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Abstract. In this paper we introduce the idea of generalized relative order (α, β) and gener-
alized relative type (α, β) of an entire function with respect to an entire function and then study
some growth properties of entire functions on the basis of their generalized relative order (α, β)
and generalized relative type (α, β), where α, β are non-negative continuous functions defined
on (−∞,+∞).

1 Introduction, Definitions and Notations

We denote by C the set of all finite complex numbers. Let f be an entire function defined

on C. The maximum modulus function Mf (r) of f =
∞∑
n=0

anz
n on |z| = r is defined as Mf (r) =

max
|z|=r
|f(z)|. Moreover, if f is non-constant entire then Mf (r) is also strictly increasing and

continuous functions of r. Therefore its inverse M−1
f : (Mf (0),∞)→ (0,∞) exists and is such

that lim
s→∞

M−1
f (s) = ∞. We use the standard notations and definitions of the theory of entire

functions which are available in [13] and [14], and therefore we do not explain those in details.
For x ∈ [0,∞) and k ∈ N where N is the set of all positive integers, we define itera-

tions of the exponential and logarithmic functions as exp[k] x = exp
(
exp[k−1] x

)
and log[k] x =

log
(

log[k−1] x
)
, with convention that log[0] x = x, log[−1] x = expx, exp[0] x = x, and exp[−1] x

= logx. Further we assume that p and q always denote positive integers. Now considering this,
let us recall that Juneja et al. [9] defined the (p, q)-th order and (p, q)-th lower order of an entire
function, respectively, as follows:

Definition 1.1. [9] Let p ≥ q. The (p, q)-th order ρ(p,q)(f) and (p, q)-th lower order λ(p,q)(f) of
an entire function f are defined as:

ρ(p,q)(f) = lim sup
r→∞

log[p]Mf (r)

log[q] r
and λ(p,q)(f) = lim inf

r→∞

log[p]Mf (r)

log[q] r
.

The function f is said to be of regular (p, q) growth when (p, q)-th order and (p, q)-th
lower order of f are the same. Functions which are not of regular (p, q) growth are said to be of
irregular (p, q) growth.

Extending the notion (p, q)-th order, recently Shen et al. [10] introduced the new concept
of [p, q]-ϕ order of entire function where p ≥ q. Later on, combining the definitions of (p, q)-
order and [p, q]-ϕ order, Biswas (see, e.g., [7]) redefined the (p, q)-order of an entire function
without restriction p ≥ q.

However the above definition is very useful for measuring the growth of entire functions.
If p = l and q = 1 then we write ρ(l,1)(f) = ρ(l)(f) and λ(l,1)(f) = λ(l)(f) where ρ(l)(f) and
λ(l)(f) are respectively known as generalized order and generalized lower order of function f
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(see, e.g., [11]). Also for p = 2 and q = 1, we respectively denote ρ(2,1)(f) and λ(2,1)(f) by ρ(f)
and λ(f) which are classical growth indicators such as order and lower order of entire function
f .

Now let L be a class of continuous non-negative functions α defined on (−∞,+∞)
such that α(x) = α(x0) ≥ 0 for x ≤ x0 with α(x) ↑ +∞ as x → +∞ and α((1 + o(1))x) =
(1 + o(1))α(x) as x → +∞. We say that α ∈ L0, if α ∈ L and α(cx) = (1 + o(1))α(x) as
x0 ≤ x → +∞ for each c ∈ (0,+∞), i.e., α is slowly increasing function. Clearly L0 ⊂ L.
Throughout the present paper we assume that α, β and γ always denote the functions belonging
to L0.

Considering this, the value

ρ(α,β)[f ] = lim sup
r→+∞

α(logMf (r))

β(log r)
(α ∈ L, β ∈ L)

introduced by Sheremeta [12], is called the generalized order (α, β) of an entire function f . Then
Biswas et al. [5] has introduced the definitions of the generalized order (α, β) and generalized
lower order (α, β) of an entire function in the following way after giving a minor modification
to the original definition of generalized order (α, β) of an entire function (e.g. see, [12]) which
considerably extend the definition of ϕ-order introduced by Chyzhykov et al. [8].

