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Abstract A class of implicit Hilfer-Katugampola-type fractional pantograph differential equa-
tion with nonlocal katugampola fractional integral conditions is considered in this paper. By us-
ing Schaefer’s fixed point theorem and Banach contraction principle, the existence and unique-
ness solutions for the considered problem are proved. Ulam-Hyers stability for the considered
problem is established. Finally, an example is presented to illustrate our main results.

1 Introduction.

Fractional differential equations have been widely applied in the field of science and engineer-
ing. Recently, Hilfer fractional differential equations have attracted the attention of many authors
([1]-[8]). Nowadays, the generalized fractional derivative introduced by U.N. Katugampola ([9],
[10]) is unified with Hilfer fractional derivative by Oliveira and E. Capelas de Oliveira in ([11])
is named as Hilfer-Katugampola fractional derivative. This formulation interpolates the well-
known fractional derivatives of Hilfer, Hilfer-Hadamard, Riemann-Liouville, Hadamard, Ca-
puto, Caputo-Hadamard, Liouville, Weyl, Caputo-type fractional derivatives. Thus, the Hilfer-
Katugampola fractional derivative proposed in this paper is a generalization of the classical
fractional derivatives. Few authors studied Hilfer-Katugampola fractional differential equations

([11]-[13]).

The pantograph is a device in electric trains to collect electric currents from the overload lines
and play an important role in physics, pure and applied mathematics, such as control systems,
number theory, quantum mechanics and electrodynamics. This equation is a special class of
delay differential equation arising in deterministic situations and was modeled by Ockendon
and Tayler ([14]). Motivated by their importance, a lot of scientists generalized these equations
into various types and introduced the solvability aspect of such problems both theoretically and
numerically ([15]-[20]).

To the best of our Knowledge, there are no results of implicit pantograph Hilfer-Katugampola
fractional differential equation with nonlocal Katugampola fractional integral conditions. Moti-
vated by the above discussion, the aim of this paper is to study the implicit pantograph Hilfer-
Katugampola-type fractional differential equations with nonlocal katugampola fractional integral
conditions of the form:

PDEPu(t) = f(tu(t),u(\),” Dy u(M\),  teJ:=(0,T], 0<A<]1

m

(”JJJ”u) 0) = Y GTuln), v=a+p(l-a) (1.1)

i=1
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Tm < T. Here we let X is a Banach space, f : J x X x X x X — X is a given continuous
function. In addition, the nonlocal Katugampola fractional integral condition (f’jolf”u) 0) =

> GP Ty u(T;) generalized the following initial condition:
o If » — 0, the initial condition reduces to multi-point nonlocal condition.

and in physics problems yields better effect than the initial conditions (”j&;”u) (0) = wuy, (see,
([211)).

The outline of this paper is organized as follows: In section 2 recalls some basic definitions
and lemmas. In section 3, the existence and uniqueness of solutions for equation (1.1) are estab-
lished. stability analysis results are discussed in section 4. The last section contains an example
to illustrate our main results.

2 Preliminary.
Letp>0and 0 <v < 1.

(i) Let C(J, X) be a Banach space of all continuous functions « from J into X.

(i) Let Ci—, ,(J, X) is a weighted space defined by

p 1—v
Ciovp(J, %) := {u: J—=X: (i}) u(t) EC(J,%)}.
with the norm

= sup
ted

P 1—v i 1—v
full,.,, = () utt (£) o).
Definition 2.1. ([9]) Let o, ¢ € R with @ > 0 and ¢ € X?(a,b), where ¢ € XP(a,b) consists
of those complex-valued Lebesgue measurable functions. The generalized left-sided fractional
integral is defined by

C

("Tgie) (1) = lfi(;f; /0 (tip: ;g«?)a ds, t>0.

where I'(+) is the gamma function and the corresponding generalized (Katugampola) left-sided
fractional derivative ” D, is defined by

pa—n-H - d n /t Sp_lgD(S)
P — p__ [ S S—
(D¢, ) (t) T —a) (t pr N = ds, t>0.

Lemma 2.2. ([22]) Let X be a Banach space and w : X — X is a continuous and compact
mapping. If,
E={ueX:u=~vw(u) for some ~e€]|0,1]}

is a bounded set, then w has a fixed point.

Lemma 2.3. ([11]) For the generalized (Katugampola) left-sided fractional integral and deriva-
tive, the following properties are satisfied:

(i) The semigroup property
(g5 Tiee) (1) = (75 70) ().

