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Abstract This work presents numerical optimization algorithm based on genetic algorithm
to solve an inverse problem to reconstruct the Robin coefficient in boundary value problem. It
consists of identifying the Robin coefficient on the inaccessible part of the boundary representing
the corrosion damage of some specimen material. This problem is known to be severely ill-
posed in Hadamard sense. Metaheuristics are methods inspired by natural phenomena which
have shown their effectiveness in solving several optimization problems in different domains.
Thus, adapted genetic operators for real coded genetic algorithm is proposed by formulating the
problem into an optimisation one. Numerical results are presented to illustrate and evaluate the
efficiency and the robustness of the proposed algorithm.

1 Introduction

The identification of Robin coefficient constitutes a very important class of inverse problems
which has interested several researchers. This kind of problem appears in many nondestructive
evaluation methods where an unknown profile of material, contained in an inaccessible part of
the boundary, must be recovered using a partial boundary measurement taken on an accessible
part of the boundary [1, 2].

The Robin inverse problem arises in many areas of engineering and can be considered a
challenge in many fields of industry. For example, in the detection of corrosion the Robin coef-
ficient represents the corrosion damage profile [3] and in the study of MOSFET semiconductor
devices, the Robin coefficient contains information about the contact resistance and location of
the metal-to-silicon contact window [4].

The considered inverse problem is known to be severely ill-posed in Hadamard sense [5]
since the existence or uniqueness or the continuous dependence on the data of their solutions
may not be ensured. This problem has been the subject of several studies. In particular, the
identifiability [6, 7] and the stability, i.e. the continuous dependence of the unknown parameter
on the measured data, which is a crucial issue for numerical applications. The stability of various
forms (local Lipschitz, global monotone Lipschitz and global logarithmic type) has also been
extensively studied [8, 9, 10, 11].

Many performing numerical methods have been developed to overcome the ill-posed nature
of this kind of problem. There are numerical methods based on the assumption that the specimen
is a thin plate [3, 12, 13]. The iterative algorithm addressed by Kozlov, Mazya and Fomin since
1991 [14], also called alternating method which consists of completing Dirichlet and Neumann
conditions on the inaccessible boundary and then calculate the desired coefficient [15, 16, 17]. In
addition, the methods based on the minimization of the so-called Kohn and Vogelius cost func-
tion [6, 18] and those using conjugate gradient method after transforming the inverse problem
into an optimisation one [19, 20].

In addition to deterministic methods, a class of stochastic methods have had great success in
solving several optimization problems in different fields. The metaheuristics methods as artificial
bee colony [21], genetic algorithms (GAs) [22, 23], particle swarm optimization [24], ant colony
optimization [25] and bat algorithm [26] are methods inspired by natural phenomena and are
part of this category of methods. This technique does not guarantee the best solution but it is
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to come as close as possible to the optimum value in a reasonable amount of time which is at
most polynomial time. However, the application of these methods, in particular GAs, requires an
adaptation of these genetic operators when solving each problem that can influence the quality
of the solution (local or global optimum) and the time required to obtain the optimal solution,
which explains the large number of genetic operators developed and adapted to each type of
encoding.

Several researchers have used genetic algorithms (GAs) to solve different inverse problems
[27, 28, 29, 30, 31, 32]. Our objective is to adapt the genetic algorithm with a good choice of
genetic operators with real encoding to approach the desired solution for the Robin inverse prob-
lem. In this paper, the considered inverse problem is formulated as an optimization problem and
we investigate the use of genetic algorithm with a real encoding, which has shown its efficiency
in comparison to the binary encoding, with adapted crossover and mutation operators, where the
obtained direct problem for Laplace’s equation is discretized using the finite element method.

The remainder of this paper is organized as follows: Section 2 gives the mathematical formu-
lation of the direct and the Robin inverse problem and its formulation on an optimisation prob-
lem. Section 3 provides a brief review of genetic algorithms and the adapted genetic algorithm
for the studied inverse problem. Section 4 presents numerical results showing the effectiveness
of the proposed algorithm.