Definition 1.2. [5] The generalized order (α, β) denoted by ρ(α,β)[f ] and generalized lower order
(α, β) denoted by λ(α,β)[f ] of an entire function f are defined as:

ρ(α,β)[f ] = lim sup
r→∞

α(Mf (r))

β(r)
and λ(α,β)[f ] = lim inf

r→∞

α(Mf (r))

β(r)
.

Definition 1.1 is a special case of Definition 1.2 for α(r) = log[p] r and β(r) = log[q] r.
The function f is said to be of regular generalized (α, β) growth when generalized order

(α, β) and generalized lower order (α, β) of f are the same. Functions which are not of regular
generalized (α, β) growth are said to be of irregular generalized (α, β) growth.

In order to refine the growth scale namely the generalized order (α, β) of an entire
function, Biswas et al. [4] have introduced the definitions of another growth indicators, called
generalized type (α, β) and generalized lower type (α, β) respectively of an entire function which
are as follows:

Definition 1.3. [4] The generalized type (α, β) denoted by σ(α,β)[f ] and generalized lower type
(α, β) denoted by σ(α,β)[f ] of an entire function f having finite positive generalized order (α, β)
(0 < ρ(α,β)[f ] <∞) are defined as :

σ(α,β)[f ] = lim sup
r→∞

exp(α(Mf (r)))

(exp(β(r)))ρ(α,β)[f ]
and σ(α,β)[f ] = lim inf

r→∞

exp(α(Mf (r)))

(exp(β(r)))ρ(α,β)[f ]
.

It is obvious that 0 ≤ σ(α,β)[f ] ≤ σ(α,β)[f ] ≤ ∞.

Analogously, to determine the relative growth of two entire functions having same non
zero finite generalized lower order (α, β), Biswas et al. [4] have introduced the definitions of
generalized weak type (α, β) and generalized upper weak type (α, β) of an entire function f of
finite positive generalized lower order (α, β), λ(α,β)[f ] in the following way:

Definition 1.4. [4] The generalized upper weak type (α, β) denoted by τ(α,β)[f ] and generalized
weak type (α, β) denoted by τ (α,β)[f ] of an entire function f having finite positive generalized
order (α, β) (0 < λ(α,β)[f ] <∞) are defined as :

τ(α,β)[f ] = lim sup
r→∞

exp(α(Mf (r)))

(exp(β(r)))λ(α,β)[f ]
and τ (α,β)[f ] = lim inf

r→∞

exp(α(Mf (r)))

(exp(β(r)))λ(α,β)[f ]
.

It is obvious that 0 ≤ τ (α,β)[f ] ≤ τ(α,β)[f ] ≤ ∞.
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Mainly the growth investigation of entire functions has usually been done through their
maximum moduli function in comparison with those of exponential function. But if one is paying
attention to evaluate the growth rates of any entire function with respect to a new entire function,
the notions of relative growth indicators (see e.g. [1, 2]) will come. Now in order to make
some progress in the study of relative order, Biswas et al. [3] have introduced the definitions of
generalized relative order (α, β) and generalized relative lower order (α, β) of an entire function
with respect to another entire function in the following way:

Definition 1.5. [3] The generalized relative order (α, β) denoted by ρ(α,β)[f ]g and generalized
relative lower order (α, β) denoted by λ(α,β)[f ]g of an entire function f with respect to an entire
function g are defined as:

ρ(α,β)[f ]g = lim sup
r→∞

α(M−1
g (Mf (r)))

β(r)
and λ(α,β)[f ]g = lim inf

r→∞

α(M−1
g (Mf (r)))

β(r)
.

The previous definitions are easily generated as particular cases, e.g. if g = z, then
Definition 1.5 reduces to Definition 1.2. If α(r) = β(r) = log r, then we get the definition of
relative order of entire function f with respect to an entire function g introduced by Bernal [1, 2]
and if g = exp z and α(r) = β(r) = log r, then ρ(α,β)[f ]g = ρ(f). And if α(r) = log[p] r,
β(r) = log[q] r and g = z, then Definition 1.5 becomes the classical one given in [7].

