εEµ(log t)µ + Kℵ
Γ(µ)

[ ∫ t
1 (log t− log τ)µ−1w(τ)dττ

+
∫ t

1 (log t− log τ)µ−1w(γ(τ))dττ

]
, t ∈ (1, e].

Here we have to prove thatR1 is Picard operator. For each t ∈ (1, e] with the same arguments in
the relationship (3.3), one obtain

|R1(w)(t)−R1(z)(t)| ≤
2KℵΓ(ρ)(log t)ρ+µ−1

Γ(µ+ ρ)
‖w − z‖C1−ρ,log[I,R+], w, z ∈ C1−ρ,log[1, e].

This implies that

‖R1(w)−R1(z)‖ ≤
2KℵΓ(ρ)

Γ(µ+ ρ)
‖w − z‖C1−ρ,log[I,R+], w, z ∈ C1−ρ,log[I,R

+].

Assumption (H3) shows thatR1 is a contraction mapping inC([−r, e], R+) w. r. t. ‖.‖C1−ρ,log[I,R+].
By applying the contractive theorem of Banach,R1 is a Picard operator and ϒR1 = {w∗}. Then,



622 Laxman A. Palve, Mohammed S. Abdo and Satish K. Panchal

for all t ∈ (1, e], we have

w∗(t) = R1 (w
∗) (t)

= εEµ(log t)µ +
Kℵ

Γ(µ)

[ ∫ t

1
(log t− log τ)µ−1w∗(τ)

dτ

τ

+

∫ t

1
(log t− log τ)µ−1w∗(γ(τ))

dτ

τ

]
. (3.7)

By the following assumption

m := min
τ∈[1,e]

[w∗(τ) + w∗(γ(τ))] ∈ R+

with some straightforward computations, we infer that, for all 1 < t1 ≤ t2 ≤ e,

w∗(t2) > w∗(t1),

which indicating that w∗ is an increasing, since γ(t) ≤ t, we get w∗(γ(t)) ≤ w∗(t), it follows
from (3.7) that

w∗(t) ≤ εEµ(log t)µ +
2Kℵ
Γ(µ)

∫ t

1
(log t− log τ)µ−1w∗(τ)

dτ

τ
.

By taking advantage of Lemma 2.11 and Remark 2, then for t ∈ (1, e], we obtain

w∗(t) ≤ εEµ(log t)µEµ(2Kℵ(log t)µ)

≤ εEµ(log t)µEµ(2Kℵ)
= cEµεEµ(log t)µ,

where cEµ := Eµ(2Kℵ). So, in short, if w = |θ − σ|, it follows from (3.6) that w ≤ R1w. Due
to the increasing property of the Picard operator R1 , Lemma 2.10 shows that w ≤ w∗. As a
conclusion, we can see that

|θ(t)− σ(t)| ≤ cEµεEµ(log t)µ, t ∈ [−r, e].

Hence the equation (1.1) is UHML stable. The results are proved completely.�

Theorem 3.2. Assume that the hypotheses (H1) and (H2) are satisfied. If

2KℵeλΓ(ρ)

Γ(ρ+ µ)
< 1, λ > 0. (3.8)

then

(i) problem (1.1)-(1.3) has a unique solution in C([−r, e], R) ∩ C1−ρ,log([1, e], R).

(ii) Hilfer-Hadamard FFDE (1.1) is UHML stable.

Proof: As in Theorem (3.1), we need only show that Rℵ defined by (3.2) is a contraction
mapping on the space C([−r, e], R) w. r. t. the norm ‖.‖B , where

‖σ‖B = max
t∈(1,e]

∣∣[log(t)]1−ρσ(t)
∣∣ e−λlog(t), λ > 0.

Since the technique of proof will be identical to the previous parts in Theorem (3.1), here we
will give the main difference represented in the following. For each t ∈ (1, e] and σ, σ̃ ∈
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C([−r, e], R), we have

|Rℵ(σ)(t)−Rℵ(σ̃)(t)|

≤ 1
Γ(µ)

∫ t

1
(log t− log τ)µ−1|ℵ(τ, σ(τ), σ(γ(τ)))− ℵ(τ, σ̃(τ), σ̃(γ(τ)))|dτ

τ

≤ Kℵ
Γ(µ)

∫ t

1
(log t− log τ)µ−1

[
|σ(τ)− σ̃(τ)|+ |σ(γ(τ))− σ̃(γ(τ))|

]
dτ

τ

≤ Kℵ
Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)ρ−1eλ log(τ)