2 Mathematical formulation

2.1 Problem setting

Let Ω be an open bounded domain in R
2, representing the speciemen to be inspected, with a

piecewise smooth boundary Γ = ∂Ω.
Γ1 and Γ0 are two disjoint closed sub-parts of Γ = ∂Ω, where Γ0 is the accessible part; however,
Γ1 is the inaccessible part where the corrosion has occurred.

The problem can be mathematically modelled by the Laplace equation as follows:

Δu = 0 in Ω (2.1)

where Δ is the Laplace operator. We prescribe the Neumann boundary condition as follows:

∂nu = g on Γ0 (2.2)

where ∂n denotes taking outward normal derivative.
On the inaccessible part, the boundary condition is given by the following:

∂nu+ γu = 0 on Γ1 (2.3)

The model given by equations ((2.1) − (2.2) − (2.3)) is one of the models describing the elec-
trostatics of a conductor Ω having an inaccessible part of its boundary, denoted by Γ1, affected
by corrosion, where u represents the electrostatic potential, g is the prescribed current density on
the accessible part of the boundary Γ0; while γ, called the corrosion coefficient, represents the
characteristic of corrosion damage [33].
Direct problem : In the direct problem, γ and g would be specified in a way that leads to the
Robin boundary value problem for the Laplace equation where the objective would be to find u.
Inverse problem : The aim of the Robin inverse problem is to estimate the Robin coefficient γ
on the inaccessible part of the boundary Γ1 ⊂ Γ from the knowledge of the Neumann condition
g and measuring the corresponding boundary condition f = u/Γ0 on the accessible part Γ0.
Note that, for the inverse problem, both Dirichlet and Neumann boundary conditions are speci-
fied on the boundary Γ0.

2.2 Formulation of the optimisation problem

The main idea behind this paper is the use of an adapted genetic algorithm to approach the
solution of the inverse problem which requires a transformation of the considered problem into



710 B. Jouilik, J. Daoudi, C. Tajani and J. Abouchabaka

an optimization problem.
Consider the following Robin boundary value problem for the Laplace equation:⎧⎪⎨

⎪⎩
−Δu = 0 in Ω
∂nu = g on Γ0

∂nu+ γu = 0 on Γ1

(2.4)

We assume that the function g ≥ 0 does not vanish identically. Then the maximum principle
[34] ensures that u > 0 over the boundary Γ, which consequently guarantees the identifiabil-
ity of the Robin coefficient γ in the admissible set of Robin coefficients given by A = {γ ∈
L∞ (Γ1) , cχK ≤ γ ≤ c′}, where c and c′ are positive constants, K ⊂ Γ1 is an open set and χK

is the characteristic function of K.
Knowing that, this direct problem needs to be solved by Frrefem++ Software, and its mathemati-
cal formulation should be written. The Problem (2.4) is clearly equivalent to the following weak
formulation: find u ∈ H1(Ω) such that for all v ∈ H1(Ω)∫

Ω
∇u · ∇vdx+

∫
Γ1

γuvds =

∫
Γ0

gvds

and the well-posedness of the last problem follows from Lax-Milgram’s lemma and Poincaré-
Friedrichs inequality, which implies the equivalence between the standard norm of H1(Ω) and
the norm ||.|| defined by the following:

‖u‖2 =

∫
Ω
|∇u|2dx+

∫
Γ1

u2ds

Since the function γ on the boundary Γ1 is to be determined, we consider it as a control in the
direct problem formulation (2.4) to fit the Cauchy data f ∈ L2(Γ0), and we aim to find u(γ, g)
such that:

u(γ, g)/Γ0
= f

In doing so, we attempt to minimise by using genetic algorithm approach the least-squares func-
tional J or the regularized least-squares functional Jr defined as follows :

J(γ) =
1

2
‖u(γ, g)− f‖2

L2(Γ0)
=

1

2
‖uγ − f‖2

L2(Γ0)

and

Jr(γ) =
1

2
‖u(γ, g)− f‖2

L2(Γ0)
+

η

2
‖γ‖2

L2(Γ1)

where η is the regularization parameter. The extra term in the functional Jr is the well-known
Tikhonov regularization functional, and it serves to increase the numerical stability of the opti-
mization problem [29].