Further if generalized relative order (α, β) and the generalized relative lower order
(α, β) of an entire function f with respect to an entire function g are the same, then f is called a
function of regular generalized relative (α, β) growth with respect to g. Otherwise, f is said to
be irregular generalized relative (α, β) growth.with respect to g.

Now in order to refine the above growth scale, Biswas et al. [3] have introduced the
definitions of other growth indicators, such as generalized relative type (α, β) and generalized
relative lower type (α, β) of entire function with respect to an entire function which are as fol-
lows:

Definition 1.6. [3] The generalized relative type (α, β) denoted by σ(α,β)[f ]g and generalized
relative lower type (α, β) denoted by σ(α,β)[f ]g of an entire function f with respect to an entire
function g having non-zero finite generalized relative order (α, β) are defined as :

σ(α,β)[f ]g = lim sup
r→∞

exp(α(M−1
g (Mf (r))))

(exp(β(r)))ρ(α,β)[f ]g
and σ(α,β)[f ]g = lim inf

r→∞

exp(α(M−1
g (Mf (r))))

(exp(β(r)))ρ(α,β)[f ]g

Analogously, to determine the relative growth of an entire function f having same non
zero finite generalized relative lower order (α, β) with respect to an entire function g, Biswas
et al. [3] have introduced the definitions of generalized relative upper weak type (α, β) and
generalized relative weak type (α, β) of f with respect to g of finite positive generalized relative
lower order (α, β) in the following way:

Definition 1.7. [3] The generalized relative upper weak type (α, β) denoted by τ(α,β)[f ]g and
generalized relative weak type (α, β) denoted by τ (α,β)[f ]g of an entire function f with respect
to an entire function g having non-zero finite generalized relative lower order (α, β) are defined
as :

τ(α,β)[f ]g = lim sup
r→∞

exp(α(M−1
g (Mf (r))))

(exp(β(r)))λ(α,β)[f ]g
and τ (α,β)[f ]g = lim inf

r→∞

exp(α(M−1
g (Mf (r))))

(exp(β(r)))λ(α,β)[f ]g
.

However the main aim of this paper is to investigate some growth properties of entire
functions using generalized relative order (α, β) and generalized relative type (α, β), of an entire
function with respect to an entire function which improve and extend some earlier result (see,
e.g., [6, 7]). We assume that all the growth indicators are non-zero finite.

2 Main Results

In this section we present the main results of the paper.
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Theorem 2.1. Let f and g be two entire functions such that 0 < λ(γ,β)[f ] ≤ ρ(γ,β)[f ] < ∞ and
0 < λ(γ,α)[g] ≤ ρ(γ,α)[g] <∞ . Then

λ(γ,β)[f ]

ρ(γ,α)[g]
≤ λ(α,β)[f ]g ≤ min

{λ(γ,β)[f ]
λ(γ,α)[g]

,
ρ(γ,β)[f ]

ρ(γ,α)[g]

}
≤ max

{λ(γ,β)[f ]
λ(γ,α)[g]

,
ρ(γ,β)[f ]

ρ(γ,α)[g]

}
≤ ρ(α,β)[f ]g ≤

ρ(γ,β)[f ]

λ(γ,α)[g]
.

Proof. From the definitions of ρ(γ,β)[f ] and λ(γ,β)[f ] we have for all sufficiently large values of
r that

Mf (r) ≤ γ−1((ρ(γ,β)[f ] + ε)β(r)), (2.1)

Mf (r) ≥ γ−1((λ(γ,β)[f ]− ε)β(r)) (2.2)

and also for a sequence of values of r tending to infinity we get that

Mf (r) ≥ γ−1((ρ(γ,β)[f ]− ε)β(r)), (2.3)

Mf (r) ≤ γ−1((λ(γ,β)[f ] + ε)β(r)). (2.4)

Further from the definitions of ρ(γ,α)[g] and λ(γ,α)[g] it follows for all sufficiently large values of
r that

Mg(r) ≤ γ−1((ρ(γ,α)[g] + ε)α(r))

i.e., M−1
g (r) ≥ α−1

( γ(r)

