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Abstract Ali, Dinu, and Petrescu (M. U. Ali, S. Dinu, and L. Petrescu, Existence of fixed
points of set-valued maps on modular b-gauge spaces, U.P.B. Sci. Bull., Series A, Vol. 82, Iss.
4, 2020, ISSN 1223-7027) introduced the notion of modular b-gauge spaces induced through the
family of pseudomodular b-metrics and showed the existence of fixed point on this space.
In this paper, we employ the notion of modular b−gauge spaces to prove the existence of common
fixed points of set-valued maps. Precisely, we formulate and prove two different theorems. Also,
we state some corollaries. Moreover, we give an example to illustrate the validity of our results.

1 Introduction

The Banach fixed point theorem [1] is the first fixed point in the context of fixed point theory.
After than, many authors established many fixed point theorems see [2]-[15]. The notion of a
b-metric space was presented by Bakhtin [16] in 1989 as a generalization of a metric space. After
four years, Czerwik [17] stated a formula that defined the exact definition of a b-metric space
and studied some generalizations of Banach contraction theorems [1] in the context of b−metric
spaces. Recently, many authors obtained many results on the context b−metric spaces as exam-
ples see [18]-[28].
In 2010, Chistyakov [29] introduced a new space, called a modular metric space, in such a way
that he added a positive parameter on the definition of metric space. Then after, the researchers
covered many fixed point theorems on this new space, for examples see ([30]-[32]).
In 2017, Ali [33] expanded the notion of modular metric spaces to modular b-metric spaces.
While, Frigon [34] studied the fixed point on gauge spaces. Later on, several researchers ex-
tended their study of fixed point theory on gauge spaces, for examples look that ([35]-[37]).
Posteriorly, Ali et al [38] presented the notion of modular gauge spaces induced through the
family of preudo modular metrics. In 2020, Ali et al [39] defined the concept of modular b-
gauge spaces induced through the family of pseudomodular b-metrics and proved the existence
of fixed points of set-valued maps on modular b- gauge spaces. In this article, we used the space
presented by Ali et al [39] and we proved the existence of a common fixed point for multivalued
maps on modular b-gauge space. Precisely, we formulate two theorems, many corollaries and
we introduce an example to show the validity our of results.

2 Preliminaries

In this section, we present the most important definitions that will be used in our work.

Definition 2.1. [29] A modular metric on a non empty set X is a function ω : (0,∞)×X×X →
[0,∞) that will be written as ων(x, y) = ω(ν, x, y); for all x, y, z ∈ X and for all ν > 0, satisfies
the following three conditions:

(i) ων(x, y) = 0 if and only if x = y, ∀ν > 0 and x, y ∈ X .

(ii) ων(x, y) = ων(y, x), ∀ν > 0 and x, y ∈ X .



COMMON FIXED POINT ON MODULAR B-GAUGE SPACES 627

(iii) ων+σ(x, y) ≤ ων(x, z) + ωσ(z, y); for all ν, σ > 0 and x, y, z ∈ X .

Ali [33] enhanced the notion of the modular metric space to the notion of the modular b-
metric space as follows:

Definition 2.2. [33] A modular b-metric on a non empty setX is a function ω : (0,∞)×X×X →
[0,∞) that will be written as ων(x, y) = ω(ν, x, y); for all x, y, z ∈ X and for all ν > 0, satisfies
the following three conditions:

(i) ων(x, y) = 0 if and only if x = y, ∀ν > 0 and x, y ∈ X .

(ii) ων(x, y) = ων(y, x), ∀ν > 0 and x, y ∈ X .

(iii) ων+σ(x, y) ≤ ω ν
s
(x, z) + ωσ

s
(z, y); for all ν, σ > 0 and x, y, z ∈ X , here s ≥ 1 is a fixed

real number.

the couple (X,ων) is said to be the modular b-metric space.