(ii) For o> 0, ?J maps C(J, X) into C(J, X).
(iii) Let >0, and 0 < v < 1, then ? Jg is bounded from C,, ,(J, X) into C,, ,(J, X).
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(iv) Let « > 0,and 0 < v < 1, and p € C,(J,X). Then
(PDg P Tsv ) (t) = (1)
(v) LetO<a < 1,and0<v < L. Ifp € C,(J,X) and * Ty € CL(J, X), then
p 7l (0) P a—1
PIEPDE 1) = o(t) — 2o P () .
( 0+ 0+(P) ( ) (P( ) F(a) p

Definition 2.4 ([11],[12]). The Hilfer-Katugampola fractional derivative with respect to ¢, with
p > 0, is defined by

a, _ l—a 1-8)(1-a
(rDiu) (1) = (#0 T 5,090 (0 @.1)
where §, = (7714,
(i) The operator Dgf can be written as
a, l—« —v l—« v
D5 = JE e, Ty = T D,
where v = a+ (1 — «).

In order to solve our problem, the following spaces are presented:

CrP (1,X) = {u(t) € Ci_y,(J, %), D5 ul-) € Cioy p(J, X))}

1—v,p
and
Cly o (1. X) i=A{ul(t) € Cioyp(J, X),” Dy u(-) € Croy,o(J, X)}-
It is obvious that
v (LX) cert (%)

I—v,p

Lemma 2.5.([11]) Let 0 < a < L0 < A< 1L,0<v < landv = a+ (1 —a). If
u € Cy,(J, X), then

PTG DG () = LT DG ).
v o 11—«
YD TR () = DG ()

Lemma 2.6. ([11]) Assume thata > 0,0 <v <1, p>0andu € C, ,(J, X)). If v < «, then
P70 — lim (P72 _
0 F50) (0) = lim (°Tgu) (£) =0,

Lemma 2.7 ([11],[12]). Let 0 < a < 1,0 < < 1,0 <v < L, v = a+ B(1 — a), and assume
that f(t,u(t)) € Ci—y,,(J, X) for any u € Ci—, ,(J, X). A functionu € CY_,, (J,X) is a solution
of fractional IVP

PDEPu(t) = fltu(t), 0<a<l,0<B<],
(p Olg”u)(O) = ¢ v=a+p(l—-a),ceR.

if and only if u satisfies the following second kind Volterra fractional integral equation:

Lemma 2.8. ([11]) Let t > 0, ?Jy" and P Dg, as defined in Definitions (2.1, 2.4). Then for
a>0, >0, we have

<ij0}F (tpp)ﬁ_l) (t) = 1“(1;(?5) <tpp>a+ﬁ—1
(s () ) o-o

and for0 < a < 1,
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Lemma29. Let0 < a < 1,0 < 8 < 1,0 < v < 1, and assume that f(t,u(t),u(\t),” D5 u(\t)) €
Ci—vp(J, %) for any u € Cl,,,,p(J X). Ifu € CY_, ,(J,X) then u satisfies the problem (1.1) if
and only if u satisfies the following mixed-type Volterra fractional integral equation:

0 = matarn () el () o

AT .
+F(Oé)/0( p ) Rl =y

r4+v—1
Y .= 1 e I y—|—r #ch< ) .
Mw+r) - X0 6 (%)

and for simplicity, we take
Ko (t) == ?Dg u(t) = f(t,ult), u(rt), Ky (t).

Proof. Firstly, we will prove the necessary condition. According to Lemma 2.3 and Lemma 2.7,
a solution of the problem (1.1) can be expressed by

u(t) = (p%llt(l:;)w)(i)ul

+F(1a) /0 t (”‘p“)alsp1f<s,u<s>,u<xs>,ﬂ<u<s>>ds (23)

Next, we substitute ¢ = 7, and multiply both sides by (;, we can write

Gu(m) = (%) © s (Tp)l

I(v)

Where

1 Ti [P _ P a—1
ok /0 ( s) 1 f (s, uls) u(hs) Ko (s)ds  (2.4)

p
Now, applying Jj" to both sides of Equation (2.4) and using Lemma 2.3 and Lemma 2.8, we

have
PI M) (0) p rHv—1
PTosGiu(ri) = 7( o ) Gi (Z)

which implies that

m pgl=v,, (0) m o\ THr—1
0 T!