ρ(γ,α)[g] + ε

)
and (2.5)

M−1
g (r) ≤ α−1

( γ(r)

λ(γ,α)[g]− ε

)
. (2.6)

Also from the definitions of ρ(γ,α)[g] and λ(γ,α)[g], we get for a sequence of values of r tending
to infinity we obtain that

M−1
g (r) ≤ α−1

( γ(r)

ρ(γ,α)[g]− ε

)
and (2.7)

M−1
g (r) ≥ α−1

( γ(r)

λ(γ,α)[g] + ε

)
. (2.8)

Now from (2.3) and in view of (2.5), for a sequence of values of r tending to infinity we get that

α(M−1
g (Mf (r))) ≥ α(M−1

g (γ−1((ρ(γ,β)[f ]− ε)β(r))))

i.e., α(M−1
g (Mf (r))) ≥ α

(
α−1

(γ(γ−1((ρ(γ,β)[f ]− ε)β(r)))
(ρ(γ,α)[g] + ε)

))

i.e., α(M−1
g (Mf (r))) ≥

(ρ(γ,β)[f ]− ε)β(r)
(ρ(γ,α)[g] + ε)

i.e.,
α(M−1

g (Mf (r)))

β(r)
≥
ρ(γ,β)[f ]− ε
ρ(γ,α)[g] + ε

.

As ε(> 0) is arbitrary, it follows that

ρ(α,β)[f ]g ≥
ρ(γ,β)[f ]

ρ(γ,α)[g]
. (2.9)
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Analogously from (2.2) and in view of (2.8) it follows that

ρ(α,β)[f ]g ≥
λ(γ,β)[f ]

λ(γ,α)[g]
. (2.10)

Again from (2.2) and in view of (2.5) we obtain that

λ(α,β)[f ]g ≥
λ(γ,β)[f ]

ρ(γ,α)[g]
. (2.11)

Now in view of (2.6), we have from (2.1) for all sufficiently large values of r that

α(M−1
g (Mf (r))) ≤ α(M−1

g (γ−1((ρ(γ,β)[f ] + ε)β(r))))

i.e., α(M−1
g (Mf (r))) ≤ α

(
α−1

(γ(γ−1((ρ(γ,β)[f ] + ε)β(r)))

(λ(γ,α)[g]− ε)

))

i.e., α(M−1
g (Mf (r))) ≤

(ρ(γ,β)[f ] + ε)β(r)

(λ(γ,α)[g]− ε)

i.e.,
α(M−1

g (Mf (r)))

β(r)
≤
ρ(γ,β)[f ] + ε

λ(γ,α)[g]− ε
.

Since ε(> 0) is arbitrary, we obtain that

ρ(α,β)[f ]g ≤
ρ(γ,β)[f ]

λ(γ,α)[g]
. (2.12)

Similarly in view of (2.7), we get from (2.1) that

λ(α,β)[f ]g ≤
ρ(γ,β)[f ]

ρ(γ,α)[g
. (2.13)

Again from (2.4) and in view of (2.6) it follows that

λ(α,β)[f ]g ≤
λ(γ,β)[f ]

λ(γ,α)[g]
. (2.14)

The theorem follows from (2.9), (2.10), (2.11), (2.12), (2.13) and (2.14).2

Remark 2.2. From the conclusion of the above result, one may write ρ(α,β) [f ]g =
ρ(γ,β)[f ]

ρ(γ,α)[g]

and λ(α,β) [f ]g =
λ(γ,β)[f ]

λ(γ,α)[g]
when λ(γ,α) [g] = ρ(γ,α) [g]. Similarly ρ(α,β) [f ]g =

λ(γ,β)[f ]

λ(γ,α)[g]
and

λ(α,β) [f ]g =
ρ(γ,β)[f ]

ρ(γ,α)[g]
when λ(γ,β) [f ] = ρ(γ,β) [f ] .

Theorem 2.3. Let f and g be two entire functions such that 0 < ρ(γ,β) [f ] < ∞ and 0 <
λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then

max
{(σ(γ,β) [f ]

τ (γ,α) [g]

) 1
λ(γ,α)[g] ,

(σ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g]

}
≤ σ(α,β) [f ]g ≤

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] .