Example 2.3. [33] Consider X = [0,∞) and ων(x, y) = x2+y2−2xy
ν . Then (X,ων) is a modular

b-metric space with s = 2 but not a modular metric space.

Definition 2.4. [33] A regular modular b-metric on a non empty set X is a function ω : (0,∞)×
X × X → [0,∞) that will be written as ων(x, y) = ω(ν, x, y); for all x, y, z ∈ X and for all
ν > 0, satisfies the following three conditions:

(i) ων(x, y) = 0 if and only if x = y, for some ν > 0.

(ii) ων(x, y) = ων(y, x), ∀ν > 0 and x, y ∈ X .

(iii) ων+σ(x, y) ≤ ω ν
s
(x, z) + ωσ

s
(z, y); for all ν, σ > 0 and x, y, z ∈ X , here s ≥ 1 is a fixed

real number.

A pseudomodular b-metric on X is obtained by replacing axiom (1) of a modular b-metric
with the following condition:
(4): For each x ∈ X , ων(x, x) = 0,∀ν > 0.

Remark 2.5. Let ων be a modular b-metric on a set X . Then for given x, y ∈ X, the function
0 < ν → ων(x, y) is non increasing on (0,∞).
In fact if 0 < ν

s < σ, then by above definition

ωσ(x, y) ≤ ωσ−ν
s
(x, x) + ω ν

s
(x, y) = ω ν

s
(x, y)

for all x, y ∈ X .

Khamsi [40] defined the concept of ων-convergent sequences, ων-Cauchy sequences, ων-
closed sets and ων-complete sets in modular b-metric spaces as follows:

Definition 2.6. [40] Given a modular b-metric ων on X , let {xn}n∈N in Xω and x ∈ Xω.
Then:

(i) The sequence {xn} is said to be ων-convergent to x if limn→∞ ων(xn, x) = 0, for some
ν > 0.

(ii) The sequence {xn} is said to be ων-Cauchy if limn,m→∞ ων(xn, xm) = 0, for some ν > 0.

(iii) A subset A ofXω is said to ων-complete if each ων-Cauchy sequence in A is ων-convergent
in A.

(iv) A subset A of Xω is said to be ων-closed if it contains the limit point of each ων-convergent
sequence contained in A.

(v) A subset A of Xω is said to be ων-bounded if we have

δων (A) = sup{ω1(x, y) : x, y ∈ A} <∞

The ∆b-condition and Fatou property are given in a modular b−metric space as follows:
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Definition 2.7. [33] A modular b-metric ων on X satisfies:

(i) The ∆b-condition, if the following axioms hold:

a. for each {xn} in X satisfying ων(xn, xn+1) ≤ tnK for some ν > 0 and for each
n ∈ N , where t ∈ [0, 1

s) and K > 0 is some fixed real numbers, then we have
ωσ(xn, xn+1) ≤ tnK for each σ > 0 and for each n ∈ N , and

b. for each {xn} in X and x ∈ X with limn→∞ ων(xn, x) = 0, for some ν > 0 implies
that limn→∞ ωσ(xn, x) = 0, for all σ > 0.

(ii) The Fatou property if for each {xn} ων-convergent to x and {yn} ων-convergent to y, we
have ω1(x, y) ≤ lim infn→∞ ω1(xn, yn) = 0.

Definition 2.8. [39] Let ων be a pseudomodular b-metric on X . Then the ων-ball having the
radius σ > 0 with x ∈ X as a center is the set

B[x, ων , σ] = {z ∈ X : ∀ν > 0, ων(x, y) < σ}.

Example 2.9. [39] ConsiderX = [0,∞) with the pseudomodular b-metric ων(x, y) = x2+y2−2xy
ν

for each x, y ∈ X and σ > 0, where s = 2. Then

B[x0, σ, 1] = {z ∈ X : ∀σ > 0, x2
0 + z2 − 2x0z < σ} = {x0}.