thus, we get

|
/N
°
(=)
F
IS
N——
—~
=
=
M=
L
Y
N————
3
+
N

(pt7<)+ u)() = W;
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which implies that

SeFeD ic [ (

1

thus,

YI'(v+7)

(70 0= i (5)

Substituting (2.5) in (2.3), we obtain (2.2). Secondly, let v € C}_

P _ op
T; S
P

a+r—1
> 5P 1K, (s)ds.

v—1 m

o

a+r—1
) PR, (s)ds  (2.5)

Ti (TZ —g”
P

».p(J, X) satisfies the mixed-

type integral equation (2.2), then we prove that u satisfies (1.1). By applying # Dy, on both sides
of (2.2) and using Lemma 2.3 and Lemma 2.8, we get

P Y
0+

PDgu(t)

(

v

+°Dg,

L
')

YI(v + 1) (
I'(v)I'(a+r)

A

v—1 m

o (
>al sP—‘Ku(s)ds>

tP
p

p_ op
T, — 8
p

)

tP — s”

P

)Wq s”_'Ku(s)ds>

= 2D £t ult), u(At), " DE P u(At)). (2.6)
Since "D&’ﬁu € Ci—v,p(J, X), then by definition of C{_,, ,(.J, X) and by using Equation (2.6), we have
PDYT f = 6,2 Ty T € Cion (0 X). 2.7

For every f € Ci_,,,(J, %) it is clear that ”jl_B e v,p(J, X), which implies that pJI_B(l_a)f €
Ci_, (J, X). Therefore f and *J, | =A(1=e) f satisfy conditions of Lemma 2.3. Applying ’8 (] ) on both

sides of Equation (2.6), we can obtaln

IO |

By applying * 7, "

7T DT K (1)
(PJOII/B(I*Q)KH) (0)
L(B(1 — o))
u(At), ” DS u(A)).

tp

<7

p

Ko (t) —

)ﬁ(l—a)—l

ftu(t),

on both sides of the Equation (2.2), we get

ca)o = o (et (5) Se [ (155) 7 o)
o g (r(la) /Ot (tppsp)a_ls”_'Ku(s)ds>.

since, 1 — v < 1 — (1 — «), then

_ YI(v+r) — /Ti P —gP\ T
pogl—v _ ) i Pl
( 0+ u) (t) T(a+ 1) ;Q A p s (s)ds
4 Olfﬁ(lfa)Ku(t).
taking the limit as ¢ — 07 yields
_ YI'(v+r) T (P — g\
p 7l—v X i p—1
( Jo- u) (0) = INa+r) ;CZ/O ( p s" Ku(s)ds
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Using the substitution ¢ = 7; and multiplying through by (; in (2.2), we have

atrd = e () S [ ()

1 TP P\
+m@/o ( ; ) sPT Ky (s)ds. (2.8)

Applying ? 7y, to both sides of (2.8), we get

p T s N v . Lip rev—1 m ./n TP — P atr—1 -
-.70+Czu(7'z) - F(a-i—r)g ;Cz A p s Ku(S)dS

p

1 T; Tp _ Sp r+a—I1 o
—G L Ky (s)ds.
e () ¢ e

pN\ Ttrv—1 m Ti P _ P a+r—1
(3) e (5

p

which implies

S TiGulr) =
=1

=1

7! _ P r+a—1 .
YT Ta+7) / ( ) sP7 Ky (s)ds.

_ m ' Llp r+v—1 # m ' i Tip _ Sp a+r—1 -
Lo ot (2

and then we can easily see that

m

(" u) (0) = X2 TG,

i=1

3 Existence and Uniqueness.

In order to prove our main results, we need the following assumptions:

HI. Let f : JxXxXxX — X beafunctionsuchthat f € C;_, ,(J,X) forany u € C,_,, ,(J, X),
and fort € J, u,v,w € X, there exist o, p, q, x € C1_,,,(J, X) such that

1t u,v,w)|| < o(t) + () [u®)] + ¢(@) v + x (@) lw@)]-
with

=supo(t), p"=supp(t), ¢ =supq(t), and X" =supx(t)<l.
teJ teJ teJ teJ

H2. There exist constants K > 0,0 < K* < 1 such that
1t ur, v, w1) = ft w2, v2,w2) || < K (JJur — ual| + (o1 — v2]) + KT [Jwr — w2|-

for any uy, vy, up, v2,wy,wy € X.