Proof. Let us consider that ε (> 0) is arbitrary number. Now from the definitions of σ(γ,β) [f ]
and σ(γ,β) [f ] , we have for all sufficiently large values of r that

Mf (r) ≤ γ−1(log(
(
σ(γ,β) [f ] + ε

)
(exp (β (r)))ρ(γ,β)[f ])), (2.15)

Mf (r) ≥ γ−1(log(
(
σ(γ,β) [f ]− ε

)
(exp (β (r)))ρ(γ,β)[f ])) (2.16)
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and also for a sequence of values of r tending to infinity, we get that

Mf (r) ≥ γ−1(log(
(
σ(γ,β) [f ]− ε

)
(exp (β (r)))ρ(γ,β)[f ])), (2.17)

Mf (r) ≤ γ−1(log(
(
σ(γ,β) [f ] + ε

)
(exp (β (r)))ρ(γ,β)[f ])). (2.18)

Similarly from the definitions of σ(γ,α) [g] and σ(γ,α) [g] , it follows for all sufficiently large values
of r that

Mg (r) ≤ γ−1(log(
(
σ(γ,α) [g] + ε

)
(exp (α (r)))ρ(γ,α)[g]))

i.e., M−1
g (r) ≥ α−1

(
log
( exp(γ(r))(
σ(γ,α) [g] + ε

)) 1
ρ(γ,α)[g]

)
and (2.19)

M−1
g (r) ≤ α−1

(
log
( exp(γ(r))(
σ(γ,α) [g]− ε

)) 1
ρ(γ,α)[g]

)
. (2.20)

Also for a sequence of values of r tending to infinity, we obtain that

M−1
g (r) ≤ α−1

(
log
( exp(γ(r))(
σ(γ,α) [g]− ε

)) 1
ρ(γ,α)[g]

)
and (2.21)

M−1
g (r) ≥ α−1

(
log
( exp(γ(r))(
σ(γ,α) [g] + ε

)) 1
ρ(γ,α)[g]

)
. (2.22)

Further from the definitions of τ(γ,β) [f ] and τ (γ,β) [f ], we have for all sufficiently large values
of r that

Mf (r) ≤ γ−1(log(
(
τ(γ,β) [f ] + ε

)
(exp (β (r)))λ(γ,β)[f ])), (2.23)

Mf (r) ≥ γ−1(log(
(
τ (γ,β) [f ]− ε

)
(exp (β (r)))λ(γ,β)[f ])) (2.24)

and also for a sequence of values of r tending to infinity, we get that

Mf (r) ≥ log(γ−1(log(
(
τ(γ,β) [f ]− ε

)
(exp (β (r)))λ(γ,β)[f ]))), (2.25)

Mf (r) ≤ log(γ−1(log(
(
τ (γ,β) [f ] + ε

)
(exp (β (r)))λ(γ,β)[f ]))). (2.26)

Similarly from the definitions of τ(γ,α) [g] and τ (γ,α) [g] , it follows for all sufficiently large
values of r that

M−1
g (r) ≥ α−1

(
log
( exp(γ(r))(
τ(γ,α) [g] + ε

)) 1
λ(γ,α)[g]

)
and (2.27)

M−1
g (r) ≤ α−1

(
log
( exp(γ(r))(
τ (γ,α) [g]− ε

)) 1
λ(γ,α)[g]

)
(2.28)

Also for a sequence of values of r tending to infinity, we obtain that

M−1
g (r) ≤ α−1

(
log
( exp(γ(r))(
τ(γ,α) [g]− ε

)) 1
λ(γ,α)[g]

)
and (2.29)

M−1
g (r) ≥ α−1

(
log
( exp(γ(r))(
τ (γ,α) [g] + ε

)) 1
λ(γ,α)[g]

)
. (2.30)

Now from (2.17) and in view of (2.27), we get for a sequence of values of r tending to
infinity that

exp(α(M−1
g (Mf (r)))) ≥

((σ(γ,β) [f ]− ε) (exp (β (r)))ρ(γ,β)[f ](
τ(γ,α) [g] + ε

) ) 1
λ(γ,α)[g]
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i.e.,
exp(α(M−1

g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

λ(γ,α)[g]

≥
(σ(γ,β) [f ]− ε
τ(γ,α) [g] + ε

) 1
λ(γ,α)[g] .