Definition 2.10. [39] A collection τ = {ων , with sη ≥ 1 : η ∈ Λ} of pseudomodular b-metrics
on X is called separating if for every pair (x, y) with x 6= y, we have atleast one ων ∈ τ with
ων(x, y) 6= 0, ∀ν > 0.

Definition 2.11. [39] Take a collection τ = {ων , with sη ≥ 1 : η ∈ Λ} of pseudomodular
b-metrics on X 6= ∅ . The topology ς(τ) with a collection of subbases

B(τ) = {B[z, ων , σ] : z ∈ X,ων ∈ τ and σ > 0}

of the balls is a modular topology induced by the collection τ of pseudomodular b-metrics.

The pair (X, ς(τ)) is said to be a modular b-gauge space.
Note that Xτ = {x ∈ X : ∀η ∈ Λ, ων(x0, x)→ 0 as ν →∞}, where x0 is fixed in X .

Definition 2.12. [39] Take a modular b-gauge space (X, ς(τ)) with respect to the collection

τ = {ων , with sη ≥ 1 : η ∈ Λ}

of pseudomodular b-metrics on X and let {xn}n∈N in Xτ and x ∈ Xτ .
Then:

(i) The sequence {xn} is said to be ων-convergent to x if for every η ∈ Λ, we have limn→∞ ων(xn, x) =
0 for some ν > 0. We denote it as xn → x.

(ii) The sequence {xn} is said to be ων-Cauchy if for every η ∈ Λ, we have limn,m→∞ ων(xn, xm) =
0 for some ν > 0.

(iii) Xτ is said to be ων-complete if each ων-Cauchy sequence in Xτ is ων-convergent in Xτ .

(iv) A subset F of Xτ is said to be ων-closed if it contains the limit point of each ων-convergent
sequence of its elements.

(v) A subset F of Xτ is said to be ων-bounded if we have

δτ (F ) := sup{ω1(x, y) : x, y ∈ F, η ∈ Λ} <∞.

Take a separating modular b-gauge space induced through the collection of pseudomodular
b-metrics τ = {ων , with sη ≥ 1 : η ∈ Λ} on X 6= ∅ and {xn} is ων-convergent in Xτ , then {xn}
is ων-convergent to a unique limit point.
Assume not; that is (xn) converges to different elements, say xn → a and xn → b. Then for
every η ∈ Λ, there are σ1, σ2 > 0 such that
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limn→∞ ωσ1(xn, a) = 0 and limn→∞ ωσ2(xn, b) = 0. By the triangular axiom, we obtain

ωsησ1+sησ2(a, b) ≤ ωσ1(a, xn) + ωσ2(xn, b)

∀n ∈ N and η ∈ Λ. Thus limn→∞ ωsησ1+sησ2(a, b) = 0. Since τ = {ων , with sη ≥ 1 : η ∈ Λ} is
separating, hence we get a = b.

In the rest of this paper, we let Λ be an indexed set and (X, ς(τ)) be a modular b-gauge space
and τ = {ων , with sη ≥ 1 : η ∈ Λ} satisfies the Fatou property and ∆b-condition. Also, we let
A be an ων-bounded set which is ων-complete of Xτ with respect to ς(τ). Also, β denoted to a
mapping from A×A into [0,∞). We denote the collection of nonempty ων-closed subsets of A
under the above modular b-gauge space by CL(A).
Notation:
Consider the following:

• Φ1 to be the family of all functions φ : [0,+∞)→ [0,+∞) such that:
φ is continuous, nondecreasing and φ(t) ≤ t for all t ≥ 0.

• Φ2 to be the family of all functions ψ : [0,+∞)→ [0,+∞) such that:
ψ is continuous, nondecreasing and ψ(t) = 0 if and only if t = 0.