3 Approach genetic for the Robin identification problem

3.1 Overview of genetic algorithm

Genetic algorithms (GAs) are the most famous Evolutionary Algorithms (EAs) which are in-
spired by natural evolution and selection. It is essentially a searching method based on the Dar-
winian principles of biological evolution. Genetic algorithms, primarily developed by Holland
[21], have been successfully applied to various optimisation problems.

Genetic algorithms search from a population of possible solutions instead of a single one. It
uses random operators throughout the process including reproduction, crossover, and mutation.
Thus, In genetic algorithms, a population of individuals (possible solution) is randomly selected.
These individuals are subject to several genetic operators (selection, crossover, mutation, inser-
tion, ..) to produce a new population containing, in principle, a better individual. This population
evolves more and more until a stopping criterion is satisfied and declared obtaining optimal best
solution. The performance of a genetic algorithm depends on the choice of operators which will
intervene in the production of the new populations.
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The fitness or cost function used to resolve the redundancy has no requirement for continuity
in the derivatives, so virtually “any” fitness function can be selected for optimizing.

Irrespective of the problems treated, genetic algorithms are based on six principles:

• Each treated problem has a specific way to encode the individuals of the genetic popula-
tion. A chromosome (a particular solution) has different ways of being coded: numeric,
symbolic, matrix or alphanumeric;

• Creation of an initial population formed by a finite number of solutions...;

• Definition of an evaluation function (fitness) to evaluate a solution;

• Selection mechanism to generate new solutions, used to identify individuals in a population.
There are several methods in the literature, citing the method of selection by rank, roulette,
by tournament, random selection, etc.;

• Reproduce the new individuals by using genetic operators:

– Crossover operator: It is a genetic operator that combines two chromosomes (parents)
to produce a new chromosome (children) with crossover probability Pc;

– Mutation operator: It avoids establishing a uniform population that is unable to evolve.
This operator used to modify the genes of a chromosome selected with a mutation
probability Pm;

• Insertion mechanism: It decides what should stay and what should disappear.

• Stopping test: to make sure about the optimality of the solution obtained by the genetic
Algorithm.

3.2 Choice of genetic operators for the optimisation problem

To solve the considered problem using GAs, it is necessary to adapt the genetic operators, starting
with the type of encoding, the crossover operator and mutation operator.

It is known that the performance of real coded genetic algorithm is superior to binary coded
genetic algorithm requiring huge computational time and memory, in particular, for high dimen-
sional problems in which higher degree of precision is desired. Then, in this problem, a real
coded GA is used where the decision variables are encoded as real numbers.

For the other operators, we have chosen the Arithmetic crossover [35] and the Non-uniform
mutation [36], defined as follows:

• Arithmetic crossover Different types of crossover operators adapted to real coded GA have
been developed by several authors that have shown their effectiveness in solving several op-
timization problems [37]. We opt for this proposed algorithm for the arithmetic crossover.

In arithmetic crossover, two parents produce two offsprings. The offsprings are arithmeti-
cally represented by the following:

y
(1)
i = αix

(1)
i + (1 − αi)x

(2)
i

y
(2)
i = αix

(2)
i + (1 − αi)x

(1)
i

(3.1)

where αi are uniform random numbers, say in [−0.5, 1.5] [22].

• Non-uniform mutation (NUM) Michalewicz’s non-uniform mutation is one of the most
widely used mutation operators in real coded GAs. From a point xt = (xt

1, x
t
2, . . . , x

t
n) the

muted point xt+1 =
(
xt+1

1 , xt+1
2 , . . . , xt+1

n

)
is created as follows:

xt+1
i =

{
xt
i + Δ (t, xu

i − xt
i) if r ≤ 0.5

xt
i − Δ

(
t, xt

i − xl
i

)
otherwise

(3.2)

where t is current generation number and r is a uniformly distributed random number be-
tween 0 and 1. xl

i and xu
i are lower and upper bounds of the i the component of the decision

vector, respectively. The function Δ(t, y) given below takes value in the interval [0, y].

Δ(t, y) = y
(

1 − u(1−
1
t )

b
)
,
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where u is a uniformly distributed random number in the interval [0, 1], T is the maximum
number of generations and b is a parameter, determining the strength of the mutation opera-
tor. In the initial generations nonuniform mutation tends to search the space uniformly and
in the later generations it tends to search the space locally, i.e. closer to its descendants.