Since in view of Theorem 2.1 , ρ(γ,β)[f ]λ(γ,α)[g]
≥ ρ(α,β) [f ]g , and as ε (> 0) is arbitrary, therefore it

follows from above that

lim sup
r→∞

exp(α(M−1
g (Mf (r))))

(exp (β(r)))ρ(α,β)[f ]g
≥
(σ(γ,β) [f ]− ε
τ(γ,α) [g] + ε

) 1
λ(γ,α)[g]

i.e., σ(α,β) [f ]g ≥
(σ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g] . (2.31)

Analogously from (2.16) and (2.30), we get that

σ(α,β) [f ]g ≥
(σ(γ,β) [f ]
τ (γ,α) [g]

) 1
λ(γ,α)[g] , (2.32)

as in view of Theorem 2.1 it follows that ρ(γ,β)[f ]λ(γ,α)[g]
≥ ρ(α,β) [f ]g .

Again in view of (2.20), we have from (2.15) for all sufficiently large values of r that

exp(α(M−1
g (Mf (r)))) ≤

((σ(γ,β) [f ] + ε
)
(exp (β(r)))ρ(γ,β)[f ](

σ(γ,α) [g]− ε
) ) 1

ρ(γ,α)[g]

i.e.,
exp(α(M−1

g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

ρ(γ,α)[g]

≤
(σ(γ,β) [f ] + ε

σ(γ,α) [g]− ε

) 1
ρ(γ,α)[g] .

Since in view of Theorem 2.1 it follows that ρ(γ,β)[f ]ρ(γ,α)[g]
≤ ρ(α,β) [f ]g and ε (> 0) is arbitrary, we

get from above that

lim sup
r→∞

exp(α(M−1
g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

ρ(γ,α)[g]

≤
(σ(γ,β) [f ] + ε

σ(γ,α) [g]− ε

) 1
ρ(γ,α)[g]

i.e., σ(α,β) [f ]g ≤
(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] . (2.33)

Thus the theorem follows from (2.31), (2.32) and (2.33).2

The conclusion of the following theorem can be carried out from (2.20) and (2.23);
(2.23) and (2.28) respectively after applying the same technique of Theorem 2.3 and with the
help of Theorem 2.1. Therefore its proof is omitted.

Theorem 2.4. Let f and g be two entire functions such that 0 < λ(γ,β) [f ] < ∞ and 0 <
λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then

σ(α,β) [f ]g ≤ min
{ τ(γ,β) [f ]
τ (γ,α) [g]

) 1
λ(γ,α)[g] ,

( τ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g]

}
.

Similarly in the line of Theorem 2.3 and with the help of Theorem 2.1, one may easily
carry out the following theorem from pairwise inequalities numbers (2.24) and (2.27) ; (2.21)
and (2.23); (2.20) and (2.26) respectively and therefore its proof is omitted:

Theorem 2.5. Let f and g be two entire functions such that 0 < λ(γ,β) [f ] ≤ ρ(γ,β) [f ] <∞ and
0 < λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then(τ (γ,β) [f ]

τ(γ,α) [g]

) 1
λ(γ,α)[g] ≤ τ (α,β) [f ]g ≤ min

{(τ (γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

( τ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g]

}
.
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Theorem 2.6. Let f and g be two entire functions such that 0 < ρ(γ,β) [f ] < ∞ and 0 <
λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then

τ (α,β) [f ]g ≥ max
{(σ(γ,β) [f ]

σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(σ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g]

}
.

With the help of Theorem 2.1, the conclusion of the above theorem can be carried out
from (2.16) , (2.19) and (2.16) , (2.27) respectively after applying the same technique of Theo-
rem 2.3 and therefore its proof is omitted.