3 Mains results

Theorem 3.1. Let T, S : A→ CL(A) be two maps. Suppose that for all x, y ∈ A with β(x, y) ≥
1:
If u ∈ Tx, there exists v ∈ Sy, or if u ∈ Sx, there exists v ∈ Ty such that:

ω1(u, v) ≤ C max
{
φ(ω1(x, y)), φ(ω1(x, u)), φ(ω1(y, v)), ψ

(ω2sη(x, v) + ω1(y, u)

2

)}
(3.1)

for all C ∈ [0, 1
sη
), ∀η ∈ Λ, where (φ, ψ) ∈ (Φ1,Φ2), ψ(l) ≤ φ(l), ∀l > 0. Assume we have the

following hypotheses:

(i) There are three elements x0 ∈ A, x1 ∈ Tx0 and x2 ∈ Sx1 with β(x0, x1) ≥ 1, β(x1, x2) ≥
1.

(ii) For x ∈ A, y ∈ Tx and z ∈ Sy, we have β(z, w) ≥ 1, β(w, k) ≥ 1, for each w ∈ Tz,
k ∈ Sw.

(iii) If {xn} is a sequence inA, with xn → x ∈ A and β(xn, xn+1) ≥ 1 ∀n ∈ N , then β(xn, x) ≥
1, ∀n ∈ N .

Then S and T have at least one common fixed point.

Proof. By hypothesis (i), there are three elements x0 ∈ A, x1 ∈ Tx0 and x2 ∈ Sx1 with
β(x0, x1) ≥ 1, β(x1, x2) ≥ 1. By (3.1) we have

ω1(x1, x2) ≤ C max
{
φ(ω1(x0, x1)), φ(ω1(x0, x1)), φ(ω1(x1, x2)), ψ

(ω2sη(x0, x2) + ω1(x1, x1)

2

)}

≤ C max
{
φ(ω1(x0, x1)), φ(ω1(x1, x2)), ψ

(ω1(x0, x1) + ω1(x1, x2)

2

)}
.

Since ψ is a non decreasing function and ψ(l) ≤ φ(l), ∀l > 0, we get

ω1(x1, x2) ≤ C max{φ(ω1(x0, x1)), φ(ω1(x1, x2))}. (3.2)

If we take max{φ(ω1(x0, x1)), φ(ω1(x1, x2))} = φ(ω1(x1, x2)), we obtain

ω1(x1, x2) ≤ Cφ(ω1(x1, x2)) < ω1(x1, x2),
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a contradiction. Thus

max{φ(ω1(x0, x1)), φ(ω1(x1, x2))} = φ(ω1(x0, x1)).

From (3.2), we have
ω1(x1, x2) ≤ Cω1(x0, x1). (3.3)

As x0 ∈ A, x1 ∈ Tx0 and x2 ∈ Sx1 with β(x0, x1) ≥ 1, β(x1, x2) ≥ 1. Then by hypothesis (ii)
for x1 ∈ Tx0 and x2 ∈ Sx1, we have β(x2, x3) ≥ 1, β(x3, x4) ≥ 1 for each x3 ∈ Tx2, x4 ∈ Sx3.
From (3.1), for x2 ∈ Sx1 and x3 ∈ Tx2 we have

ω1(x2, x3) ≤ C max
{
φ(ω1(x1, x2)), φ(ω1(x1, x2)), φ(ω1(x2, x3)), ψ

(ω2sη(x1, x3) + ω1(x2, x2)

2

)}
.

By the same method, we get

ω1(x2, x3) ≤ C max{φ(ω1(x1, x2)), φ(ω1(x2, x3))}.

So
ω1(x2, x3) ≤ Cω1(x1, x2). (3.4)

From (3.3) and (3.4), we have

ω1(x2, x3) ≤ C2ω1(x0, x1).