3.3 Genetic approach for the Robin inverse problem

The approach GA used to solve the inverse problem is defined following the steps below:

• Step 1: Given an initial random population γ0
k, k = 1, 2, . . . . . . N, with N is the popula-

tion size of search space, solve the problem (3.3) below for each given γ0
k by finite element

method, given by : ⎧⎪⎨
⎪⎩

−Δu = 0 in Ω
∂nu = g on Γ0

∂u
∂n + γ0

ku = 0 on Γ1

(3.3)

• Step 2 : Evaluate J(γ0
k), k = 1, 2, . . . . . . N

• Step 3 : Using J(γ0
k) as indicator of each individual, the next generation γ1

k is created by
GA with the following rule:

γ1
k = Mu · Cr · Se

(
γ0
k

)
(3.4)

where :

– Se: Random Selection

– Cr: The crossover operator with Crossover Probability Pc

– Mu: The Mutation operator with Mutation Probability Pm

• Step 4 : Go to step 1 with γ1
k replacing γ0

k and continue.

• Step 5 : The process continue for γi
k, with i = 1, 2, . . .Maxgen)

4 Numerical results

We consider an isotropic homogeneous medium consisting of an open bounded domain Ω with
a piecewise smooth boundary where Γ = Γ0 ∪ Γ1; and mes(Γ1) 	= 0 and mes(Γ0) ≥ mes(Γ1).

Figure 1. The considered example

We consider a typical bench-mark test example, where Γ1 is the inaccessible part of the
boundary, given by the following:

(P ) : uex(x, y) = cos(x) cosh(y) + sin(x) sinh(y) and γex(y) = − tanh(y)

The genetic operators and the parameters used for the genetic algorithm for evolving each
individual population are as follows:
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• maximum number of generations Maxgen = 200

• population size npop = 100

• Arithmetic Crossover, Crossover probability Pc = 0.9

• Non-uniform mutation, mutation probability Pm = 0.01

• Insertion: Elitism

The experiments are done on an intel (R) Core(TM) i5-431OU CPU @ 2.6 GHz machine
with 4.00 Go RAM.

The algorithm is implemented using the software FreeFem++ which is a free software to solve
numerically partial differential equations (PDE) in R

2 and in R
3 with finite elements methods.

It should be noted that the software FreeFem ++ allows a rapid specification of the EDP
(direct problem resulting from the considered optimization problem by writing its variational
formulation).

Knowing that in most practical cases the desired solution is not known, we consider two
approaches in these numerical simulations. First and foremost, we consider that the form of
the function of Robin coefficient is known in a way that allows to find the function in the form
γ(y) = a × tanh(b × y). For the second approach, we seek a polynomial approximation of the
desired Robin coefficient.

Several parameters can be influenced on the performance of the genetic algorithm proposed
to optimize the functional J and then on the complexity of the approach proposed to solve the
inverse problem during the various carried out numerical simulations. Specifically, for the two
forms of the function to be approximated, finding an approximation of γ amounts to approxi-
mating the coefficients a, b or the polynomial coefficients. Thus, the research domain, or interval
of membership of each coefficient, can influence the speed and even the precision of the result
obtained. Table 1 shows the influence of choice of membership intervals on the Robin coefficient
approximation. Indeed, the carried out numerical simulations show that the more the domain of
research is reduced, the more the solution found is precise and less iterations are required.

[a, b] Iteration J with Approach 1 J with Approach 2

[−2, 2] 50 9.66e-007 5.56e-005

[−10, 10] 50 1.53e-005 3.86e-004

[−20, 20] 50 1.08e-004 7.12e-002

[−30, 30] 50 1.008e-003 4.84e-002

[−40, 40] 50 1.95e-004 3.13e-002

Table 1. Influence of the choice of the research domain for obtained value of the functional J in
the appropriate iteration

On the other hand, the number of individuals generated at each iteration, the probabilities of
crossover and mutation are all important factors allowing the improvement of the performance of
the proposed algorithm and having a diversity in the population after each iterations which will
make it possible to overcome the convergence towards a local minimum. The presented results
come from several simulations which resulted in making the best choices for these parameters,
also based on the studies carried out in this direction in the work on the genetic algorithms
already mentioned.