Theorem 2.7. Let f and g be two entire functions such that 0 < ρ(γ,β) [f ] < ∞ and 0 <
λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then(σ(γ,β) [f ]

τ(γ,α) [g]

) 1
λ(γ,α)[g] ≤ σ(α,β) [f ]g ≤ min

{(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g]

}
.

Proof. From (2.16) and in view of (2.27), we get for all sufficiently large values of r that

exp(α(M−1
g (Mf (r)))) ≥

((σ(γ,β) [f ]− ε)(exp (β (r)))ρ(γ,β)[f ]

(τ(γ,α) [g] + ε)

) 1
λ(γ,α)[g]

i.e.,
exp(α(M−1

g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

λ(γ,α)[g]

≥
(σ(γ,β) [f ]− ε
τ(γ,α) [g] + ε

) 1
λ(γ,α)[g] .

Since in view of Theorem 2.1, ρ(γ,β)[f ]

λ(γ,α)[g]
≥ ρ(α,β) [f ]g, and ε (> 0) is arbitrary, we get from

above that

lim inf
r→∞

exp(α(M−1
g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

λ(γ,α)[g]

≥
(σ(γ,β) [f ]− ε
τ(γ,α) [g] + ε

) 1
λ(γ,α)[g]

i.e., σ(α,β) [f ]g ≥
(σ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g] . (2.34)

Further in view of (2.21) , we get from (2.15) for a sequence of values of r tending to infinity
that

exp(α(M−1
g (Mf (r)))) ≤

((σ(γ,β) [f ] + ε)(exp (β (r)))ρ(γ,β)[f ]

(σ(γ,α) [g]− ε)

) 1
ρ(γ,α)[g]

i.e.,
exp(α(M−1

g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

ρ(γ,α)[g]

≤
(σ(γ,β) [f ] + ε

σ(γ,α) [g]− ε

) 1
ρ(γ,α)[g] .

Again as in view of Theorem 2.1, ρ(γ,β)[f ]ρ(γ,α)[g]
≤ ρ(α,β) [f ]g and ε (> 0) is arbitrary, therefore we

get from above that

lim inf
r→∞

exp(α(M−1
g (Mf (r))))

(exp (β(r)))
ρ(γ,β)[f ]

ρ(γ,α)[g]

≤
(σ(γ,β) [f ] + ε

σ(γ,α) [g]− ε

) 1
ρ(γ,α)[g]

i.e., σ(α,β) [f ]g ≤
(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] . (2.35)

Similarly from (2.18) and (2.20), we get that

i.e., σ(α,β) [f ]g ≤
(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] , (2.36)

as in view of Theorem 2.1 it follows that ρ(γ,β)[f ]ρ(γ,α)[g]
≤ ρ(α,β) [f ]g .

Thus the theorem follows from (2.34), (2.35) and (2.36).2
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Theorem 2.8. Let f and g be two entire functions such that 0 < λ(γ,β) [f ] < ∞ and 0 <
λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then

σ(α,β) [f ]g ≤ min
{(τ (γ,β) [f ]

τ (γ,α) [g]

) 1
λ(γ,α)[g] ,

(τ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g] ,

( τ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(τ (γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g]

}
.

The conclusion of the above theorem can be carried out from pairwise inequalities num-
bered (2.20) and (2.26) ; (2.21) and (2.23) ; (2.26) and (2.28); (2.23) and (2.29) respectively
after applying the same technique of Theorem 2.7 and with the help of Theorem 2.1. Therefore
its proof is omitted.

Similarly in the line of Theorem 2.3 and with the help of Theorem 2.1, one may easily
carry out the following theorem from pairwise inequalities numbered (2.25) and (2.27) ; (2.24)
and (2.30); (2.20) and (2.23) respectively and therefore its proof is omitted:

Theorem 2.9. Let f and g be two entire functions such that 0 < λ(γ,β) [f ] < ∞ and 0 <
λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then

max
{(τ(γ,β) [f ]

τ(γ,α) [g]

) 1
λ(γ,α)[g] ,

(τ (γ,β) [f ]
τ (γ,α) [g]

) 1
λ(γ,α)[g]

}
≤ τ(α,β) [f ]g ≤

( τ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] .