H3. Suppose that the constant A satisfies the following estimate
A 2K |¥|T(v+7r)B l/a—i—r ZQ i oty 1+B(V,a) T\ <l
1 - K* rw)[(a+r) () p

Theorem 3.1. Assume that [H1] is satisfied. Then problem (1.1) has at least one solution in
cr_, (J,X) cc™ (J,%).

l—v,p 1—v,p
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Proof. Consider the well-defined operator N : Ci_,, ,(J,X) — Ci_,,,(J, X) defined by

N(u)(t) = % (i)u_lég /On (Tf;s’))w_lsp‘l&(s)ds

1 /’/ <tp—s”>al o1
+— - s"T Ky (s)ds. (3.1
o U )
We will present the proof into several steps.
Step.1: The operator N is continuous.
Let um, be a sequence such that u,, — w in Ci—,,,(J, X). Then for each t € J, we have
(N (6) = (V) (0) (2 /)'~| < V1 + 2,
where
|‘I—‘\F1/+r / 7 — s\
= i Ky - K, ds.
Vi = FoTeT Z:< 0 S Ky () = Ku(s) | ds
and B
tP — s _
g (& ) i (* ) 5 K (5) — Ku(s) | ds.
0
hence,
|¥ | T(v+r) / =P\ s\
< —F K 7 t i - ds.
Vi < Foie g Ko () = Kul)le, ”Z¢ ; (L) as
and

1 [t /t (tﬂ - s”)“' -1 (sﬂ)”l
Vo< — [ — Ky, (+) — Ky (- s” - ds.
< () KO -Ke, [ (5 ;

therefore,
‘((Num)(t) — (Nu)()) (t”/p)' ™"

where B(+, -) is the Beta function and

o (R ) R ()

< @ [Kup ()~ KuOlle,

i=1
Since f is continuous, this implies that K, () is also continuous. Then we get

HNumfNuHC]iVPAO ,M — 00.

Step.2: The operator N maps bounded sets into bounded sets in Ci—, ,(J, X).

Assume that ©x = {u € Ci—v,p(J,X) : [[ull¢,_ }. Actually, it is suffices to show that for any x > 0,
—p

there exists ¥ > 0 such that for any u € ®, we have ||[Null , < 9

o @] < RS [ (‘) T Ku(s) | ds.

p

I'(v)M(a+r) -

i (5) L (552 e

For simplicity, we put

5 - a+r—1
4 = o Za/ (=) iR

L) s

Now, by assumption [H 1], we get

| Ku(?) |

| £t u(t), u(At), Ku(?)) |
o) +p@) || +a) | u | +x@) [ Ku(?) |
O+ +q) | ul

1—x*

IN

IN
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then,

\‘P|F(1/+r) i /Tz‘ P\ (e (0 ) | u
< ) )
A Tla+7) ZZC P s T ds

cx+'r . . P a+r+v—1
\ ,,M v +a) (2) Bw,a+n)llule,
a+r

i £ T(a +7)
" t* WEERVANCES: . P
- SF—<; ( —s ) Sp—1<g +(1i_+xq*)\u\)d&
(o) /o)™ < Q* (r(u F| (a+r + 1 ZQ ( )DM + ﬁ (?)am>
*wd’l lulle, ., = 9.

Step.3: The operator N maps bounded sets into equicontinuous set of Ci—,,,(J, X).
Lett;,t» € J suchthatt; > t,. Let u € ©,, then

(V) (@) = (V) (/0] < | s (tp) / ) (= ) K, (s)ds

pN\ l—v ty P o\ @l
_L (2) / <t2 S ) SpilKu(S)dS |
Fla) \ p 0 P

1 /tl 1
< = D,5°7 'Ky (s)ds
e )
P ty p_ p\ ol
o (i) / (L = ) K (s)ds
t
® (tf)ly (t{)_s,))al (tg)ll/ (tg_sp>al
D = — _— = -
P P P P

The right-hand side of the previous inequality tends to zero, as t; — t,. Consequently, from Step.1-
Step.3, together with Arzela-Ascoli theorem, we can deduce that

N :Ciyp(J,X) = Cloyp(J, %)

(Nu)(tr) = (Nu)(t2)) (" /p)' ™"

where

is a completely continuous.