The obtained results for the first approach (known form of the solution) are presented in
figure 2 which shows the evolution of the functional J during a genetic process where it has
been taken into account that the sought coefficients belong to the interval [-5.5] and give the
different approximations of Robin’s coefficient in comparison with the exact solution showing
that a good approximation is obtained after a reduced number of iterations.

For the second approach (polynomial approximation), several simulations are carried out
with different choices of polynomial degrees and even by taking into consideration the possible
properties of the desired coefficient (odd in this case). In this sense, by considering an approx-
imation by a polynomial of degree 4. Figure 3 presents the differences approximations of the
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Figure 2. The fitness functional according to the number of iterations J (Left) and the numerical
solution γ(y) on the inaccessible boundary Γ1 calculated by the GA for different iterations for
the first approach (right)

Figure 3. The fitness functional according to the number of iterations J (Left) and the numerical
solution γ(y) on the inaccessible boundary Γ1 calculated by the GA for different iterations for
the second approach (right)

Figure 4. The numerical solution γ(y) on the inaccessible boundary Γ1 calculated by the GA
for different iterations for the first approach (left) and the second approach (right)

requested coefficient and also shows the evolution of the functional J and the evolution of Robin
coefficient during the genetic process in comparison with the exact solution.

In addition, the studied inverse problem is known to be ill-posed. In particular, the solution
does not depend on Cauchy data even if it exists. To increase the numerical stability of the
optimization problem, we use the functional Jr where we add a regularization term. Figure
4. gives the results obtained either for the value of Jr as a function of the iterations and the
approximation of Robin’s coefficient in comparison with the exact solution showing that the
use of the functional with regularization term, taken here η = 10−5, allows to lead to a better
approximation. Indeed, with approach 1, we obtain an approximate solution with a functional
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cost Jr equal to 1.24 × 10−4 after 11 iterations and continues to decrease until the value 2.31 ×
10−7 at the iteration 24; however, the obtained value of J is equal to 1.82×10−4 after 12 iteration
end this value is stagnated. Similarly, with the approach 2, we obtain an approximate solution
with a cost of functional Jr equal to 6.91×10−4 after just 7 iterations; however, almost the same
value with the functional J is obtained after 70 iterations.

Figure 5. The cost functional with and without regularization (left) and numerical solution for
γ(y) with and without regularization in comparison with the exact solution with approach 1
(right)

Figure 6. The cost functional with and without regularization (left) and numerical solution for
γ(y) with and without regularization in comparison with the exact solution with approach 2
(right)

Figure 7. The numerical solution γ(y) calculated by the GA, for various levels of noise 1%, 2%,
3% and 4% , in comparison with the exact solution for the first (left) and second approach (right)

Figure 5. and figure 6. present a comparison between the numerical results obtained for the
approximation of Robin’s coefficient by the first and second approach showing that the proposed
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algorithm gives better results if we consider the functional to be optimized with regularization
term.

For the study of the stability aspect, the limit data were disturbed with different noise levels
in order to simulate the measurement errors. We see that for a noise of 1% for example, there
is a good agreement between the two numerical solutions (with noise and without noise), and
they are both good approximations of the exact solution. Similar results are obtained for various
noise levels added to the input data (see figure 7.). Moreover, it can be seen that as the noise
level decreases, the numerical solution gets closer to the exact solution.

5 Conclusion

In this work, a Robin inverse problem is considered. This problem is ill-posed in the sense of
Hadamard, which requires regularizing methods to solve it. An optimization approach based on
genetic algorithms is proposed. To implement it, a formulation into an optimization problem
is carried out giving rise to a functional to be optimized by applying a genetic algorithm with
an adequate choice of the genetic operators. The direct problem found is solved by the finite
element method. Numerical results are proposed, for an irregular domain, to approach the Robin
coefficient as being a solution of a typical bench-mark test example of the inverse Robin problem
showing the efficiency of the proposed approach.

The proposed approach is an alternative to existing methods requiring a certain regularity
(differentiability for example) to be developed and shows the efficiency of metaheuristic methods
in solving this type of inverse problem by adapting the parameters of genetic algorithms. It
should be noted that work is in progress to extend this strategy and apply other metaheuristics to
other classes of inverse problems.
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