Continuing this process, we construct a sequence {xn} in ∈ A such that x2n+1 ∈ Tx2n and
x2n+2 ∈ Sx2n+1 with β(xn+1, xn) ≥ 1 and

ω1(xn, xn+1) ≤ Cnω1(x0, x1) (3.5)

for each n ∈ N and η ∈ Λ. By definition of ∆b-condition and (3.5), we get ων(xn, xn+1) ≤
Cnω1(x0, x1) for all ν > 0 and n ∈ N . For each i, j ∈ N , we get

ωj(xi, xi+j) ≤
i+j−1∑
k=i

ω 1
skη

(xk, xk+1) ≤
i+j−1∑
k=i

Ckω1(x0, x1)

≤
∞∑
k=i

Ckω1(x0, x1)→ 0

as i→∞, ∀η ∈ Λ.
Hence {xn} is ων-cauchy sequence in A.

Since A is ων-complete, then there exist u∗ such that ∀η ∈ Λ we have limn→∞ ων(xn, u∗) = 0
for some ν > 0. By definition of ∆b-condition on X , we get limn→∞ ωσ(xn, u∗) = 0, for all
σ > 0.
Hypothesis (iii) yields β(xn, u∗) ≥ 1, ∀n ∈ N . From (3.1), for β(xn, u∗) ≥ 1 and x2n+1 ∈ Tx2n
there is v∗ ∈ Su∗ such that

ω1(x2n+1, v
∗) ≤ C max

{
φ(ω1(x2n, u

∗)), φ(ω1(x2n, x2n+1)), φ(ω1(u∗, v∗)), ψ
(
ω2sη (x2n,v

∗)+ω1(u
∗,x2n+1)

2

)}

≤ C max
{
φ(ω1(x2n, u

∗)), φ(ω1(x2n, x2n+1)), φ(ω1(u
∗, v∗)), ψ

(ω1(x2n, u
∗) + ω1(u∗, v∗) + ω1(u∗, x2n+1)

2

)}
∀η ∈ Λ.
Letting n→∞. Then Fatou property implies that

ω1(u
∗, v∗) ≤ Cω1(u∗, v∗)

2
,

this occurs only if ω1(u∗, v∗) = 0. Since the collection τ = {ων , with sη ≥ 1 : ∀η ∈ Λ} is
separating, then u∗ = v∗. So u∗ ∈ Tu∗. Thus T and S have at least a common fixed point.
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Theorem 3.2. Let T, S : A→ CL(A) be two maps. Suppose that for all x, y ∈ A with β(x, y) ≥
1:
If u ∈ Tx, there exists v ∈ Sy, or if u ∈ Sx, there exists v ∈ Ty such that:

ω1(u, v) ≤ a(ω1(x, y))ω1(x, y)+b(ω1(x, y)) [ω1(x, u) + ω1(y, v)]+c(ω1(x, y))
[
ω2sη(x, v) + ω1(y, u)

]
(3.6)

∀η ∈ Λ, where a, b, c : R → [0, 1) are functions, with b(t) + c(t) < 1, limt→0 b(t) 6= 0,
limt→0 c(t) 6= 0, lim sups→t

a(s)+b(s)+c(s)
1−b(s)−c(s) < 1, ∀t > 0. Assume we have the following hypothe-

ses:

(i) There are three elements x0 ∈ A, x1 ∈ Tx0 and x2 ∈ Sx1 with β(x0, x1) ≥ 1, β(x1, x2) ≥
1.

(ii) For x ∈ A, y ∈ Tx and z ∈ Sy, we have β(z, w) ≥ 1, β(w, k) ≥ 1, for each w ∈ Tz,
k ∈ Sw.

(iii) if {xn} is a sequence inA, with xn → x ∈ A and β(xn, xn+1) ≥ 1 ∀n ∈ N , then β(xn, x) ≥
1, ∀n ∈ N .

Then S and T have at least one common fixed point.

Proof. By hypothesis (i), there are three elements x0 ∈ A, x1 ∈ Tx0 and x2 ∈ Sx1 with
β(x0, x1) ≥ 1, β(x1, x2) ≥ 1. By (3.6), we have

ω1(x1, x2) ≤ a(ω1(x0, x1))ω1(x0, x1) + b(ω1(x0, x1)) [ω1(x0, x1) + ω1(x1, x2)]

+c(ω1(x0, x1))
[
ω2sη(x0, x2) + ω1(x1, x1)

]
∀η ∈ Λ.