Theorem 2.10. Let f and g be two entire functions such that 0 < λ(γ,β) [f ] ≤ ρ(γ,β) [f ] <∞ and
0 < λ(γ,α) [g] ≤ ρ(γ,α) [g] <∞. Then

τ(α,β) [f ]g ≥ max
{(σ(γ,β) [f ]

σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(σ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g] ,

(σ(γ,β) [f ]
τ (γ,α) [g]

) 1
λ(γ,α)[g]

}
.

The conclusion of the above theorem can be carried out from pairwise inequalities num-
bered (2.17) and (2.19) ; (2.16) and (2.22) ; (2.17) and (2.27); (2.16) and (2.30) respectively
after applying the same technique of Theorem 2.7 and with the help of Theorem 2.1. Therefore
its proof is omitted.

Now we state the following two theorems without their proofs as because those can be
derived easily using the same technique or with some easy reasoning with the help of Remark
2.2 and therefore left to the readers.

Theorem 2.11. Let f and g be two entire functions such that 0 < ρ(γ,β) [f ] < ∞ and 0 <

ρ(γ,α) [g]
(
= λ(γ,α) [g]

)
<∞. Then

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] ≤ σ(α,β) [f ]g

≤ min
{(σ(γ,β) [f ]

σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g]

}
≤ max

{(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] ,

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g]

}
≤ σ(α,β) [f ]g ≤

(σ(γ,β) [f ]
σ(γ,α) [g]

) 1
ρ(γ,α)[g] .

Remark 2.12. In Theorem 2.11, if we will replace the conditions “0 < ρ(γ,β) [f ] < ∞ and 0 <
ρ(γ,α) [g]

(
= λ(γ,α) [g]

)
<∞” by “0 < ρ(γ,β) [f ]

(
= λ(γ,β) [f ]

)
<∞ and 0 < ρ(γ,α) [g] <∞” re-

spectively, then Theorem 2.11 remains valid with τ (α,β) [f ]g and τ(α,β) [f ]g replacing σ(α,β) [f ]g
and σ(α,β) [f ]g respectively.
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Theorem 2.13. Let f and g be two entire functions such that 0 < ρ(γ,β) [f ]
(
= λ(γ,β) [f ]

)
< ∞

and 0 < λ(γ,α) [g] <∞. Then

(τ (γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g] ≤ σ(α,β) [f ]g

≤ min
{(τ (γ,β) [f ]

τ (γ,α) [g]

) 1
λ(γ,α)[g] ,

(τ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g]

}
≤ max

{(τ (γ,β) [f ]
τ (γ,α) [g]

) 1
λ(γ,α)[g] ,

(τ(γ,β) [f ]
τ(γ,α) [g]

) 1
λ(γ,α)[g]

}
≤ σ(α,β) [f ]g ≤

( τ(γ,β) [f ]
τ (γ,α) [g]

) 1
λ(γ,α)[g] .

Remark 2.14. In Theorem 2.13, if we will replace the conditions “0 < ρ(γ,β) [f ]
(
= λ(γ,β) [f ]

)
<

∞ and 0 < λ(γ,α) [g] < ∞” by “0 < λ(γ,β) [f ] < ∞ and 0 < ρ(γ,α) [g]
(
= λ(γ,α) [g]

)
< ∞” re-

spectively, then Theorem 2.13 remains valid with τ (α,β) [f ]g and τ(α,β) [f ]g replacing σ(α,β) [f ]g
and σ(α,β) [f ]g respectively.

3 Conclusion

After introducing the idea of generalized relative order (α, β) and generalized relative type
(α, β) of an entire function with respect to an entire function where α, β are non-negative con-
tinuous functions defined on (−∞,+∞), here in this paper we study some growth properties of
entire functions. This assumption is also used to modify the ideas of relative order and relative
type of an entire function with respect to another entire function. Taking these modifications, we
derived some results which will no doubt inspire the future researchers to increase their domain
of knowledge in this field.
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