Step.4: The set
Q={uecl_,,(J,%X) u=w(Nu),0 <w <1}

is a bounded set.
Letu € Q, u = w(Nu) for some 0 < w < 1. Then, for each ¢ € J, we have

1 /t (tp_8p>a—l -
+ = s Ky (s)ds.
) Jo U9 (o))
It follows from assumption [H 1], that

Y < fon ()

u(t) | — t)| —

ot e

v

o* [P Tw+r) ~~, (TP\"" 1 7\
I—x (F(v)r(a+r+1)zg (?) T+ (7) )
P +4q)
1—x*

< 00.

<

+ @ flull, |
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Therefore, the set Q is bounded.

Consequently, by Schaefer’s fixed point theorem we conclude that N has a fixed point which is a solution of
problem (1.1). [}

Theorem 3.2. Assume that [H1] — [H3] hold. Then the problem (1.1) has a unique solution.

Proof. Consider the well-defined operator N : Ci_, ,(J,X) — Ci_,,,(J, X), defined in (3.1).
Clearly, by Lemma 2.9 and Theorem 3.1, the fixed points of the operator IV are solutions of the

problem (1.1). Now it remains to show that the solution is unique. Let u,v € Ci_, ,(J, X), then
we get

m T fP g a+r—1
(e - o' ~| < FEEER S [T () e )~ Kae) s

i=1

+ﬁ(tp) /O(tpp )(Hsp-‘|Ku<s)—Kv<s>|ds.<3.z>

, and by using assumption [H2], we can estimate

2K |u—wv
| Ku(s) — Ko(s) |< — l_K | (33)
By substituting (3.3) into inequalities (3.2) and using [H2] we get
2K
_ P i —
|V = )0 /) | < Tl -

then,
|(Nu)(t) = (No)(E) (¢2/p) =

It follows from assumption [H 3], that the operator NN is a contraction map. By well known Banach contraction principle, we
can deduce that IV has a unique fixed point which is the solution of the problem (1.1). O

<Alu—vlle, , -

4 Ulam’s Stability Results.

In this section, We will prove the Ulam stability result for the problem (1.1). Now, we will give
definitions of Ulam-Hyers stable (U.H.S.) for the implicit pantograph Hilfer-Katugampola-type
fractional differential equations (1.1).

For e > 0and ¢ : J — [0, 00) is a continuous function, we consider the following inequality:

| PDSPZ(t) — f(t, Z(t), Z(\),P DG Z (M) |< e 4.1)

Definition 4.1. The problem (1.1) is said to be U.H.S. if there exists the real number C,, > 0
such that for all € > 0 and for each solution Z € Cy_, p(J, X) of the inequality (4.1) there exists

the solution u € CY_, (J,X) of the problem (1.1) with

1—v,p
| Z(t) —u(t) |< Cue, ted.

Remark 4.2. The function Z € C{_, (J,X) is a solution of the inequality (4.1), if and only if,
there exists the function g € C¥_, (J, X)) such that

@. |g(t)[<e teJ.
(b). DS Z(t) = f(t, Z(t), Z(\t),*D§P Z(M\t)) + g(t), telJ.

Lemma 4.3.Let p > 0,0 < a < 1, and 0 < 8 < 1. If the function Z € Cy_,, ,(J,X) is the
solution of the inequality (4.1), then Z is the solution of the following integral inequality

1—v,p

a—1
Z({t)—Eyz — 1_,(1&) /Ot <tp _p sp) PRz (s)ds| < Ye
where
v—1 m . at+r—1
a+r+v—1
_ I‘PIF(V+7“)<p) me 1 0\ *
- C(v)(a+7r+1) + [(a+1) ()
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Proof. In view of Remark (4.2), we have
POy Z() = f(t Z(8), Z(M), Dy Z(M)) + g(1),

= Kz(t)+ g(t).
Then

20 = o (%)Hfjci (/0 (#)a+rilsp_lﬂ<z(8)ds+/oﬂ (Tf;5p>a+rls”_]g(8)ds>

i=1

+$ (/0 (t” - sp)“_l SP—IKZ@)M/; (“’ - Sp)a_' sp—1g<s>ds> .