≤ [a(ω1(x0, x1)) + b(ω1(x0, x1)) + c(ω1(x0, x1))]ω1(x0, x1)+[b(ω1(x0, x1)) + c(ω1(x0, x1))]ω1(x1, x2)

ω1(x1, x2) ≤
a(ω1(x0, x1)) + b(ω1(x0, x1)) + c(ω1(x0, x1))

1− b(ω1(x0, x1))− c(ω1(x0, x1))
ω1(x0, x1).

Let

K =
a(ω1(xn, xn+1)) + b(ω1(xn, xn+1)) + c(ω1(xn, xn+1))

1− b(ω1(xn, xn+1))− c(ω1(xn, xn+1))

for all n ∈ N .
Then

ω1(x1, x2) ≤ Kω1(x0, x1), (3.7)

here K < 1.
Since x0 ∈ A, x1 ∈ Tx0 and x2 ∈ Sx1 with β(x0, x1) ≥ 1, β(x1, x2) ≥ 1, then by hypothesis

(ii) for x1 ∈ Tx0 and x2 ∈ Sx1, we have β(x2, x3) ≥ 1, β(x3, x4) ≥ 1 for each x3 ∈ Tx2,
x4 ∈ Sx3. From (3.6), for x2 ∈ Sx1 and x3 ∈ Tx2 we have

ω1(x2, x3) ≤ [a(ω1(x1, x2)) + b(ω1(x1, x2)) + c(ω1(x1, x2))]ω1(x1, x2)

+ [b(ω1(x1, x2)) + c(ω1(x1, x2))]ω1(x2, x3)

ω1(x2, x3) ≤
a(ω1(x1, x2)) + b(ω1(x1, x2)) + c(ω1(x1, x2))

1− b(ω1(x1, x2))− c(ω1(x1, x2))
ω1(x1, x2)

So
ω1(x2, x3) ≤ K2ω1(x0, x1)

Continuing this process, we get {xn} ∈ A such that x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 with
β(xn+1, xn) ≥ 1. and

ω1(xn, xn+1) ≤ Knω1(x0, x1) (3.8)
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for each n ∈ N , and η ∈ Λ .
By defintion of ∆b-condition and (3.8), we get ων(xn, xn+1) ≤ knω1(x0, x1), for all ν > 0 and
n ∈ N . For each i, j ∈ N , we get

ωj(xi, xi+j) ≤
i+j−1∑
k=i

ω 1
skη

(xk, xk+1) ≤
i+j−1∑
k=i

Kkω1(x0, x1)

≤
∞∑
k=i

Kkω1(x0, x1)→ 0

as i→∞, ∀η ∈ Λ.
Hence {xn} is ων-cauchy sequence in A.

Since A is ων-complete, there exist u∗ such that ∀η ∈ Λ we have limn→∞ ων(xn, u∗) = 0 for
some ν > 0. Also, ∆b-condition on X implies that limn→∞ ωσ(xn, u∗) = 0 for all σ > 0.
Hypothesis (iii) yields β(xn, u∗) ≥ 1 ∀n ∈ N . From (3.6), for β(xn, u∗) ≥ 1 and x2n+1 ∈ Tx2n
there is v∗ ∈ Su∗ such that

ω1(x2n+1, v
∗) ≤ a(ω1(x2n, u

∗))ω1(x2n, u
∗) + b(ω1(x2n, u

∗)) [ω1(x2n, x2n+1) + ω1(u∗, v∗)]

+c(ω1(x2n, u
∗))
[
ω2sη(x2n, v

∗) + ω1(u
∗, x2n+1)

]
∀η ∈ Λ.

n→∞. Then Fatou property implies that

ω1(u
∗, v∗) ≤ (b(s) + c(s))ω1(u

∗, v∗).