[
max
τ∈(1,e]

(log τ)1−ρe−λ log(τ)
(
|σ(τ)− σ̃(τ)|+ |σ(γ(τ))− σ̃(γ(τ))|

)]
dτ

τ

≤ 2Kℵ‖σ − σ̃‖B
1

Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)ρ−1eλ log(τ) dτ

τ

≤ 2Kℵ‖σ − σ̃‖Beλ log(e) 1
Γ(µ)

∫ t

1
(log t− log τ)µ−1(log τ)ρ−1 dτ

τ

=
2KℵeλΓ(ρ)(log t)ρ+µ−1

Γ(µ+ ρ)
‖σ − σ̃‖B ,

which results in

‖Rℵ(σ)−Rℵ(σ̃)‖B ≤
2KℵeλΓ(ρ)

Γ(µ+ ρ)
‖σ − σ̃‖B . (3.9)

The assumption (3.8) shows thatRℵ is contraction mapping via the norm ‖·‖B onC1−ρ,log([I,R).
So, we drow that Rℵ has a unique fixed point according to the fixed point theorem of Banach.
This proves the first allegation.

The proof of the second allegation which deals with UHML stability is similar to the proof
of the Theorem 3.1, so we skip it here. �

Example 3.3. Consider the following Hilfer-Hadamard FFDE
HD

1
2 ,0
1+ σ(t) =

1
20 log(

√
t) + 1

8 sin(2σ(t)) + 1
8σ(t− 3), t ∈ (1, e],

HI
1
2

1+σ(1) = 1,
σ(t) = t, t ∈ [−1, 1].

(3.10)

Here µ = 1
2 , β = 0, ρ = 1

2 , ℵ(t, σ(t), σ(γ(t)) =
1
20 log(

√
t)+ 1

8 sin(2σ(t))+ 1
8σ(t−3), t ∈ (1, e],

and γ(t) = t− 3. Note that, for all σ ∈ R and t ∈ (1, e],

C 1
2 ,log[I,R] = {h: (1, e]→ R : [log(t)]

1
2h(t) ∈ C[I,R]}.

Clearly, the function ℵ(t, σ(t), σ(γ(t)) ∈ C 1
2 ;log t(I,R) due to [log(t)]

1
2ℵ(t, σ(t), σ(γ(t)) ∈

C([I,R]. In addition, let σ, θ ∈ R and t ∈ (1, e], it is easy to see that γ(t) = t− 3 ≤ t and

|ℵ(t, σ, σ(γ)− ℵ(t, θ, θ(γ)| ≤ 1
4
[|σ − θ|+ |σ(γ)− θ(γ)|] .

Hence the hypotheses (H1) and (H2) hold with Kℵ = 1
4 . Through straightforward computa-

tions, the condition
2KℵΓ(ρ)

Γ(µ+ ρ)
=

√
π

2
< 1

is satisfied. Therefore, the whole suppositions in Theorem 3.1 are satisfied. It follows from
Theorem 3.1 part (1) that the problem (3.10) has a unique solution in C([−1, e], R).

Further, as shown in Theorem 3.1 part (2), for every ε = 1
2 > 0 if θ ∈ C 1

2 ;log t([I,R]) satisfies

∣∣Dµ,ν
1+ θ(t)− ℵ(t, θ(t), θ(γ(t))

∣∣ ≤ 1
2
Eµ(log t)µ, t ∈ [−1, e],
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there exists a unique solution σ ∈ C 1
2 ;log t([I,R]) comply with

|θ(t)− σ(t)| ≤ 1
2
cEµEµ(log t)µ, t ∈ [−1, e].

where

cEµ = Eµ(2Kℵ) = E 1
2
(

1
2
) = e

1
4

[
1 + erf

(
1
2

)]
' 2 > 0.

Hence the problem (3.10) is UHML stable.

Remark 3.4. The formula provided for the solution to the Hilfer-Hadamard FFDE (1.1)-(1.3) in-
cludes other formulas containing some operator’s fractional derivatives, among them Hadamard
(ν → 0), and Caputo-Hadamard (ν → 1).

Conclusion

This paper mainly investigated some existence, uniqueness, and UHML stability results of a
class of initial value problems for Hilfer-Hadamard type FFDE with initial and functional con-
ditions. The main key findings to our analysis included the fixed point theorem of Banach, the
Picard operator technique and the generalized inequality of Gronwall. We are confident that the
aforementioned results will have positive effects on the growth fractional nonlinear analysis and
development of further applications in engineering and applied sciences.
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