From this we get the following:

YI(v + 1)
Iw)(a+r)

v—1 m T P _ op at+r—1 + p_ p\ a1
(0 S0 1 (5 sy [ (£52)
- 0 P «@) Jo P
p\v—1 m T P _ op a+r—1 t p_ o\ a1
J ¥t (v ZQ/ i 071 | g(s) | ds + —— / ros | gls) | ds
F)fa+r) \p , 0 P I(a) Jo P
v—1 m T P _ op a+r—1 t p_ o\ @1
ch/ A sp_]eds-‘ri/ ¢ 5 sP~leds
p—y 0 P I(a) Jo P

I
(e G e ey,
- Fw)Na+r+1) IMa+1) \ p

O

Lemma 4.4. ([23]) Assume that ¢ : [0,T] — [0, 00) is a real function and 1)(+) is a non-negative
locally integrable function on [0, T). Let there exists k > 0,0 > 0, and 0 < o < 1, such that

ot < i)+ [ t (”’ - ) 5716 (s)ds

Then, there exist a constant C = C(«) such that for t € [0, T], we have

o0 < wie) + o | t (“’ - ) s~ 14p(s)ds

0 P

Theorem 4.5. Assume that the hypotheses [H2|,[H3] are satisfied. Then, the problem (1.1) is
U.H.S..

Proof. Let ¢ > 0 and let for any ¢ € J the function Z € Cy_, (J,X) satisfies the inequality
(4.1). In the light of Theorem 3.2, u € CIV,,W(J, X) is the unique solution of the problem (1.1).
By using Lemma 2.9, we have

= (55)
u(t) =2, + sP7'K,(s)ds
D=t b U )

i () e () e o

Now, if u(r;) = Z(r;) and 7, “u(0) = *J,* Z(0), then &, = E, and that

‘-Pl—' v—1 m Ti _ep @tr—1
|Za—%z] < ”” ( ) Zcz (T S) "1 | Ku(s)Kz(s) | ds,

Ia+ 1) P

WL +r) (PN Lo TP — 5P atr—1 2K
me L (2 [T () e () 1 - 2600 as
i=1 0 -

v—1 m
et (s)  (=x )Z@"Jﬂ\u )~ Z(m) 1= 0.

Fla+r) \ p

where

[x]
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Then we have,

u(t) =Ez + ﬁ /Ot (tp ; Sp)a_l P Ky (s)ds.

By applying Lemma 4.3 and integration of inequality (4.1) for any ¢ € J, we have

Z(t) — 5y — ﬁ /Ot (tp - SP)OH "R (s)ds

and by using inequality (3.3), we can obtain that

| 2(6) —ult) | < Ye + —— ) /Ot (” —S”)a" s0=1 | Z(s) — u(s) | ds

Ie) (25 P
Now, applying Lemma 4.4, we get

70 (< (1 + (%) (%)3 = Cue

Therefore, the problem (1.1) is U.H.S. [}

5 Applications.
In this section, we give an example to illustrate our main results.

Example 5.1. We consider the following implicit pantograph Hilfer-Katugampola-type frac-
tional differential equation

12D3 (1) = ! te(0,1],

21
3562041 (14 [u(t) | + | u(3t) | + | V2D u(d) |)

(27hu) 0) = 3 u(3/2) v=a+B1-a). G-D

Here, /’fo is the Hilfer-Katugampola fractional derivative, p = 1/2,a = 2/3,8 = 1/2,
v=15/6,(; =3and 7 =3/2. Let

F(t v, w) = !
O T3S T (I [u [+ o[+ @)

Clearly, for u,v,w, 4,0, € Ry and ¢ € (0, 1], the functions f is continuous and the hypotheses
[H2],[H3] are satisfied with K = K* = 5L Therefore, by simple calculations, we get | ¥ |=
0.3935 and A =~ 0.097813 < 1. Hence, from Theorem 3.2, it follows that the problem (5.1) has

a unique solution. Furthermore, it implies from Theorem 4.5, that the problem (5.1) is U.H.S.

6 Conclusion

The existence and uniqueness theorems of solutions to a class of implicit Hilfer-Katugampola-
type fractional pantograph differential equation with nonlocal katugampola fractional integral
conditions have been studied. For the mentioned theorems, the obtained results have been
derived by different methods of analysis like Schaefer’s fixed point theorem and Banach con-
traction principle. Also, some convenient results about (U.H.) stability have been established.
The acquired results have been justified by one pertinent example. In the future, the above re-
sults and analysis can be extended to stochastic fractional differential equation involving Hilfer-
Katugampola fractional derivative.
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