The last inequality is true only if ω1(u∗, v∗) = 0. Since the collection τ = {ων , with sη ≥ 1 :
∀η ∈ Λ} is separating, then u∗ = v∗. So u∗ ∈ Tu∗. So, we conclude that T and S have at least
one common fixed point.

If we take T, S : A→ A, β(x, y) = 1 in the above theorems we get the following corollaries:

Corollary 3.3. Let T, S : A→ A be two maps. Suppose there exists C ∈ [0, 1
sη
) such that have

ω1(Tx, Sy) ≤ C max
{
φ(ω1(x, y)), φ(ω1(x, Tx)), φ(ω1(y, Sy)), ψ

(ω2sη(x, Sy) + ω1(y, Tx)

2

)}
holds for all x, y ∈ A, ∀η ∈ Λ, where (φ, ψ) ∈ (Φ1,Φ2), ψ(l) ≤ φ(l), ∀l > 0.
Then S and T have at least one common fixed point.

By taking a(t) = q, b(t) = c(t) = q
2 , q ∈ R∗, and q ≤ 1

4 in Theorem (3.2), then we have:

Corollary 3.4. Let T, S : A→ A be two maps. Suppose for all x, y ∈ A, we have

ω1(Tx, Sy) ≤ q
[
ω1(x, y) +

ω1(x, Tx) + ω1(y, Sy) + ω2sη(x, Sy) + ω1(y, Tx)

2

]
∀η ∈ Λ. Then S and T have at least one common fixed point.

Example 3.5. Consider A the collection of real sequence with ων(x, y) = 1
[ν] |xn − yn|

2 for all
n ∈ N and ν > 0, such that x = {xn}, y = {yn}. Take T, S : A→ CL(A) the mappings defined
as follows:

T ({xn}n∈N ) =

{
{xn3 } for {xn}n∈N ⊆ [0,∞)

0 otherwise

S({xn}n∈N ) =

{
{xn2 } for {xn}n∈N ⊆ [0,∞)

0 otherwise

and β : A×A→ [0,∞) such that:



COMMON FIXED POINT ON MODULAR B-GAUGE SPACES 633

β({xn}n∈N , {yn}n∈N ) =

{
1 for {xn}n∈N , {yn}n∈N ⊆ [0,∞)

0 otherwise

We have (3.1) satisfied for φ(t) = ψ(t) = t, for all x, y ∈ A with β(x, y) = 1, where C = 1
9 ,

sη = 2. Also for x0 = {n}n∈N ∈ A, we get x1 = {n3 }n∈N ∈ Tx0, we have {x2 = n
6 }n∈N ∈

Sx1, with β({n}, {n3 }) = 1, β({n6 }, {
n
3 }) = 1 such that:

ω1(u, v) = ω1(
n
3 ,

n
6 ) = |

n
3 −

n
6 |

2 = 1
9 |n−

n
2 |

2 ≤ 1
9 |n−

n
3 |

2 = 1
9φ(ω1(x, y)).

ω1(u, v) = ω1(
n
3 ,

n
6 ) =

1
9 |n−

n
2 |

2 ≤ 1
9 |n−

n
3 |

2 = 1
9φ(ω1(x, u)).

ω1(u, v) = ω1(
n
3 ,

n
6 ) = φ(ω1(y, v)).

ω1(u, v) =
1
9
|n− n

2
|2

≤ 1
9
|n− n

3
|2

≤ 1
8
|n− n

3
|2 = 1

2
(

1
4
|n− n

3
|2)

≤ 1
2
(

1
4
|n− n

6
|2) = 1

2
ω2s(x, v) = ψ

(ω2sη(x, v) + ω1(y, u)

2

)
.

Then

ω1(u, v) ≤ C max
{
φ(ω1(x, y)), φ(ω1(x, u)), φ(ω1(y, v)), ψ

(ω2sη(x, v) + ω1(y, u)

2

)}
.
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